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Data on species occurrence at the scale of their distributional range and the
determination of their habitat use requirements are essential to support conservation
and define management plans that account for their habitat requirements. For wide-
ranging species, such as cetaceans, especially considering that their marine habitats
include offshore areas, collection of such data is challenging. In the absence of
dedicated surveys, alternative methodologies are needed, such as the use of data
collected from platforms of opportunity and modelling techniques to predict distribution
in unsurveyed areas. Using 6 years of cetacean occurrence data collected along
cargo ship routes between the lberian Peninsula, northwestern African coasts and
the Macaronesian islands, we developed ecological niche models to assess habitat
preferences and predict suitable habitats of the eight most frequently sighted cetacean
taxa in the area. Explanatory variables used for model fitting included topographic,
oceanographic, detectability, geographic and seasonal features. To provide a robust
habitat characterisation, along with predictions of habitat suitability, making best use of
occurrence datasets, we applied two modelling techniques, GAM and Maxent, which
offer complementary strengths. Coastal areas provide important habitats for common
and bottlenose dophins, while other dolphin species (spotted and striped dolphins)
have a more oceanic distribution. The predicted niches of Cuvier's beaked whale
and minke whales are mainly in the high seas at northern latitudes. Suitable habitats
for sperm whales and pilot whales are mostly in southern areas in continental slope
regions. For all the species, models indicated that areas around seamount features
offer suitable habitats, likely of high relevance in oligotrophic offshore waters. As such,
dedicated survey effort in such areas would facilitate development and implementation
of appropriate management plans, which are currently lacking. Our models offer an
important contribution to baseline knowledge of cetacean distribution at basin-scale
in the region and could support the definition of priority areas, monitoring plans, and
conservation measures, essential to comply with the requirements of the EU Marine
Strategy Framework Directive.

Keywords: ecological niche modelling, GAM, Maxent, basin-scale modelling, habitat preferences, suitable
habitats
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INTRODUCTION

One of the main issues for cetacean conservation is related to
managing data deficiency. Lack of data is often viewed, at least
by policy-makers, as an absence of any cause for concern. This
interpretation often leads to a failure to develop conservation
plans, delays in the implementation of management actions
and reduced funding for scientific investigation on species that
potentially are in need of more research effort (Parsons, 2016).
Consequently, cetacean conservation is hindered, given that over
35% of cetacean species are categorised as “data deficient” by
the IUCN'. This leads to questions such as, how can we address
data gaps and provide useful data for decision-makers? How can
we apply the precautionary principle when data are deficient?
How can we obtain comprehensive data on wide-ranging species
that travel long distances over areas with no physical barriers?
How can we sample remote areas like open-ocean waters where
long-term monitoring programs are financially and logistically
challenging? Possible solutions include the use of observation
platforms of opportunity (OPOs), coupled with remote sensing
data and ecological niche modelling.

Recently, the use of OPOs to collect long-term data on
cetacean occurrence has increased considerably (Tobena et al,
2016; Alves et al., 2018b; Tepsich et al., 2020). Sampling protocols
and techniques used in data processing and analysis have
been refined. Data collected from OPOs are now frequently
used to conduct ecological niche modelling in order to assess
cetacean distribution and understand its relationship with habitat
characteristics (e.g., Correia et al., 2015, 2019b; Breen et al,
2017; Redfern et al, 2017; Derville et al., 2018; Fernandez
et al., 2018; Fiedler et al., 2018; Garcia et al.,, 2018; Passadore
et al., 2018; Barragan-Barrera et al.,, 2019; Garcia-Barén et al,
2019; Valente et al., 2019). Results from such models have
been successfully applied in the definition of monitoring plans,
management strategies and creation of Marine Protected Areas
(MPAs) (Passadore et al., 2018; Garcia-Bardn et al., 2019).

Presence-only and presence-background models, which can
be constructed without survey effort data, may provide reliable
information on cetacean occurrence ranges (Redfern et al., 2006;
MacLeod et al., 2008a; Friedlaender et al.,, 2011; Thorne et al.,
2012; do Amaral et al., 2015; Derville et al., 2018; Fiedler
et al,, 2018; Smith et al., 2020). These algorithms are often an
appropriate option to map habitat suitability of highly mobile
species, for which data, especially effort-based, are hard to obtain
(Sillero, 2011; Smith et al., 2020). This is especially so for
cetaceans, since, in addition to horizontal mobility, they spend
only a small proportion of time at the sea surface. On the other
hand, the use of presence-absence models with effort-based data
provides better insights into species habitat characteristics as
such models account for surveyed habitat and quantify absence,
for example, by using pseudo-absence data representative of
the surveyed habitat (Brotons et al., 2004; Redfern et al., 20065
MacLeod et al., 2008a; Tepsich et al., 2014; Derville et al., 2018;
Fiedler et al., 2018) or by dividing the survey track into segments
and calculating encounter rates for each.

Lwww.iucnredlist@org

In general, the most frequently used predictors in ecological
niche modelling for cetaceans are static habitat variables (such
as those describing topography), as they are easier to quantify
(they usually only have to be measured once) and to use for
management purposes (e.g., definition of MPAs). Moreover,
at least broadly speaking, there are good reasons to suppose
that variables such as depth, seabed slope and substrate type
are relevant to cetacean habitat choice (e.g., Redfern et al,
2006; MacLeod et al., 2008a; Viddi et al., 2010). Nonetheless,
oceanographic processes play a fundamental role in determining
the distribution of cetaceans, not only through their effects
on prey availability but also in relation to physiological limits
(e.g., the thermal niche, MacLeod et al., 2008b; MacLeod, 2009;
Lambert et al., 2011, 2014). Hence, a combination of static and
dynamic variables should be considered when modelling cetacean
distribution, as well as for management purposes (Tobena et al.,
2016; Breen et al., 2017).

Another fundamental consideration is the spatial and/or
temporal scale(s) (and resolution) of each variable to be used in
the modelling process. The scales chosen can strongly influence
model results and application. The association of the animals
with oceanographic features may be stronger with ephemeral,
mesoscale, seasonal, and/or more permanent features (Mannocci
et al., 2017). For example, sea temperature may be relevant
to cetacean distribution at several scales. At larger scales (ie.,
low spatial resolution) sea-surface temperature can be used to
define the limits of the thermal niches of cetaceans and their
prey at different life-cycle stages, and to reflect the locations of
water masses and current systems. At smaller scales (i.e., high
spatial resolution), sea-surface temperature data can be used to
determine the occurrence of mesoscale oceanographic features
which may be associated with prey aggregations. Therefore,
multi-scale models and/or the testing of several scales are
recommended (Fernandez et al., 2018). Overall, the best model
approach and methodology must be selected given the data
available, sampled area and the aims of the models (Guisan and
Zimmermann, 2000; Redfern et al., 2006), taking into account the
biology of the species.

In the eastern North Atlantic, within the area encompassing
the Iberian and northwestern (NW) African coasts and the
Macaronesia, 36 species of cetaceans have been recorded, with
the eight most frequently sighted representing all of the main
guilds of cetaceans: small dolphins (bottlenose dolphins Tursiops
truncatus, common dolphins Delphinus delphis, striped dolphins
Stenella coeruleoalba, and Atlantic spotted dolphins Stenella
frontalis), large dolphins (pilot whale Globicephala sp.), beaked
whales (Cuvier’s beaked whales Ziphius cavirostris), sperm whales
(Physeter macrocephalus) and baleen whales (minke whales
Balaenoptera acutorostrata) (Correia et al., 2020). This is an area
with a wide latitudinal and longitudinal range, encompassing
substantial habitat variability (Mason, 2009; Sala et al., 2013).
The composition of cetacean community species profiles varies
among sub-regions (Correia et al., 2020), but cetaceans move and
migrate across the entire area (Alves et al., 2018a; Valente et al,,
2019). Therefore, to fully understand the habitat requirements
of cetacean species in this area, distribution patterns need to be
analysed at the basin-scale. However, similarly to many other
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areas in the globe, there are few data on cetacean occurrence
in oceanic (high seas) waters of the eastern North Atlantic
(Hammond et al., 2013; Correia et al., 2015; Jungblut et al., 2017).

In this study, we aimed to relate habitat characteristics to
the distribution of the eight most frequently sighted cetacean
species within the eastern North Atlantic, by using ecological
niche models, at basin-scale, with data collected between 2012
and 2017 from OPOs along long-distance routes (CETUS Project;
Correia et al., 2019a). A description of the spatial and temporal
distributions of all cetacean species sighted is presented in
Correia et al. (2020). Here, we applied two different modelling
techniques, thus benefitting from the strengths of each in a
complementary approach: a presence/pseudo-absence approach
accounting for sampling effort using Generalised additive
models (GAMs) to analyse cetacean-habitat relationships, and
a presence/background approach including a larger dataset (all
presence points) using Maximum entropy models (Maxent) to
forecast habitat suitability for the eight cetacean species over the
entire study area.

MATERIALS AND METHODS
Study Area

Cetacean occurrence data were collected within the CETUS
Project, a cetacean monitoring program in the eastern North
Atlantic, which has been running since 2012. Here we analysed
data spanning from 2012 to 2017. Through a collaboration
with TRANSINSULAR, a Portuguese company for maritime
transport, cargo ships are used as OPOs to collect data
along commercial routes between continental Portugal, the
Macaronesian archipelagos and NW Africa. In general, three
commercial routes were sampled: Continental Portugal to
Madeira (2012-2017); Continental Portugal to Azores (2014-
2017) and Continental Portugal to Canary Islands, Northwest
Africa and Cape Verde (2015-2017). Campaigns occurred mostly
in summer and early autumn months (July-October) with the
remaining months (February, March, May, June, November, and
December) being surveyed in only one of the years. There were
no campaigns in January or April. For spatiotemporal details on
the sampled transects, see Correia et al. (2020).

The eastern North Atlantic is a very diverse region in
terms of the topographic and oceanographic environment, which
includes both narrow and wide continental platforms, abyssal
plains, steep slopes, numerous seamounts and canyons, four
archipelagos (Azores, Madeira, Canaries, and Cape Verde), major
currents (Portugal, Azores, Canary, and Mauritania currents)
and frequent occurrence of mesoscale eddies (Mason, 2009;
Supplementary File 1).

Collection of Occurrence Data

Every year, each ship receives a team of two marine mammal
observers (MMOs) for cetacean surveys. MMOs follow the
standard sampling protocol for visual monitoring along line-
transect surveys, from sunrise to sunset (Hammond et al., 2013;
Tepsich et al, 2014; Correia et al,, 2015). The survey data
are subsequently divided into “legs,” i.e., periods of continuous

observation (by at least one observer), generally corresponding
to a full day from sunrise to sunset. Each leg is divided into
“transects,” with each transect corresponding to an uninterrupted
on-effort period, during which observers are monitoring actively.
Monitoring is performed from the front of the vessel, focused
on a field of view of 180° centred on the heading of the vessel.
Observers usually stand in both wings of the navigation bridge
(at a height of between 13.5 and 16 m above sea level, considering
maximum draught and speed, and depending on the ship),
occasionally monitoring from inside of the ship when weather
is uncomfortable (i.e., strong winds or moderate rain) but still
suitable for surveying. Each observer stands on one side of
the vessel and the two observers switch position every 60 min
(approximately) to avoid fatigue and possible biases associated
with different detection capacities of the observers. Moreover,
in turns, both observers take (staggered) 1 h breaks for meals
and two optional rests of up to 40 min (one in the morning
and another during the afternoon). Each MMO usually covers
90° (one half of the overall field of view); at mealtimes and
resting periods, the lone MMO covers the entire 180° range from
one of the sides. Observers scan for cetacean presence with the
naked eye, performing occasional scans with binoculars (fitted
with a compass and a distance scale with seven or eight reticules,
7 x 50 mm). Apart from the year 2012, in which the route of
the ship was recorded in a Garmin GPS and positions, along
with associated data, were recorded on paper forms, all the data
are recorded using a tablet with an inbuilt GPS and running the
application MyTracks?, which registers date and time, speed and
direction of the route. After a survey leg, the data are stored in
the app, in the internal memory of the tablet, and subsequently
uploaded to a laptop. Then, at the end of each trip (from one port
to another), all data are sent to the team coordinator on land for
posterior data processing and analysis. The registers for each leg
are always kept in two devices (at least) to avoid loss of data.
Weather conditions are assessed at the beginning and end of
each survey leg and every time there is a significant change in
the conditions. The following variables are recorded: sea state
(using the Douglas scale), wind speed (using the Beaufort scale),
visibility and the occurrence of rain. Visibility is measured on
a standard categorical scale used by the crew for navigation
purposes, which ranges from 1 to 10 (with 1 being visibility
less than 50 m, and 10 being visibility over 50,000 m, see
Supplementary File 2 for further details) and is estimated based
on the definition of the horizon line and reference points at a
known range (e.g., ships with an AIS system). The presence of
marine traffic, categorised as small and large vessels (less than and
over 20 m in length, respectively) in the area, detected with or
without binoculars, is registered at the beginning and end of each
survey leg, every hour and at every sighting. For this purpose,
a 360° field of view is covered, with the observers performing a
360° sweep (i.e., searching all around their monitoring position,
and not just in front of the vessel). Marine traffic data were
not used in the present analysis. Sampling effort stops when
weather conditions are unfavourable for cetacean monitoring,
i.e., Beaufort and/or Douglas values > 4, visibility < 1 km or 5 in

Zhttps://my-tracks.pt.aptoide.com
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the visibility scale, and/or heavy rain, and when the survey stand
is unavailable (e.g., during safety drills, manoeuvres). Any data
collected until effort resumes are considered opportunistic (off-
effort).

Whenever a cetacean species is sighted, both observers gather
on the side of the boat where the animals were spotted in order
to collect data on the occurrence. This marks the end of an on-
effort transect.

Identification is attempted to the species level, although the
taxonomic level registered is always the level to which the MMOs
are confident of their identification. For group size estimates,
the observers provide the minimum, maximum and most likely
(best estimate) number of individuals in a sighting. Moreover,
whenever possible, information on the heading of the group
and its behaviour toward the ship (i.e., approaching, indifferent
or avoiding) is also collected. After registering the sighting and
collecting the above-mentioned data, each MMO returns to
his/her side of the vessel, and a new on-effort transect starts. Data
on the occurrence of pelagic megafauna other than cetaceans
are also collected along the transect. However, observers record
only taxonomic information and number of individuals, without
interrupting the on-effort track.

During off-effort periods, cetacean sightings are still recorded
as opportunistic (i.e., off-effort sightings). The same methodology
for data collection is followed as much as possible, considering
limitations associated with oft-effort periods (i.e., poor weather
conditions, observation stand unavailable, registering of
another sighting).

Cetacean occurrences are reported as corresponding to the
ship’s position at the moment of the cetacean sighting. Locations
were not corrected based on the angle and distance to the
cetacean, due to the errors associated with varying heights of the
observation platform (e.g., due to the amount of cargo carried)
and also to the interference in functioning of the compasses in
the binoculars caused by the iron of the ship.

Environmental Data Collection
For ecological niche modelling, in addition to weather conditions
and spatiotemporal variables, we derived habitat variables (static
and dynamic) from satellite data at several temporal and spatial
scales (see Supplementary File 2). The environmental variables
were selected on the basis of their reported influence on cetacean
occurrence (e.g., Redfern et al., 2006, 2017; Azzellino et al., 2012;
Tobefia et al., 2016; Breen et al., 2017). Seabed topographic
features are related with upwelling systems, turbulence and
aggregation of prey species. Remotely sensed chlorophyll-a
constitutes an adequate proxy for productivity while sea-surface
temperature is commonly used to identify upwelling systems and
thermal fronts and, in the study area, it shows a marked gradient
from northern colder to southern warmer waters (Mason, 2009;
Robinson, 2010). Finally, sea-surface altimetry is influenced by
oceanographic dynamism including current systems. Sea level
anomalies are a good indicator of up- and downwellings caused
by the influence of topographic features or mesoscale eddies
(Robinson, 2010).

Seabed slope was derived from bathymetry data. For distance
to seamounts, we delimited topographic features classified as

seamounts, banks, hills, ridges and rises in GEBCO®. We used
contour lines created every 50 m and defined a polygon from the
outermost closed contour line around the geographic location of
the top of the features. Then, we calculated the distance from
the base of the seamounts and from the coastline (distance to
coast) to the sightings. Both slope and distances were computed
using ArcGIS 10.5.

Chlorophyll-a and sea-surface temperature were obtained
from NASA* and are ocean products derived from the satellite
Aqua, through the sensor MODIS. The algorithms return the
near-surface concentration of chlorophyll-a (from in situ remote
sensing reflectance) and temperature (from measured radiances).
We extracted both variables at two different spatial scales (4 and
9 km) and two different temporal scales (8-day and monthly).

For altimetry, the mean sea level anomalies were obtained
from Ssalto/Duacs multimission altimeter products provided
by AVISO®. The sea level anomalies are sea-surface heights
computed with respect to a 20-year mean profile (1993-
2012). We used delayed products’, available around 2 months
after collection, after re-analysis and re-processing. For this
variable, 8-day and monthly resolutions were computed by
averaging daily products.

Ecological Niche Modelling
We used two ecological niche modelling techniques, recognising
the strengths of each as reported in the literature (e.g., Derville
et al., 2018; Fiedler et al., 2018). Each type of algorithms
(GAM and Maxent) forecast different things: presence-absence
algorithms such as GAM distinguish between occupied and non-
occupied habitats, while presence-background algorithms such
as Maxent distinguish between suitable and unsuitable habitats
(Sillero, 2011). GAM is accounting for the sampling effort in
the transect, as absences cannot be guaranteed, and modelling
the observed distribution of the species at the moment of the
survey. GAMs were used to analyse species-habitat relationships
and explore species habitat preferences, including seasonality
of dynamic variables and a time variable (day of the year).
Only on-effort records of occurrence were used. On the other
hand, Maxent models the habitat suitability of the species by
comparing the species presences with the available habitat (i.e.,
background). These were used to model of the realised niche
of the species and map habitat suitability across the entire
study area. In this case, dynamic variables were time-averaged,
as there were insufficient data to model monthly (or seasonal)
cetacean distributions. Nevertheless, taking into account the
complementary approach, seasonality was not lost in the analysis
as it was already introduced and assessed with the GAM models.
For Maxent, all occurrence records were included (on and
off-effort), therefore allowing for the use of the entire set of
presence points.

Explanatory variables were chosen to reflect spatiotemporal,
detectability and environmental factors (Supplementary File 2).

3 http://www.gebco.net/data_and_products/gridded_bathymetry_data
“https://oceandata.sci.gsfc.nasa.gov

Shttps://www.aviso.altimetry.fr/en/data/products/sea- surface- height- products/
global/msla-h.html
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Previous work with CETUS dataset (Correia et al., 2019b) prove
that it is important to include detectability factors (sea state, wind
state and visibility) in the modelling process and the combination
of detectability, spatiotemporal and environmental predictors
has been previously applied (and recommended) for cetacean
ecological niche models (e.g., Diaz Lopez and Methion, 2017,
Diaz Lopez and Methion, 2018; Correia et al., 2019b).

We fitted models for the eight most frequently sighted species
with, at least, 30 presence records collected on-effort (Stockwell
and Peterson, 2002): common dolphin, Atlantic spotted dolphin,
striped dolphin, bottlenose dolphin, Cuvier’s beaked whale, pilot
whale, sperm whale, and minke whale.

Generalised Additive Models (GAMs)

For GAMs, we chose a presence/pseudo-absence approach
based on used/available habitat (Pearce and Boyce, 2006; Elith
and Leathwick, 2009; Correia et al., 2015, 2019b), with used
(cetacean occurrence) and available (survey route) habitat points
combined to generate a binary (1,0) response variable. We fitted
binomial GAMs (with link: logit) to these response variables,
allowing a maximum of four splines (k = 4) to limit the
complexity of smoothers describing the effects of explanatory
variables. The set of available points was generated as in
Correia et al. (2015, 2019b), by creating equidistant points
(every 5 km) along all on-effort transects. This guarantees an
appropriate number of pseudo-absences representative of the
environmental space (Barbet-Massin et al., 2012; Virgili et al,,
2017). Moreover, the survey effort is taken into account in
the models as regions with more surveyed legs result in more
points of available habitat than those regions surveyed less
often (ie., with fewer surveyed legs). As points of available
habitat were created randomly along surveyed legs (5 km
equidistant), we looked for potential spatial and temporal
overlap between these points and the cetacean occurrence points,
to delete any erroneous pseudo-absence points. In practice,
none of the selected pseudo-absence points coincided with
locations at which cetaceans were present. The values of the
explanatory variables were obtained for the set of used and
available points. To derive values for oceanographic variables,
we used Marine Geospatial Ecology Tools (MGET) for ArcGIS
(Roberts et al., 2010).

Prior to modelling, we computed Pearson correlations
between all pairs of explanatory variables to allow us to
exclude highly correlated variables from the same model, using
a threshold of 0.75 (after Marubini et al., 2009). Distance
to coast and depth were the only pair of variables which
were highly correlated. Both were of interest, hence, we
first fitted a GAM model with depth as the predictor and
distance to coast as the response variable. The depth and
the residuals of this model were then used as explanatory
variables in subsequent models (see Smith et al., 2011). The
resulting spline for the residuals term should be interpret as
the effects of proximity to coast in the species occurrence,
at a given depth. Moreover, we assessed multiple correlation
among explanatory variables through the Variance Inflation
Factor (VIE, with a threshold of 3) (Zuur et al, 2010). All

VIF values were lower than the threshold, so no additional
variables were removed.

Following Correia et al. (2015, 2019b), and to account for
varying group sizes, we included the best estimate of the
number of animals sighted in a group as a weight parameter
in the models. For (pseudo-)absences, the weight was always
1, while the presences were weighted according to the group
size associated with the sighting. For species usually seen singly
or in small groups (sperm whales, Cuvier’s beaked whales and
minke whales), the weight was equal to the number of animals
sighted in the group (group size best estimate). For species usually
sighted in large groups (common dolphins, spotted dolphins,
striped dolphins, bottlenose dolphins, and pilot whales), there
was a wide range of group size and high uncertainty on the
best estimate. As such, for these species, we assigned weights as
follows: 1-5 animals, weight = 1; 6-20 animals, weight = 2; > 20
animals, weight = 3.

We considered only main effects of the variables, and
started with saturated models including all static variables,
followed by backward selection (Qian, 2009; Correia et al,
2015, 2019b). In the resultant model from this process, we
selected the “best” scale for each of the dynamic predictors based
on forward selection. This was necessary to avoid including
correlated variables in the model, since each of the oceanographic
variables showed correlations between values associated with
the different spatiotemporal resolutions. We then performed
a final backward selection. We selected the best models by
using the Akaike Information Criterion (AIC) as a measure
of goodness of fit, choosing the model with the lowest AIC
value at each step of the model fitting process, i.e., comparing
otherwise identical models with or without a specific explanatory
variable. If the difference in AIC values between two models
was less than 2, the models were compared using a Chi-squared
test (Zuur et al,, 2007). Whenever differences between AIC
values were not statistically significant (based on 3AIC < 2
and the chi-squared test result), we kept the simplest model
in the backward selection process (following the principle of
parsimony, e.g., Burnham and Anderson, 2002), or the highest
resolution for the oceanographic variables (4 km over 9 km
for spatial resolution, and 8-day over monthly for temporal
resolution). If a spline was close to linear (with estimated
degrees of freedom of ~1), we removed the smooth term
and fitted a linear function. We also checked final models
for influential data points [all Hat values were under 0.25,
indicating no strongly influential data points; the usual cut-
off is 1.0 (Zuur et al, 2007)] and for relationships between
residuals and explanatory variables (no clear patterns were
seen). Finally, we evaluated the models by creating two random
subsets of data: fitting and evaluating sets (75 and 25% of the
data, respectively). The prediction power of the models was
determined using the Area Under the Curve (AUC) of the
Receiving Operator Characteristic (ROC) plot (Beck and Shultz,
1986; Liu et al, 2005). Random models have an AUC equal
to 0.5; the closer an AUC is to 1, the higher discriminatory
power of the model.

Models were developed using the “mgcv” package in R 3.4.4.
(R Core Team, 2018) with R Studio.
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Maximum Entropy Models (Maxent)

We modelled the ecological realised niches (see Sillero, 2011)
of the eight species using the Maximum Entropy method
implemented in Maxent 3.4.1. software® (Phillips et al., 2006,
2017), a correlative niche algorithm for presence-only and
background records (Guillera-Arroita et al., 2014). This method
distinguishes between suitable and unsuitable habitats (Sillero,
2011). Maxent starts with a uniform probability distribution
(gain = 0) and alters one weight at a time to maximise the
likelihood of the occurrence data set, converging to the optimum
probable distribution (Phillips et al., 2006, 2017). The output
values range from 0.0 to 1.0, representing the habitat suitability
(not the occurrence probability, as presence-absence algorithms
do; Sillero, 2011).

Maxent generates a background sample of points, randomly
selected from the whole study area, without any reference to the
presence or absence of the species (Phillips et al., 2009; Elith
et al., 2011; Guillera-Arroita et al., 2014). Thus, the background
sample of points provides a spectrum of the available conditions,
not meaning that species are absent (Phillips et al., 2009).
Model performance improves if background points are extracted
from areas near to species presences (Phillips et al., 2009). For
this reason, we clipped the environmental variables with four
different buffer sizes (5, 10, 20, and 50 km) around the cetacean
presence points, selecting the random background points from
within the buffer area. We then projected the models onto
the whole study area. We defined the buffer sizes considering
visibility (height of the observation deck, visibility range) during
at-sea surveys and the likelihood of observers detecting different
cetacean species (dolphins jumping or travelling vs. blow of
the whales, etc.) (after Fourcade et al., 2014), as follows: up to
5 km, most animals are spotted under favourable conditions and
jumping dolphins near the ship are sighted even in oft-effort
weather conditions; at a 10 km range, whales’ blows are seen
and some jumping dolphins can still be spotted under favourable
weather conditions; 20 km is the most common visibility range
during CETUS surveys (with ships at a distance of ~20 km still
visible at the horizon line, as confirmed with the AIS system of
the cargo vessel); the maximum visibility range ever recorded
was 50 km (with ships being spotted at the horizon line at a
distance of ~50 km, range confirmed with the AIS system of
the cargo vessel).

We selected five explanatory variables with between-variable
Pearson correlations lower than 0.75 (Supplementary File
2): slope, chlorophyll-a, distance to seamounts, sea surface
temperature, and depth. Distance to coast (correlated with depth)
and latitude (correlated with sea surface temperature) were
excluded. We did not include mean sea level anomaly due to its
very low spatial resolution. We averaged the dynamic variables
(chlorophyll-a and sea surface temperature) during the fieldwork
period (Continental Portugal-Madeira: July-October 2012; June-
October 2013; August-October 2014; June-October 2015; July-
October 2016; September 2017; Continental Portugal-Azores:
July-September 2014; July-October 2015; July-October 2016;
July-October 2017; Continental Portugal-Canarias-Cabo Verde:

®biodiversityinformatics.amnh.org/open_source/maxent

May-October 2015; February-March and August-December
2016; June-September 2017) in Macaronesia region using 8-
day resolution files with Raster Calculator in QGIS. The static
variables remained the same for all periods. The spatial resolution
of the environmental variables chosen was 4 km. We run Maxent
with default settings, using 70% of the points as training data and
30% as test data. Duplicated records (i.e., two or more presences
in the same pixel) were eliminated, thus we included only one
presence per pixel. We built 100 model replicates for each species
and gathered the arithmetic mean and the standard deviation for
each set of 100 replicate models, as Maxent is a machine learning
method. We ran Maxent in clog-log format (Phillips et al., 2017).

Model performance was evaluated based on the AUC of the
ROC plot (Liu et al., 2005). In addition, as AUC is designed for
presence-absence algorithms and not presence-only methods, we
calculated a set of 100 null models for each species, following the
methodology by Raes and ter Steege (2007). For this, we created
100 different datasets with the same number of random points as
the species presences, following a Poisson distribution (suitable
for counts, as in this case of number of presences). We obtained
the AUC values of the ROC plots for each set of 100 null models.
Then, we compared the training AUC values between species
models and null models using a Kruskal-Wallis test. Null models
were calculated in R 3.4.4. (R Core Team, 2018) using ‘dismo
1.1-4’ package (Hijmans et al., 2017).

The importance of each environmental variable was
determined by the average percentage of contribution and
permutation importance of each variable to the models through
factor analysis: (1) a jack-knife analysis of the average AUC
using training and test data; and (2) a calculation of the average
percentage contribution of each variable to the models. For this
purpose, the variables were excluded in turn and a model was
created with the remaining variables; then a model was created
using each individual variable.

RESULTS

Sightings and Survey Effort

A total of 124,428 km of survey effort was distributed along
three main routes, from continental Portugal to the Azores, to
Madeira and to Cape Verde (the latter with stopovers in the
Canary Islands and Northwest Africa) (Supplementary File 1).
We collected 2807 sightings of which 1266 were analysed within
this study, i.e., those of the eight most frequently sighted species
(919 collected on-effort and 347 recorded opportunistically):
D. delphis (394 sightings, of which 262 were on-effort), S. frontalis
(226 sightings, 167 on-effort), S. coeruleoalba (154 sightings, 119
on-effort), T. truncatus (134 sightings, 92 on-effort), Z. cavirostris
(64 sightings, 51 on-effort), Globicephala sp. (59 sightings, 44
on-effort), P. macrocephalus (152 sightings, 116 on-effort), and
B. acutorostrata (92 sightings, 75 on-effort). Since 11 single
sightings included two of the selected species (i.e., species were
sighted in association with each other), those are accounted
twice above when presenting the number of sightings by species
(Supplementary File 1).
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Ecological Niche Models
GAM and Maxent Models: Overview
All models performed better than a random model (AUC > 0.5).
From the eight final GAM models, the best was that obtained
for Globicephala sp., with an AUC of 0.93 and 26.8% of deviance
explained, while the worst was that obtained for S. frontalis, with
an AUC of 0.81 and 7.45% of deviance explained. All eight final
models included variables related to detectability, spatiotemporal
variables, and environmental (both static and dynamic) factors
(Table 1). With the exception of S. frontalis, wind state affected
the detectability of all species, with a general decrease of recorded
occurrence with increased wind speed. S. frontalis occurrence
was influenced by sea state, with an increase of detections up
to sea state 2, and a roughly constant likelihood of detection
thereafter. The detection of S. coeruleoalba, P. macrocephalus, and
B. acutorostrata, increased with improved visibility (Figure 1).
The best Maxent models were obtained with a buffer size of
50 km (results are not shown for the other buffer sizes). The
eight Maxent models had mean training AUC values close to
0.8 and test AUC close to 0.7. For all models, training AUC
were significantly higher than those of null models (Kruskal-
Wallis with p-values < 0.001). The best Maxent model was
obtained for the most frequently sighted species (D. delphis),
with a training AUC value of 0.85 and test AUC of 0.83,
while the worst model was obtained for spotted dolphin
(S. frontalis), with a training AUC of 0.75 and a test AUC of
0.69 (Table 2). The explanatory variable that contributed most
to the B. acutorostrata and Z. cavirostris Maxent models was
distance to seamounts. For D. delphis, Globicephala sp., and
T. truncatus models, the most important variable was depth;
for P. macrocephalus, S. coeruleoalba, and S. frontalis it was sea
surface temperature (Table 2).

Habitat Preferences and Suitability

To interpret the species’ habitat preferences, we used the
GAM fitted splines, in the areas of parameter space where the
confidence intervals were satisfactory, thus generally excluding
the extremities of the functions where confidence limits tend to
be widest (Figure 1). The descriptions of habitat suitability across
the area are based on the maps obtained with the Maxent models,
considering the areas represented by warmer colours as areas of
higher habitat suitability and those with colder colours being less
suitable or unsuitable habitat, in a percentage scale from 0 to
100% (Figure 2).

The occurrence of D. delphis, the most frequently sighted
species, decreased from the beginning to the end of the summer
months. The species was found to be associated with shallower
depths and, at the same depth, to locations closer to the
coast, and also, at lower sea surface temperatures (Figure 1).
These habitats preferences were corroborated by predicted highly
suitable habitat occurring mainly in coastal areas with associated
upwelling systems, i.e., off continental Portugal and NW Africa,
and around the Macaronesian archipelagos (Figure 2).

Similarly, S. frontalis occurrence also decreased throughout
the summer months. The species preferred northern waters,
contrasting with S. coeruleoalba, the preferred habitat of which
decreased toward the north (up to 25°N). Occurrence of both
Stenella species peaked at a distance of ~300 km from the
seamounts, at ~23°C of sea surface temperature, and showed
an overall decreasing tendency toward high positive sea level
anomalies (Figure 1 and Supplementary File 4). S. frontalis
occurrence increased with depth up to 2,000 m, decreasing
thereafter (Figure 1). Maxent predictions point to a widespread
habitat in the study area for both Stenella species, with higher
suitability located mostly in oceanic waters, especially when

TABLE 1 | Results from the best final GAM models developed for the eight most frequently sighted species.

Model Presences/ Deviance explained AUC
pseudo-absences (C1 95%)
DD ~ s(day) + s(wind) + s(depth) + s(slope) + s(res) + s(dist_sm) + s(sst_4 228/19570 20.2% 0.81
km_8 day) + s(chl_9 km_m) + s(msla_8 day) (0.74-0.87)
SF ~ s(day) + s(lat) + s(sea) + s(depth) + s(slope) + s(dist_sm) + s(sst_4 km_8 150/19439 7.45% 0.61
day) + chl_4 km_m + s(msla_8 day) (0.562-0.71)
SC ~ s(day) + s(lat) + wind + s(vis) + slope + s(dist_sm) + s(sst_4 93/17697 10.1% 0.70
km_m) + chl_4 km_8 day + s(msla_m) (0.567-0.83)
TT ~ s(lat) 4+ s(wind) + s(depth) + s(dist_sm) + chl_4 km_m + s(msla_m) 79/22344 121% 0.75
(0.66-0.84)
ZC ~ s(day) + s(lat) + wind + s(depth) + sst_9 km_8 day + s(msla_m) 48/21095 13.9% 0.74
(0.62-0.86)
Gsp. ~ s(lat) + wind + s(depth) + s(sst_4 km_m) + s(chl_4 km_8d) + s(msla_8 30/17707 26.8% 0.93
day) (0.88-0.98)
PM ~ s(lat) + s(wind) + vis + s(res) + s(dist_sm) + s(sst_4 km_m) + s(chl_9 87/18806 17.8% 0.73
km_8 day) + s(msla_8 day) (0.63-0.83)
BA ~ s(day) + s(wind) + s(vis) + s(depth) + dist_sm + s(msla_8d) 75/23419 7.48% 0.74
(0.63-0.84)

DD—D. delphis; SF—S. frontalis;, SC—S. coeruleoalba; TT—T. truncatus, ZC—Z. cavirostris; Gsp. —Globicephala sp.; PM—P. macrocephalus; BA—B. acutorostrata;
res—residuals from GAM model distance to coast ~ depth; AUC—Area under the curve; Cl—Confidence interval. Number of presences decreases from the total number
of sightings when chlorophyll-a and sea surface temperature is included in the model, due to non-available measures in some of the sightings points. The abbreviations

used for the variables are defined in Supplementary File 2.
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comparing to the habitat suitability for the other two dolphin
species (D. delphis and T. truncatus) (Figure 2).

T. truncatus presented peaks of habitat preferences in different
areas: at latitudes ~15 and ~35°N, at lower and higher
depths, closer to and further from seamounts and at low
positive anomalies in altimetry (~0.05-0.10 cm) (Figure 1). The
predicted realised niche pointed to a higher habitat suitability
mostly in coastal waters and particularly around the Azores and
continental Portugal (Figure 2).

The presence of Z. cavirostris increased from the beginning
to the end of the summer months, peaked at ~35°N latitude,
increased with sea depth and decreased toward positive sea level
anomalies (Figure 1). The predicted higher habitat suitability of
the species was mostly in oceanic areas, with clearly important
areas near seamounts, especially those located mid-way between
southwest Portugal and Madeira island (Figure 2).

B. acutorostrata had an oceanic occurrence, with preference
for areas with depths greater than ~2,000 m and occurrence
generally decreasing toward high positive sea level anomalies
(Figure 1). Predicted suitable habitat for minke whales was
mainly in oceanic areas, with a clear increase in habitat suitability
when in proximity to seamounts (Figure 2), a finding also
agreeing with the GAM fitted spline for distance to seamounts
(negative relationship with increasing distance to seamounts,
Supplementary File 4).

Both Globicephala sp. and P. macrocephalus preferred
southern latitudes in the study area. Pilot whale occurrence
peaked at ~1,800 m depth and increased toward high positive
sea level anomalies. Sperm whales, at the same depths, had
a preference for areas closer to the coast, with an overall
increase of occurrence toward areas with higher concentrations
of chlorophyll (Figure 1). Higher predicted habitat suitability for
both pilot and sperm whales was associated with the continental
slope (Figure 2).

Overall, the maps based on Maxent predictions indicated low
habitat suitability for all the eight species in oceanic areas which
lacked seamounts or islands (Figure 2). All the fitted splines of
the eight final best GAM models, including those not illustrated
in Supplementary File 4.

DISCUSSION

Cetacean Habitat at Basin-Scale

To our knowledge, this is the first study predicting and mapping
suitable habitat for cetaceans, at basin-scale in this region of the
eastern North Atlantic, including the high-seas. Many studies
focus on cetacean distribution patterns across areas much smaller
than their ranging capabilities, thus potentially overlooking the
complexity of their biogeographical occurrence patterns (Alves
et al., 2018a; Garcia-Barodn et al., 2019).

Alves et al. (2018a) illustrated the connectivity of Macaronesia
and Iberian Peninsula for one cetacean species (Globicephala
macrorhynchus), presenting its wide-range movements, and its
spatial structuring, across the entire area. They highlighted
the advantages of ecological niche modelling and satellite-
linked telemetry to assess the key drivers of the biogeographical

patterns in cetacean species occurrence. However, the limitations
of ecological niche modelling need to be considered when
working with highly mobile species at such a wide scale-we
are likely not considering all predictors shaping the species’
distributions: (i) observation data portray only a subset of
cetacean occurrence (as cetaceans spend a great amount of time
underwater and detectability factors influence data collection);
(ii) we are potentially grouping animals at different stages of their
life cycle, and/or from different populations or sub-populations
(e.g., transient and resident, regional sub-populations) which
may have different habitat preferences (Ferndndez et al., 2013;
Correia et al., 2019b; Mannocci et al., 2020), and (iii) those aspects
of habitat choice which vary at smaller spatial scales are unlikely
to be captured well by a basin-scale model.

In fact, explained deviances of our GAM models were
relatively low. Hence, we need to be cautious and avoid over-
(or erroneous) interpretation of the results. On the other hand,
Redfern et al. (2017) showed that using datasets from multiple
(local) ecosystems, i.e., with a wide range of spatial and temporal
variability, improves transferability and allows the identification
of potentially suitable habitats in data-poor areas, at least if the
species’ ecology remains similar to that seen in the ecosystems
used to fit the model. In this sense, we are reasonably confident
about the transferability of our model predictions as we used
a dataset accounting for considerable habitat variability over a
wide latitudinal and longitudinal range across the eastern North
Atlantic, and we tested the utility of several predictors at multiple
scales (Redfern et al., 2006; Fernandez et al., 2018; Garcia et al.,
2018).

Cetacean Habitat Preferences and
Ecological Niches

Spotted Dolphin and Striped Dolphin

The models, obtained with both techniques, showed the poorest
performance for the two Stenella species. Predicted suitable
habitat for these species was the most widespread in the
area amongst the eight modelled cetaceans. This may indicate
that these oceanic dolphins do not have very specific habitat
requirements and are more ecological generalists, or that their
preferred habitat was not properly sampled. Both hypotheses
could explain the low values of deviance explained that were
obtained (Brotons et al., 2004).

Common Dolphin

The Maxent model for the common dolphin showed the best
performance out of the models for the eight species, with the
GAM model explaining about a fifth of the spatiotemporal
variation in the occurrence of this species. This is likely related
to the fact that the species is the most abundant in the area (e.g.,
Hammond et al., 2013; Silva et al., 2014; Tobefia et al., 2016; Alves
et al., 2018b), with the highest number of sightings among those
species used in the modelling process, but it is also relevant that
it is an ecological specialist (Marcalo et al., 2018; Correia et al.,
2019b). Common dolphins presented clear habitat preferences
that limited the predicted regions of highly suitable habitat. The
apparent preference for colder waters could be due to either the
distribution of suitable habitats mostly in northern latitudes of
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TABLE 2 | Results from the Maxent models developed for the eight most frequently sighted species with the 50 km buffer.

Species Training Training SD Test AUC Test SD test Per cent contribution
AUC records training records AUC
AUC
chl depth dist.sm slope sst

DD 0.850 207 0.0084 0.826 88 0.0226 3.03 47.81 12.79 1.99 34.39
SF 0.746 144 0.0119 0.690 61 0.0293 26.52 9.39 10.54 17.72 35.84
SC 0.782 101 0.0124 0.719 43 0.0249 12.65 16.14 5.62 5.10 60.49
T 0.819 75 0.0124 0.766 31 0.0423 14.29 52.20 20.30 4.47 8.74
zC 0.832 45 0.0209 0.775 18 0.0567 34.73 16.19 36.83 0.54 11.71
Gsp 0.794 40 0.0212 0.707 17 0.0579 12.92 69.25 4.49 10.37 2.97
PM 0.800 93 0.0128 0.728 39 0.0298 21.37 27.99 6.91 12.89 30.84
BA 0.817 63 0.0164 0.757 26 0.0389 5.69 21.03 37.24 1.45 34.58

DD—D. delphis; SF—S. frontalis; SC—S. coerulecalba; TT—T. truncatus; ZC—Z. cavirostris; Gsp.— Globicephala sp.; PM—P. macrocephalus; BA—B. acutorostrata;
AUC—Area under the curve; SD—Standard Deviation. The abbreviations used for the variables are defined in Supplementary File 2. In bold, the most important variable

for each species model.
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FIGURE 2 | Averaged maps of the eight final niche models obtained with Maxent. The range of standard deviation (SD) of each model is at the bottom left margin of
the maps. The 50 km buffer around each presence point is in light grey delimited by dashed lines.

the study area (northern colder waters) or the preference for
coastal areas associated with upwelling systems, located both in
the mainland coasts (Portugal and NW Africa) and around the
archipelagos. On the contrary, Fernandez et al. (2013) reported
that common dolphin showed a preference for warmer waters
within the northwest Iberian Peninsula. Preliminary analysis of
the CETUS dataset, including the first 2 years of surveys along
the route from continental Portugal to Madeira, also pointed
to a positive tendency of higher occurrence in warmer waters
(from 16 to 19°C, stabilising thereafter) (Correia et al., 2015).
These results are not necessarily contradictory: the three studies
cover very different ranges of surveyed latitudes and, therefore,

of surveyed temperatures [Ferndndez et al., 2013-Galicia; Correia
et al., 2015-from North Portugal to Madeira (~16-~27°C); and
the present study-from Galicia to Cape Verde (~13-~30°C)].
This may indicate that within the northernmost part of the study
area, at a finer scale, warmer waters are selected by the species.
Following the thermal niche theory, as presented by Lambert
et al. (2011), it is possible that the waters in northern regions
(North of Continental Portugal and Galicia) have temperatures
that are marginal in the thermal niche of common dolphins,
and hence temperature will strongly influence habitat selection,
with the species occurring only in warmer waters. It should
be noted though that in the eastern North Atlantic, common
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dolphins are found as far north as Scotland, likely expanding
northwards due to ocean warming (e.g., MacLeod et al., 2005).
Over the whole study area (extending as far south as Cape Verde),
which comprises mostly warmer waters corresponding to the core
temperatures of the species’ thermal niche (>14°C), common
dolphins can select more suitable habitats, for example associated
with upwelling systems, hence colder waters (but still within the
core temperatures). Year-round survey effort is needed to assess
seasonal shifts in suitable habitat (i.e., answering the question:
where do common dolphins go from autumn to spring?).

Bottlenose Dolphin

GAM models are likely to perform less well, with lower explained
deviances, if different populations or ecotypes with varying
habitat preferences or habitat uses are being included in the
analysis. This may have been the case for the models obtained
for the bottlenose dolphin, which has both coastal and oceanic
ecotypes in the area (e.g., Ferndndez et al., 2011; Correia et al,,
2020). Nevertheless, clear habitat preferences and areas of highly
suitable habitat were found.

The bottlenose dolphins preferred shallower waters in areas
where sea depth was less than 4,000 m, but preferred deeper
waters in areas where depth exceeded 4,000 m. In areas
further from the coast, the species seems to take advantage
of the proximity of the seamounts, benefiting from the local
upwelling and the lower depths (Pitcher et al, 2007). The
preferences also differ depending on the latitudinal range, with
a preference for southern areas when between 15 and 25°N,
while, from 25 to 35°N, preference increases toward northern
waters. The bottlenose dolphin is included in Annex II of the
Habitats Directive (Directive 92/43/CEE), hence EU Member
States are required to designate Special Areas of Conservation
(SACs) for its protection. Moreover, it has also been selected as
a priority species to assess indicators for the Marine Strategy
Framework Directive. This increases the need for a more
complete knowledge of the species’ distribution. Highly suitable
habitat includes coastal areas, both for the mainland (Iberia
Peninsula and NW Africa) and the archipelagos, with suitable
habitats extending further into the high seas adjacent to the
mainland. The continental platform and upwelling systems are
larger in the mainland than in the archipelagos (Mason, 2009)
which may explain the greater extent of suitable habitat in
coastal areas of the Iberia Peninsula and NW Africa. These
results highlight the need to extend conservation efforts into
areas further from the coast. On the other hand, the archipelagos
present a narrower continental platform which probably restricts
suitable habitat for bottlenose dolphins. Depth was the most
important variable for suitable habitat, with bottlenose dolphins
mostly restricted to the continental platforms and, when further
from the coast, to the seamounts. The majority of these
areas are still within the either the Portuguese or the Spanish
EEZs. This may facilitate protection measures as individuals
occurring within those areas can be included in national
management units, reducing the need for (if not the desirability
of) cooperation between nations to design a management plan
(Santos and Pierce, 2015).

Minke Whale and Cuvier's Beaked Whale

Minke whales were found mainly in the north of the study
area, with suitable habitat restricted to oceanic waters. As in the
models for bottlenose, the co-existence of different populations
within the area (resident and migratory) may lower the explained
deviance of the model. Therefore, research effort should focus
on understanding the habitat requirements for migratory vs.
resident individuals. Moreover, the movements of the whales
(latitudinal and longitudinal) should be further investigated
(Valente et al., 2019).

Seamounts were important features shaping habitat suitability
for all modelled cetacean species, but their importance was
most noticeable for those species occurring most exclusively
in oceanic waters —the minke whale and the Cuvier’s beaked
whale. Results highlight a very important region of highly suitable
habitat: the seamounts of the Madeira-Tore, and specifically the
Ampere/Coral Patch Seamounts and the Gorringe Bank. These
structures are located between south of mainland Portugal and
Madeira island (Dionisio and Arriegas, 2018).

Cuvier’s beaked whale is “data deficient” in European waters
and more research effort in the high seas is needed to fill this
gap. In fact, large gaps in the environmental space coverage
of the eastern North Atlantic were identified, especially in
deep and tropical waters (Virgili et al., 2018). We recommend
dedicated campaigns coupling acoustic and visual techniques
including photo-ID and biopsy collection in the Madeira-Tore
(prioritising Ampere/Coral Patch and Gorringe Bank). This
could provide baseline data on population density, demography
and structuring. Finally, we would recommend surveys during
autumn or winter, as the predictions point to an increase of the
species occurrence toward the end of the summer season.

Pilot Whale and Sperm Whale

Two species had a clear preference for the south of the study area:
pilot whales and sperm whales. For both, habitat suitability was
high over the continental slope of the African coastline.

Pilot whales also presented important suitable habitat in
the Cape Verde islands. Alves et al. (2018a) demonstrated
connectivity of G. macrorhynchus within the Iberian archipelagos
but connectivity with Cape Verde or the mainland Africa was not
assessed. This should be further investigated to fully understand
the species’ movements and population structuring within the
study area. Although identification was not achieved to the
species level (as both short-finned and long-finned species occur
in the area and the two species are almost indistinguishable at sea;
Hazevoet et al.,, 2010; Moura et al., 2017), most sightings were
probably of short-finned pilot whale (G. macrorhynchus), given
its southern range in comparison with the long-finned pilot whale
(Globicephala melas).

For sperm whales, the most important variable was
temperature, possibly related to the latitudinal temperature
gradient across the surveyed area, with warmer southern waters.
However, once this trend was taken into account, occurrence
decreased with increasing temperature. As such, it is likely
that, within southern (and warmer) areas, sperm whales prefer
colder waters (probably associated with upwelling systems;
Robinson, 2010). This is also in agreement with the thermal
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niche theory (Lambert et al., 2011)—sperm whales occurring
in waters within the core temperatures of their thermal niche
can select preferred habitat characteristics regardless of the
temperature. As described in the literature, sperm whales tend
to distribute along the continental slope where their preferred
prey (cephalopods) are more prevalent (Tepsich et al., 2014).
Both Madeira and Canaries have narrower continental platforms
than mainland Africa, facilitating the access to the continental
slope for research (considering logistics and costs). Along the
African continental slope, suitable habitat is most evident in
the waters of Western Sahara and Mauritania. In the literature
on cetacean occurrence in the NW Africa, Western Sahara
is the country for which there is the least information (A.
Correia, unpublished data), but in Mauritania, where more
research effort exists, sperm whales are indeed reported to
have a high prevalence (Camphuysen et al., 2012; Baines and
Reichelt, 2014; A. Correia unpublished data). NW African waters
suffer from several conservation management issues mostly
related to poorly managed or inefficient fishing agreements
between African nations and the European Union, with dramatic
negative consequences for the marine ecosystems, such as
over-exploitation of the fishing resources (Nagel and Gray, 2012;
Corten, 2014). Many African countries lack the capacity (e.g.,
financial) to ensure the conservation of the species in their
waters. Hence, given the importance of the area for the eastern
North Atlantic sperm whales (and likely for pilot whales as well),
conservation of these populations relies on appropriate non-
exploitative international support and cooperation. Improved
management strategies are urgent to tackle the inevitable
increase in human pressures and threats to habitats, such as
climate change (Weir and Pierce, 2013).

Overview of the Models

Although it was possible to assess the effects of several
environmental variables on cetacean presence, we must highlight
that the data were influenced by detectability factors, which
emphasises the importance of including such variables in
modelling processes and thus taking into account the biases
they may cause. As expected, with the exception of S. frontalis,
species occurrences decreased with poorer weather conditions
(higher wind speed and wave heights, and worse visibility). In
the case of S. frontalis, the species is well known for its aerial
behaviours, probably more likely when there is a certain amount
of surface disturbance (e.g., with moderate wave height), which
may cause the species to be easier to spot at a certain sea
state—in the present study, the presence of spotted dolphins
increased with sea state up to 2, remaining roughly constant
thereafter. Since the predictions obtained with Maxent models do
not account for weather conditions (as we lack complete spatial
data for these variables), the areas of suitable habitat are probably
being underestimated: more detections might be made if the
weather allowed it.

The ecological meaning of the relationships between species
occurrence and chlorophyll-a concentration is hard to interpret,
probably due to the temporal (and sometimes spatial) lag
inherent to the relationship between chlorophyll measurements
and the availability of prey to cetaceans (Frederiksen et al., 2006;

Garcia et al., 2018). This lag varies amongst cetacean species
according to their prey (i.e., position of the prey/predator in
the trophic chain). In previous analyses of habitat preferences
for common dolphins, we tested the effect of chlorophyll
concentration with various lags (i.e., chlorophyll concentration
measured 1 and 2 weeks or months before the date of
cetacean observation) and the best model included chlorophyll
concentration without lag (Correia et al, 2019b). However,
Garcia etal. (2018) found time-lagged chlorophyll concentrations
to be useful when modelling the distribution of blue whales
in Azores. Thus, we advise testing lagged relationships with
chlorophyll concentration in further ecological niche modelling
approaches. Altimetry is a proxy for oceanographic processes,
such as currents, that alter the ocean surface and cause positive
and negative sea level anomalies, mostly related with up- and
downwellings due to topographic features and mesoscale eddies
(Robinson, 2010). This variable was important in all final GAM
models, but the variable was not included when fitting the Maxent
models due to its poor resolution. However, it is evident that
currents play an important role in cetacean habitat preferences.
To improve resolution, other sources of data or proxies should be
tested (e.g., in situ measures, current speed or direction).

GAM is a robust technique that supports solid ecological
interpretation of habitat preferences, even when working with
relatively few sightings. However, GAMs require absence (or
pseudo-absence) data, usually implying some sort of survey
effort information and often reducing the size of the dataset
suitable for analysis. On the other hand, the Maxent technique
is widely used to predict habitat suitability with satisfactory
results, and it requires only presence data, often significantly
increasing the sample size (Redfern et al., 2006; MacLeod et al.,
2008a; Derville et al., 2018; Fiedler et al., 2018; Barragan-
Barrera et al, 2019). However, Maxent offers few options to
estimate the error in the predictions (Phillips et al., 2006). For
example, there is no measure of deviance explained, so the
explanatory capacity of the model is difficult to quantify, hence
this modelling technique is often refered to as “black box”
(Phillips et al., 2017). Moreover, since predictor data need to
be available for the entire area, the effect of the detectability
variables is overlooked. Also, in the present study, due to lack of
an adequate sample size by season or month, dynamic variables
were averaged and seasonality was lost with Maxent models.
Using the two techniques in a complementary approach allowed
the integration of the results in order to provide a robust habitat
characterisation and interpretation of habitat preferences, an
assessment of the detectability influence and seasonality, and
the use of the entire dataset to map predictions of habitat
suitability (with supporting information of deviance explained,
hence explanatory capacity, provided by GAMs, to avoid over-
interpretation of results).

Future Directions

Our results are based on data collected mostly during
summer, hence interpretations are only applicable for
this season. Year-round monitoring would be needed to
understand the seasonality of choice of habitats. Seasonality
in cetacean habitat preferences has been previously shown
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(e.g., Fernandez et al, 2013). As such, successful marine
management may depend on appropriate adaptive strategies
for the designation of dynamic Marine Protected Areas
(Hooker et al., 2011).

Further endeavours in ecological niche modelling should
ideally include other relevant environmental variables (e.g.,
currents, thermal fronts), consider lags in the oceanographic
variables (e.g., chlorophyll concentration), test more spatial
and temporal resolutions, and assess geographical variation in
species-habitat relationships (Mannocci et al., 2020). This would
be ideally done with a bigger dataset, such as would be expected
to arise from the CETUS Project as it continues into the 2020s.
Modelling should also be performed at finer scales, at least for
the areas where highly suitable habitat was predicted, which
would require dedicated survey campaigns. Coupling broad-scale
and narrow-scale models would improve the understanding of
the distribution of suitable habitats. As we stand at the cusp
of likely dramatic changes in the marine environment due to
climate change, the ecological niche modelling approach should
be used to estimate cetacean niches under future climate change
scenarios, to support meaningful conservation measures for the
cetacean community in the eastern North Atlantic (e.g., MacLeod
et al., 2008b; Lambert et al., 2014).

At the deadline of the Strategic Plan for Biodiversity 2010-
2020, only 7.4% of the global ocean is protected, against the
established 10% target to be achieved by 2020 (according to
the last report; UNEP-WCMC et al., 2018). When comparing
protection in areas within the EEZs to areas beyond national
jurisdiction, the difference is enormous: 16.8% protection
against 1.2% (UNEP-WCMC et al, 2018). Furthermore,
the increasing impact of several anthropogenic activities
on cetacean life history, including shipping traffic, fisheries
activity and seismic surveys has been frequently reported (e.g.,
Azzellino et al, 2017; Kavanagh et al, 2019). Specifically,
in offshore waters of the Northeast Atlantic, it has been
documented a continuous development of commercial activities
in marine areas, together with the lack of management of
the use of marine space (European Commission, 2013). Our
results have highlighted offshore seamounts as highly suitable
habitats for all eight cetacean species, and notably for oceanic
bottlenose dolphins, Cuvier’s beaked whales and minke whales.
These are areas that need implementation of monitoring
programmes and the definition-and implementation-of
management plans.

Managing protected areas in the high seas poses several
challenges: remoteness limits monitoring and enforcement of
measures, transboundary areas require coordinated management
across countries, and lack of legislation in areas beyond national
jurisdiction calls for adequate international agreements. Cost-
effective monitoring programmes, such as the CETUS Project,
or programmes based on new technologies that allow remote
monitoring (e.g., use of automated vehicles) may be the solution
to guarantee the data collection. Ecological modelling approaches
or other relatively cheap analysis (e.g., environmental DNA,
photo-ID techniques) are potentially suitable methods to support
long-term and efficient management and conservation of these
remote areas (Bohorquez et al., 2019).
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