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The polymetallic nodules lying on the seafloor of the Clarion-Clipperton Fracture
Zone (CCFZ) represent over 30 billion metric tons of manganese. A single mining
operation has potential to directly impact approximately 200 km2 of the seabed per
year. Yet, the biodiversity and functioning of the bentho-demersal ecosystem in the
CCFZ remain poorly understood. Recent studies indicate a high species diversity in
a food-poor environment, although the area remains poorly sampled. Undersampling is
aggravated by a combination of low densities of fauna and high habitat heterogeneity
at multiple spatial scales. This study examines the Polynoidae, a diverse family of
mobile polychaetes. Sampling with an epibenthic sledge and a remotely operated
vehicle was performed during the cruise SO239 within the eastern CCFZ. Five areas
under the influence of a sea surface productivity gradient were visited. Specimens were
identified using morphology and DNA: (i) to provide a more comprehensive account
of polynoid diversity within the CCFZ, (ii) to infer factors potentially driving alpha and
beta diversity, and (iii) to test the hypothesis that epibenthic polychaetes have low
species turnover and large species range. Patterns of species turnover across the
eastern CCFZ were correlated with organic carbon fluxes to the seafloor but there
was also a differentiation in the composition of assemblages north and south of the
Clarion fracture. In contrast to the previous studies, patterns of alpha taxonomic and
phylogenetic diversity both suggest that polynoid assemblages are the most diverse at
Area of Particular Environmental Interest no. 3, the most oligotrophic study site, located
north of the Clarion fracture. Without ruling out the possibility of sampling bias, the
main hypothesis explaining such high diversity is the diversification of polynoid subfamily
Macellicephalinae, in response to oligotrophy. We propose that macellicephalins evolved
under extremely low food supply conditions through adoption of a semi-pelagic mode
of life, which enabled them to colonise new niches at the benthic boundary layer and
foster their radiation at great depths.

Keywords: diversity and distribution, Clarion-Clipperton Fracture Zone, nodule province, scale-worms,
Polychaeta, diversification
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INTRODUCTION

Polymetallic nodules are potato-shaped structures varying in
size and mineral concentration, and patchily distributed on
the seafloor (Morgan, 2000). They are mainly composed of
manganese and iron, but also copper, nickel, and cobalt (Hein
and Petersen, 2013). The Clarion-Clipperton Fracture Zone
(CCFZ), an area of ca. 6 million km2 of seabed in the central
Pacific, has attracted increasing commercial interest. This largest
polymetallic nodule field in the world sits between 4000 and
6000 m depth. The CCFZ potentially holds 34 billion metric tons
of manganese, representing at least 25 trillion USD (Morgan,
2000; Volkmann et al., 2018). This area is managed by the
International Seabed Authority (ISA), which issues exploration
mining contracts. To date, 18 such contracts have been signed
with the latest one in 2021 (International Seabed Authority,
2021). When moving from exploration to exploitation, a single
mining operation could directly impact 182 km2 year−1 of
seafloor to achieve a production of 2 Mt annually, while
sediment plume re-deposition might indirectly increase the
footprint of mining by a factor of two to five (Oebius et al.,
2001; Glover and Smith, 2003; Volkmann and Lehnen, 2018).
The ISA has approved a regional management plan that has
designated nine zones each measuring 400 × 400 km, known
as Areas of Particular Environmental Interest (APEIs). Such
areas are protected from the mining activities and expected to
be representative of the full range of biodiversity, ecosystem
structure, and habitats within the management area (Lodge
et al., 2014). These nine APEIs are located at the periphery of
the CCFZ, however, their location is currently not completely
supported by the scientific data. Unsupervised classification of
benthic habitats based on derivatives of the GEBCO bathymetry,
particulate organic carbon (POC) fluxes estimated from satellite
data and nodule abundances derived from low-resolution kriging
suggested that habitats in the network of APEIs are not fully
representative of habitats within mineable areas (McQuaid
et al., 2020). To provide quality knowledge for management
and conservation strategies, we need to better constrain
habitat distribution models, which in turn requires enhanced
comprehension of the factors determining biodiversity patterns.

The CCFZ is a heterogeneous environment composed
of abundant hills (approximately 200 m high), numerous
seamounts, and nodule fields, which may explain why
biodiversity appears to be richer than previously thought
(Smith et al., 2008; Wedding et al., 2013; Glover et al., 2016).
For example, a megafauna diversity assessment within APEI
no. 6 found 129 morphospecies in a survey covering 15,840 m2

of seabed. Changes in assemblage composition were associated
with variations in geomorphology and nodule abundance
(Simon-Lledó et al., 2019). Beyond species restricted to hard
substrates, the presence of nodules may also increase the diversity
of macro-infauna at a local scale (De Smet et al., 2017; Bonifácio
et al., 2020; Chuar et al., 2020). On a regional scale, northward
and westward gradients of decreasing primary productivity are
important drivers of variations in meiofaunal and macrofaunal
community structure (Hauquier et al., 2019; Bonifácio et al.,
2020). The structure of megafaunal assemblages is also highly

variable at a 100-km scale although the influence of productivity
gradients is not as clear (Simon-Lledó et al., 2020).

Understanding the ecology of benthic communities in the
CCFZ is however still impaired by the incomplete diversity
assessment. For polychaetes, a species-rich group at abyssal
depths representing 36–55% of total macrofaunal abundances
(Hessler and Jumars, 1974; Hecker and Paul, 1979; De Smet et al.,
2017; Chuar et al., 2020), the incomplete species inventories can
be attributed to undersampling, species lumping and sampling
inaccuracy. Undersampling is visible at all scales. At local scale,
the species rarefaction curve did not level off after extensive
sampling of 54 box-cores at Domes A in the western and most
oligotrophic site of the CCFZ (Wilson, 2017; Washburn et al.,
2021). In the eastern CCFZ, a total of 30 box-cores across
four contract zones and one APEI yielded 275 species of which
49% were singletons (Bonifácio et al., 2020). Moreover, most
polychaete species remain undescribed (only 5–10% of collected
polychaete species were identified to named species; Glover
et al., 2002) and the recent combination of morphological and
molecular criteria to delineate species suggests that morphology
significantly underestimates the magnitude of biodiversity
(Janssen et al., 2015; Bonifácio and Menot, 2018). Sampling
needs to be more comprehensive because polychaetes encompass
a large range of sizes and life modes, from minute infaunal
to large epibenthic and commensal species (Hutchings, 1998).
In the CCFZ, polychaete assemblages are sampled with a
box core, in accordance with the recommendations issued by
the ISA (ISBA/25/LTC/6/Rev.1, International Seabed Authority,
2020). While macro-infaunal polychaetes are quantitatively and
accurately sampled with a box core (Hessler and Jumars, 1974),
large epifaunal and commensal species are not. Such groups are
better targeted by trawls and epibenthic sledges (EBS). Among
the poorly sampled polychaetes, EBS samples showed that the
family Polynoidae is a highly diverse yet poorly studied group
at abyssal depths (Schüller et al., 2009; Guggolz et al., 2018;
Bonifácio and Menot, 2018).

Of all polychaetes, Polynoidae is one of the most diverse
families, both in the number of genera and species (868 valid
species; Read and Fauchald, 2021). Polynoids belong to a group of
organisms called scale-worms (Aphroditiformia), distinguishable
by their scale-like dorsal elytra. Of the eight subfamilies of
Polynoidae recognised by Bonifácio and Menot (2018) and
followed in this study, the subfamily Macellicephalinae appears
to be restricted to the deep sea, the deep Antarctic shelf, and
submarine caves (Pettibone, 1985b; Neal et al., 2018b; Bonifácio
and Menot, 2018). In a census of deep-sea polychaete species,
Paterson et al. (2009) counted 91 polynoid species (12% of
total polychaete records) below 2000 m depth with 15 polynoid
species below 4000 m depth (hadal depths), 13 of these belonging
to Macellicephalinae, including the deepest known polynoid
found at 10,190 m depth (Kirkegaard, 1956). According to
Bonifácio and Menot (2018), the subfamily Macellicephalinae
forms a monophyletic group characterized by the loss of
the lateral antennae compared to other polynoid subfamilies,
which bear two lateral and one median antennae. Within the
Macellicephalinae, which currently contains 121 species (Read
and Fauchald, 2021), a monophyletic clade of 15 species, the
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so-called Anantennata clade, also lost the median antenna.
Macellicephalins seem to have been particularly successful in
colonizing and radiating in the deep sea (Uschakov, 1982;
Levenstein, 1984; Bonifácio and Menot, 2018). Numerous
genera are endemic to deep-sea chemosynthetic ecosystems
such as hydrothermal vents and cold seeps (Pettibone, 1983;
Chevaldonné et al., 1998; Hatch et al., 2020), whereas others were
successful in colonizing pelagic deep-sea, nodule fields, abyssal
depths, and even trenches (Pettibone, 1976, 1985a,b; Bonifácio
and Menot, 2018). Predating the discovery of hydrothermal
vents, Levenstein (1984) studied macellicephalin distribution
around the world and pointed out that the Pacific Ocean hosts
a high rate of diversity with 21 of the 40 species (known at that
time) and 15 endemic species.

From EBS and remotely operated vehicle (ROV) samples
collected during the SO239 cruise across the eastern half of
the CCFZ (Martínez Arbizu and Haeckel, 2015), Bonifácio and
Menot (2018) described 17 new polynoid species, of which 16
were macellicephalins, with many remaining undescribed. In
the present study, we aim to provide a more comprehensive
account of polynoid diversity within the CCFZ and improve our
understanding of macellicephalin species radiation in the deep
sea. Additionally, we aim to further test hypotheses regarding the
drivers of species turnover in the CCFZ. Based on quantitative
box-core sampling, Bonifácio et al. (2020) showed a high species
turnover among infaunal polychaete assemblages across the
eastern CCFZ, attributing it to variations in trophic inputs and
barriers to dispersal. In particular, the Clarion fracture was
hypothesized to limit dispersal between the APEI no. 3 to the
north and the core of the CCFZ to the south. Dispersal ability
has also been advocated as a driver of differential distribution
patterns between polychaete and isopods as well as among isopod
families in the CCFZ (Janssen et al., 2015, 2019; Brix et al.,
2020). By focusing on polynoids, we aspired to test whether
mobile epifaunal polychaetes would show lower species turnover
and greater species ranges than the more sedentary infaunal
polychaete assemblages.

MATERIALS AND METHODS

Clarion-Clipperton Fracture Zone
Within the Equatorial Pacific Ocean, the CCFZ is bordered by
the Clarion fracture to the north, the Clipperton Fracture to
the south, the Kiribati islands to the west, and Mexico to the
east (Figure 1). As part of the JPI Oceans project “Ecological
aspects of deep-sea mining,” the EcoResponse cruise SO239 on
board the RV Sonne covered the eastern part of the CCFZ
from March 9 to April 30, 2015 (Martínez Arbizu and Haeckel,
2015). Sampling took place within four exploration contract
areas and the APEI no. 3 at water depths ranging from 4000 to
5000 m (Figure 1). While the ISA administers the APEIs, the
exploration contracts were issued by ISA to the Federal Institute
for Geosciences and Natural Resources of Germany (BGR);
the InterOceanMetal Joint Organization (IOM); the G-TEC Sea
Mineral Resources NV (GSR); and the Institut Français de
Recherche pour l’Exploitation de la Mer (Ifremer). Only 243 km

of distance separates BGR and IOM areas whereas 1440 km
separates BGR and Ifremer or APEI no. 3.

Sampling Strategy
The overarching aim of the sampling strategy was to cover the
whole range of biodiversity of benthic communities, crossing all
faunal size groups (from meio- to megafauna) and habitats (from
soft-sediments with no nodules to basalt on seamounts). A variety
of methods were used to collect biological samples from large
and qualitative EBS samples to smaller and quantitative box-core
samples and targeted samples with a ROV.

The EBS (Brenke, 2005) consists of a supra- and epibenthic
net with cod ends of 300 µm each and an opening and
closing mechanism. A total of 12 EBS were recovered but
only eight were fully examined (Table 1). The ROV Kiel
6000 fitted with various sampling tools was also used to
recover benthic macrofauna (Figure 1). One of the features
employed was the bio-box, a large box in which megafaunal
specimens collected with the manipulator arm were stored.
The United States Naval Electronics Laboratory (USNEL)
spade box corer of 0.25 m2 (Hessler and Jumars, 1974) is
proven to be an accurate and quantitative tool for benthic
biological studies.

Polynoids were recovered from box corer and EBS
deployments, as well as from the ROV bio-box. Polynoids
were not intentionally sampled using the ROV but were most
likely associated with the collected sponges or corals. Once on
board, the megafauna specimens were sorted from the bio-box
and the water was sieved through a 300 µm mesh in a cold room
(full methods in Martínez Arbizu and Haeckel, 2015). Polynoids
were sorted from the sieved residues.

Sieving and sorting were performed on board. The samples
were maintained in cold seawater (4◦C) and sieved through
a 300 µ mesh in a cold room. All specimens from ROV
sampling and some specimens from box corer and EBS sampling
were sorted alive. The upper 10 cm of the box-core sample
was sliced into three layers (0–3, 3–5, and 5–10 cm), the first
was sieved on board in the cold room with cold seawater
(4◦C) whereas the deeper layers were fixed in formalin for
48–96 h, preserved in 96% ethanol and sorted back on land (for
detailed processing of box corer sampling, see Bonifácio et al.,
2020). Sieving residues from the EBS samples were preserved
in 96% ethanol at −20◦C. The ethanol was changed after
24–48 h and the sieved residues were then sorted on board
under ice. The collected polychaetes were fixed/preserved in cold
(−20◦C) 80% ethanol and stored at −20◦C. In the laboratory
(on land), a few parapodia or small pieces of tissue were
dissected, preserved in cold 96% ethanol, and stored at −20◦C
for molecular extraction.

Molecular Methods
Briefly, the DNA was extracted from sampled tissues using a
NucleoSpin Tissue kit (Macherey-Nagel). Two mitochondrial
genes (i.e., COI, cytochrome c oxidase subunit I; and 16S)
and one nuclear gene (18S) were amplified using the following
primers: polyLCO, polyHCO, LCO1490, and HCO2198 for COI
(Folmer et al., 1994; Carr et al., 2011); Ann16SF and 16SbrH
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FIGURE 1 | (A) Map of the nodule exploration contract areas, reserved areas and Areas of Particular Environmental Interest (APEIs) in the Clarion-Clipperton
Fracture Zone (CCFZ) showing the sampled areas (in color). The background map shows the average particulate organic carbon (POC) flux at the seafloor during the
2002–2018 period estimated by Bonifácio et al. (2020). The sampled areas are enlarged in the following panels: BGR (B,C), IOM (D), GSR (E), Ifremer (F) and APEI
no. 3 (G), with start positions in white and end positions in grey. Each has a detailed local hydro-acoustic map based on the multibeam system EM122 (Martínez
Arbizu and Haeckel, 2015; Greinert, 2016) in the background.

for 16S (Palumbi, 1996; Sjölin et al., 2005); and 18SA, 18SB,
620F, and 1324R for 18S (Medlin et al., 1988; Cohen et al., 1998;
Nygren and Sundberg, 2003) for 18S. The polymerase chain
reaction (PCR) mixtures were prepared as suggested for the
Green GoTaq R© by the manufacturers. The profile of temperature
was as follows: 95◦C/240 s – [94◦C/30 s – 52◦C/60 s –
72◦C/75 s (for COI and 16S) or 180 s (for 18S) for 35 cycles

(for 16S or 18S) or for 40 cycles (for COI)] – 72◦C/480 s.
PCR products which resulted in bands of expected size after
electrophoresis on 1% agarose gel, were sent to the MacroGen
Europe Laboratory in Amsterdam (Netherlands) to be sequenced
with the same set of primers.

Overlapping sequence fragments (forward and reverse) were
assembled into consensus sequences using Geneious Pro 8.1.7
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TABLE 1 | Details of sampling sites, total number of polynoid specimens (ind., individuals), and number of polynoid species collected from epibenthic sledges (EBS), box
corer, and ROV deployments across the eastern Clarion-Clipperton Fracture Zone during the SO239 cruise.

Area –
locality

Station Date
(dd/mm/yyyy)

Depth (m) Sampling
start

latitude

Sampling
start

longitude

Sampling
end

latitude

Sampling
end

longitude

Trawling
distance

(m)

Number of
specimens

(ind. gear−1)

Total species
(taxa gear−1)

EBS Per EBS Per EBS

BGR-PA 20 21/03/2015 4144–4093 11.83717 −116.982 11.8385 −116.97967 2769 11 9

BGR-RA 50 26/03/2015 4360–4328 11.83117 −117.4915 11.83183 −117.4885 2469 1 1

BGR-RA 59 28/03/2015 4384–4307 11.8085 −117.4865 11.809 −117.48383 2469 2 2

IOM 81* 1/04/2015 4365–4346 11.07083 −119.60783 11.0715 −119.60483 2739 31 15

IOM 99* 4/04/2015 4398–4402 11.043 −119.661 11.04367 −119.6585 2529 23 16

GSR 117* 7/04/2015 4498–4521 13.879 −123.23317 13.87967 −123.2305 3129 54 15

GSR 133* 10/04/2015 4516–4427 13.8545 −123.2315 13.85517 −123.22883 2289 19 9

Ifremer 158* 15/04/2015 4946–4976 14.06283 −130.11083 14.0635 −130.108 3789 30 16

Ifremer 171* 17/04/2015 5024–5017 14.052 −130.07967 14.05333 −130.07683 2979 6 4

APEI no. 3 192* 21/04/2015 4821–4820 18.75417 −128.3425 18.755 −128.34017 2799 47 33

APEI no. 3 197* 22/04/2015 4805–4823 18.81717 −128.35767 18.818 −128.35467 2529 29 22

APEI no. 3 210 24/04/2015 4700–4740 18.8305 −128.40867 18.8315 −128.40617 3399 3 2

Total 256 89

ROV Per ROV dive Per ROV dive

IOM 82 1–2/04/2015 4347 11.0575 −119.6315 11.061 −119.6275 – 1 1

GSR 131 9–10/04/2015 4478 13.87317 −123.2505 13.874 −123.248 – 1 1

GSR 135 10–11/04/2015 3593 13.97817 −123.149 13.98433 −123.144 – 2 2

APEI no. 3 189 20–21/04/2015 4931 18.79667 −128.30883 18.80217 −128.30333 – 10 3

APEI no. 3 200 22–23/04/2015 4672 18.82033 −128.42583 18.82667 −128.42467 – 1 1

APEI no. 3 212 24–25/04/2015 1844 18.54717 −128.748 18.54283 −128.74883 – 8 2

Total 23 6

Box corer Per box core Per box core

GSR 138 11/04/2015 4503 13.84817 −123.23467 – – – 1 1

Asterisk indicates fully processed EBS samples.

2005–2015 (Biomatters Ltd.). For COI, the sequences were
translated into amino-acid alignments and checked for stop
codons to avoid pseudogenes.

Newly assembled sequences were blasted in GenBank to check
for contamination. Each set of genes was aligned separately using:
MAAFT (Katoh et al., 2002) for 16S and 18S; and MUSCLE
(Edgar, 2004) for COI. All sequences obtained in this study have
been deposited in BOLD1 (Ratnasingham and Hebert, 2007) or
GenBank2.

Integrative Taxonomy
The specimens were examined under a Leica M125
stereomicroscope and a Nikon Eclipse E400 microscope. Only
the specimens with heads were counted and morphologically
identified using deep-sea polynoid fauna bibliography (Pettibone,
1976; Uschakov, 1982; Bonifácio and Menot, 2018), to the lowest
taxonomic level possible (morphospecies). The naming of
morphospecies is consistent with previous studies (Bonifácio
and Menot, 2018; Bonifácio et al., 2020). Naming refers to
the Ifremer code of the specimen, which served as a reference
for morphological characters defined in the diagnosis of the
morphospecies (similar to type material). For specimens that

1http://www.boldsystems.org
2https://www.ncbi.nlm.nih.gov/genbank/

could not be morphologically discriminated, the principle of
the phylogenetic species concept was applied. Through this
approach, the genetic divergence among specimens belonging
to the same species (intraspecific) is smaller than the divergence
among specimens from different species (interspecific) (Hebert
et al., 2003b). This creates a gap between intraspecific and
interspecific variations when plotted in a distribution of pairwise
divergences among all sequences. When data were insufficient
to define a barcode gap, molecular operational taxonomic
units (MOTUs) were recognised using a threshold of 97 or
99% similarity between COI and 16S sequences, respectively
(Hebert et al., 2003a,b). Hereafter, for the sake of simplicity,
we use the term species to refer to the lowest taxonomic
resolution achieved by using this combination of morphospecies
and MOTU concepts.

Environmental Data
The environmental data used are those compiled by Bonifácio
et al. (2020) from previous studies (Volz et al., 2018a; Hauquier
et al., 2019) which are publicly available (Hauquier et al., 2017;
Volz et al., 2018b,c,d,e,f,g). Sediment samples were recovered
from the same areas as biological samples during the same cruise,
using a multi-corer or a gravity corer (see Martínez Arbizu
and Haeckel, 2015 for details). Hauquier et al. (2019) reported
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data for clay fraction (<4 µm), silt fraction (4–63 µm), total
nitrogen (TN in weight per cent), total organic carbon (TOC
in weight per cent), and chloroplastic pigment equivalents (CPE
in µg ml−1). Volz et al. (2018a) reported POC flux (POC,
mg C m−2 d−1) at the seafloor for all areas (eastern CCFZ). This
POC flux at the seafloor was used as a proxy for food supply to
benthic communities.

Data Analysis
Phylogenetic Analyses
Maximum likelihood and Bayesian phylogenetic analyses were
run for two datasets. The first dataset included all 428 sequences
(COI, 16S, and 18S) from 238 specimens collected by all types of
gear from all study sites. Two sigalionids [Neoleanira tetragona
(Örsted, 1845) and Sthenelais boa (Johnston, 1833)] were chosen
as outgroups. The phylogenetic analyses aimed at providing
a comprehensive account of known polynoid diversity in the
eastern CCFZ. The second dataset was limited to specimens
collected from the fully processed EBS samples and included 156
sequences (COI, 16S, and 18S) from 81 species. N. tetragona
was used as an outgroup. The phylogenetic analyses were run to
compute phylogenetic diversity indices (see below).

The three genes were combined in a partitioned dataset with
SequenceMatrix (Vaidya et al., 2011). The maximum likelihood
analyses were carried out using Randomized Axelerated
Maximum Likelihood (RAxML v.8.2.10; Stamatakis, 2014) on
XSEDE with rapid bootstrapping (1000 iterations). The Bayesian
phylogenetic analyses were achieved using MrBayes v.3.2.6 on
XSEDE (Ronquist et al., 2012) with 60,000,000 generations
in which every 1000 generation chain was sampled and 25%
discarded as burn-in. TRACER v.1.7.1 (Rambaut et al., 2018) was
used to check the convergence chain runs. Both phylogenetic
analyses were computed in CIPRES Science Gateway (Miller
et al., 2010). Node support is given as a maximum likelihood
bootstrap and Bayesian posterior probability values. The tree
files were plotted using RStudio environment or FigTree v.1.4.23.

Alpha and Beta Phylogenetic Diversity (PD)
Phylogenetic diversity was assessed using Faith’s PD (Faith, 1992).
PD is the most widely used phylogenetic diversity measure
and is defined as the sum of branch lengths of a phylogenetic
tree connecting all species in a given assemblage. Similar to
species richness, Faith’s PD is also dependent on sample size
and inventory completeness (Hsieh and Chao, 2017). We thus
used sample-size-based rarefaction and extrapolation curves to
compare PD between polynoid assemblages (Hsieh and Chao,
2017). Extrapolations were computed for a sample twice the
size of the empirical sample. The 95% confidence intervals were
computed using a bootstrap method with 200 replications. For
PD, the phylogenetic ultrametric tree was pruned to only reflect
species with at least one sequence present in the entire dataset
(i.e., without outgroup species or specimens without a sequence).

Unweighted (presence/absence) UniFrac metric (Lozupone
et al., 2006) was computed to assess beta phylogenetic diversity
between assemblages. The metric measures the difference

3http://tree.bio.ed.ac.uk/software/figtree/

between assemblages based on the unique branch length (branch
leading to another tip in the same sample) over the total
branch length observed among assemblages. UniFrac metric
ranges from 0 (i.e., no unique branch, all the terminals on
the tree are shared among all assemblages) to 1 (i.e., only
unique branches, the terminals leading to another tip are not
shared between assemblages). Ordination of samples based
on UniFrac distance metric was performed using Principal
Coordinate Analysis (PCoA; Gower, 1966). PCoA, also known
as metric multidimensional scaling, is an ordination method
similar to PCA but that can handle semimetric and non-metric
dissimilarity measures (Borcard et al., 2018). Furthermore, a
correlation between UniFrac distance and geographical distance
was sought to test for a distance decay of phylogenetic similarity
between polynoid assemblages. The UpSet plots were used to
illustrate the distribution of rare, widely distributed and common
species across the CCFZ. Haplotype networks were constructed
considering the infinite site model and a pairwise uncorrected
distance between mitochondrial (COI or 16S genes) haplotypes,
and the quantitative distribution of haplotypes within putative
populations (sampling site).

Alpha and Beta Taxonomic Diversity
Diversity patterns were analysed using rarefaction curves based
on the total number of individuals from fully examined EBS
samples (Hurlbert, 1971; Gotelli and Colwell, 2001). Based on this
rarefied dataset, the expected number of species was calculated
for 12 (ES12) and 35 (ES35) individuals for comparison
with previous studies. Non-parametric and abundance-based
estimators included Chao1 and an abundance-based coverage
estimator (ACE; O’Hara, 2005; Chiu et al., 2014).

A Hypergeometric Principal Component Analysis (H-PCA)
was used to describe variations in assemblage composition
between fully examined EBS samples. The H-PCA relies on
Chord-Normalized Expected Species Shared (CNESS) distance
(Trueblood et al., 1994; Gallagher, 1999), which is computed
from probabilities of species occurrence in random draws of m
individuals. The CNESS distance thus allows rarefying samples to
a similar number of individuals, limiting the bias due to different
sample sizes. Low values of m give high weight to dominant
species whereas high values of m give high weight to rare species.
To choose the value of m, distance matrices are computed
for all possible values of m, then Kendall’s τ correlations are
calculated between each of these matrices and both matrices for
m = 1 and m = m max (minimum sample total). The value
of m used for calculation is the one that gives correlation with
CNESS m = 1 which is roughly equivalent to its correlation with
CNESS m = m max. The CNESS distance, which provides an
objective trade-off between giving weight to either dominant or
rare species was preferred over the Euclidean distance classically
used in PCA, which gives high weight to abundant species,
and a Chi-square distance classically used in Correspondence
Analysis that gives high weight to rare species (Legendre and
Gallagher, 2001). CNESS is also a metric distance, which contrary
to semimetrics such as the Bray–Curtis dissimilarity, respects
the relative distance between samples and can be plotted in
the Euclidean space of a PCA. The influence of environmental
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variables on assemblage patterns was explored by fitting clay
fraction, silt fraction, TN, TOC, CPE, and POC flux at the
seafloor onto the PCA ordination (envfit function in R library
Vegan). The accuracy of fit of each variable was tested with
a permutation test (n = 999). This post hoc explanation of
ordination axes was preferred over a constrained multivariate
analysis such as a Redundancy Analysis (RDA). RDA involves
multiple linear regressions of species abundance data, but our
data are not truly quantitative. For comparison with previous
studies and to evaluate the distance decay of taxonomic similarity
between assemblages, the New Normalized Expected Species
Shared (NNESS; Trueblood et al., 1994; Gallagher, 1999) was also
computed. NNESS is a similarity measure, which as for CNESS is
computed on rarefied samples (Trueblood et al., 1994; Gallagher,
1999).

All analyses were conducted with R language (R Core Team.,
2020) using RStudio (R Studio Team., 2020) and the following
specific packages or functions: adespatial (Dray et al., 2020),
ade4 (Dray and Dufour, 2007), ape (Paradis and Schliep, 2019),
BiodiversityR (Kindt and Coe, 2005), Biostrings (Pagès et al.,
2017), dplyr (Wickham et al., 2020), fossil (Vavrek, 2011), geiger
(Pennell et al., 2014), ggplot2 (Wickham, 2016), ggtree (Yu et al.,
2017), iNextPD (Hsieh and Chao, 2017), ness (Menot, 2019),
pegas (Paradis, 2010), picante (Kembel et al., 2010), reshape2
(Wickham, 2007), treeio (Wang et al., 2020), UpSetR (Conway
et al., 2017), and vegan (Oksanen et al., 2016).

RESULTS

Diversity and Distribution
A total of 280 polynoid specimens were sampled along the
five areas studied within the eastern CCFZ, of which 256
specimens were collected with the EBS, 23 with the ROV and
one from a box-core sample (Tables 1, 2). The combination of
morphological examination and DNA sequencing enabled the
identification of all but five poorly preserved specimens for which
DNA sequencing was unsuccessful. The success rate of the DNA
sequencing varied according to the targeted genes. COI sequences
were obtained from 136 specimens, 16S sequences from 217
specimens, and 18S sequences from 68 specimens. Collectively,
238 specimens were successfully sequenced for at least one of the
targeted genes (Figure 2) while 38 specimens were sequenced for
all three genes and 107 specimens were sequenced for at least two
of the studied genes.

The identified polynoids (275 specimens) accounted for 95
species belonging to the subfamilies Eulagiscinae, Polynoinae,
and Macellicephalinae (Figure 2 and Table 2). Eulagiscinae was
represented by nine specimens belonging to the same species,
Bathymoorea lucasi, which was found only at APEI no. 3.
Polynoinae was represented by 12 specimens belonging to two
species (Harmothoe sp. 207 and Harmothoe sp. 414) found at
BGR, IOM, GSR and Ifremer areas (Figure 2). Macellicephalinae
was the most abundant and diverse group with 259 specimens
(92.5% of total number of specimens) belonging to 92 species
(Figure 2 and Table 2). Within Macellicephalinae, a clade
called Anantennata was also abundant and surprisingly very

diverse with 65 specimens belonging to 42 species (Figure 2).
Anantennata corresponded to 25.1% of the total number of
specimens and 45.6% of the total number of macellicephalin
species. Of the 11 genera identified, the following were the
most abundant (>10% of the total number macellicephalin
specimens) and/or diverse: Macellicephala with 77 specimens
(29.7%) and 11 species; Polaruschakov with 38 specimens
(14.7%) and 24 species; Macellicephaloides with 37 specimens
of Macellicephaloides moustachu; and Bathyfauvelia with 35
specimens (13.5%) and nine species. The most abundant species
was Macellicephala sp. 180 with 45 specimens (16.1% of the
total number of polynoid specimens). The identification of
38 specimens (29 species) remained incomplete due to poor
conservation or no fit within currently recognised genera. Eight
specimens probably belong to new genera and 21 were identified
at least as Anantennata.

The UpSet plot (Figure 3) shows that 74 species were
restricted to only one area with 59 species represented by a single
specimen (Table 2). These singletons accounted for 62.1% of
the total number of species and 21.1% of the total number of
polynoid specimens. Seventeen species were sampled at two or
three areas whereas only five species were recovered from four
areas. No species was common to all five studied areas. APEI
no. 3 was the most species-rich zone, with 55 species in total,
of which 80% were unique to this site, a percentage that drops
to a maximum of 52.7% for the other sites within the CCFZ.
Interestingly, the two most abundant species Macellicephala sp.
180 and Macellicephaloides moustachu together representing 29%
of the total number of specimens were widely distributed in all
areas except APEI no. 3.

The relationships among DNA sequences within putative
populations were explored for two relatively abundant and
widely distributed species. The haplotype networks for
Bathyfauvelia sp. 224 and Macellicephala sp. 180 based
on sampled sites (putative populations) showed relatively
high numbers of haplotypes separated mostly by one or a
few mutational steps (Figure 4). The data did not show
phylogeographic structure.

Polynoidae Assemblages
The structure of polynoid assemblages was analysed from
eight fully processed EBS samples from IOM, GSR, Ifremer,
and APEI no. 3 areas totalling 239 specimens (Table 1).
The proportion among subfamilies varied among the sites
(Figure 5). The subfamily Macellicephalinae was dominant
while the subfamily Polynoinae was represented by a few
specimens at IOM, GSR, and Ifremer areas. Within the subfamily
Macellicephalinae, the proportion of the Anantennata group
(Macellicephalinae without median antenna) showed a two to
fivefold increase at APEI no. 3.

Taxonomic Diversity
Of the 239 specimens, 234 were identified to species (Table 3).
In the case of five poorly preserved specimen, DNA sequencing
was not successful, preventing any identification. Based on an
integrative taxonomy, 84 species were recognised. The total
number of species showed high variability between areas and

Frontiers in Marine Science | www.frontiersin.org 7 August 2021 | Volume 8 | Article 656899

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-656899 August 19, 2021 Time: 16:38 # 8

Bonifácio et al. Diversity of Polynoids in the CCFZ

TABLE 2 | Species list and total number of specimens per study area of Polynoidae sampled during the SO239 cruise in the eastern Clarion-Clipperton Fracture Zone.

BGR IOM GSR Ifremer APEI
no. 3

Total BGR IOM GSR Ifremer APEI
no. 3

Total

Macellicephalinae
Hartman-Schröder, 1971

10 46 64 24 50 194 Anantennata
macellicephalins

2 6 8 10 39 65

Abyssarya acus Bonifácio
and Menot, 2018

4 4 Bathyedithia retierei
Bonifácio and Menot, 2018

1 1

Bathyeliasona mariaae
Bonifácio and Menot, 2018

1 1 1 1 4 Hodor anduril Bonifácio
and Menot, 2018

2 2

Bathyfauvelia glacigena
Bonifácio and Menot, 2018

1 4 1 6 Hodor hodor Bonifácio and
Menot, 2018

1 1

Bathyfauvelia ignigena
Bonifácio and Menot, 2018

1 1 3 5 Hodor sp. 666-2 1 3 4

Bathyfauvelia sp. 224 3 2 2 3 10 Nu aakhu Bonifácio and
Menot, 2018

1 1

Bathyfauvelia sp. 225 1 3 2 6 Polaruschakov lamellae
Bonifácio and Menot, 2018

1 2 3

Bathyfauvelia sp. 626 1 1 Polaruschakov limaae
Bonifácio and Menot, 2018

1 1

Bathyfauvelia sp. 636-5-2 1 2 3 Polaruschakov omnesae
Bonifácio and Menot, 2018

1 1 2

Bathyfauvelia sp. 636-5-3 1 1 2 Polaruschakov sp. 211 1 1

Bathyfauvelia sp. 666-1-3 1 1 Polaruschakov sp. 219 1 1

Bathyfauvelia sp. 698 1 1 Polaruschakov sp. 315 1 1 2

Bathypolaria sp. 173 1 1 1 3 Polaruschakov sp. 343 2 2

Bathypolaria sp. 608 6 6 Polaruschakov sp. 514 1 1

Bruunilla nealae Bonifácio
and Menot, 2018

1 1 Polaruschakov sp. 615 2 2

Bruunilla sp. 651 1 1 Polaruschakov sp. 636-4-2 1 1

Bruunilla sp. 659-8 3 3 Polaruschakov sp. 636-4-3 1 1

Bruunilla sp. 664 1 1 Polaruschakov sp. 639-2 1 1

Bruunilla sp. 668-1 1 1 Polaruschakov sp. 642 1 1

Bruunilla sp. 668-2 1 1 Polaruschakov sp. 655-3-1 2 2

Bruunilla sp. 692 1 1 Polaruschakov sp. 655-3-4 1 1

Macellicephala clarionensis
Bonifácio and Menot, 2018

4 4 Polaruschakov sp. 655-3-5 1 1

Macellicephala parvafauces
Bonifácio and Menot, 2018

1 1 2 Polaruschakov sp. 655-3-6 1 1

Macellicephala sp. 180 1 12 29 3 45 Polaruschakov sp. 655-3-7 1 1

Macellicephala sp. 308 5 1 6 Polaruschakov sp. 659-1-2 1 1

Macellicephala sp. 320 1 1 Polaruschakov sp. 666-3-1 1 4 5

Macellicephala sp. 35 2 4 3 9 Polaruschakov sp. 666-3-2 1 1

Macellicephala sp. 437 1 1 Polaruschakov sp. 685 1 1

Macellicephala sp. 442b 2 2 Polaruschakov sp. 686 1 1

Macellicephala sp. 444 1 1 2 Polaruschakov sp. 690 1 1

Macellicephala sp. 464 1 1 1 3 Polaruschakov spp. 3 3

Macellicephala sp. 687 2 2 Polynoidae sp. 303 1 1

Macellicephaloides
moustachu Bonifácio and
Menot, 2018

2 7 15 13 37 Polynoidae sp. 450 1 1

Polynoidae sp. 153 1 1 Polynoidae sp. 513 1 1

Polynoidae sp. 197 1 1 Polynoidae sp. 537-1-2 2 2

Polynoidae sp. 299 1 1 Polynoidae sp. 609 1 1

Polynoidae sp. 306 1 1 Polynoidae sp. 655-4 2 2

Polynoidae sp. 314 1 1 Polynoidae sp. 657-1-3 3 3

Polynoidae sp. 353 1 1 Polynoidae sp. 659-7 1 1

Polynoidae sp. 465a 1 1 Polynoidae sp. 670-2 1 1

Polynoidae sp. 521-4 1 1 Polynoidae sp. 679 1 1

(Continued)
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TABLE 2 | Continued

BGR IOM GSR Ifremer APEI
no. 3

Total BGR IOM GSR Ifremer APEI
no. 3

Total

Polynoidae sp. 655-5 1 1 Polynoidae sp. 688 1 1

Polynoidae sp. 659-4 1 1 Polynoidae sp. 693 1 1

Polynoidae sp. 659-5 1 1 Polynoidae sp. 697 1 1

Polynoidae sp. 666-5 1 1 Polynoidae spp. 1 1

Polynoidae sp. 666-6 1 1 Eulagiscinae Pettibone,
1997

9 9

Polynoidae sp. 673 1 1 Bathymoorea lucasi
Bonifácio and Menot, 2018

9 9

Polynoidae sp. 691 1 1 Polynoinae Kinberg,
1856

2 3 5 2 12

Polynoidae sp. 696 1 1 Harmothoe sp. 207 1 2 2 2 7

Polynoidae spp. 1 1 Harmothoe sp. 414 1 1 3 5

Yodanoe desbruyeresi
Bonifácio and Menot, 2018

1 1

Yodanoe sp. 659-3 1 1 Total 14 55 77 36 98 280

Subfamilies and species’ grouping are marked in bold. Values represent a sum of specimens belonging to the given taxon or grouping of species.

no clear trend. A total of 24 species were identified at IOM
area from 54 individuals, 19 species at GSR area from 73
individuals, 19 species at Ifremer from 35 individuals, and 49
species identified at APEI no. 3 from 72 individuals (Table 3).
Species rarefaction curves (individual-based) did not reach an
asymptote at any sampled area and suggested higher diversity
at APEI no. 3 (Figure 6A). The results also suggest that the
diversity at Ifremer and IOM areas is similar and possibly
higher than at the GSR area. The non-parametric estimation
of species richness followed the same patterns as rarefaction
curves, showing the highest values at APEI no. 3 (123 species
with Chao1; Table 3). The richness estimates computed by Chao1
and ACE for APEI no. 3 are four to five times higher than
for the GSR area, which presented a similar sample size. When
data from the four areas were pooled, the rarefaction curve
did not level-off (Figure 6C). The non-parametric estimation
of species richness at this regional scale yielded estimates
ranging from 176 to 202 polynoid species for Chao1 and ACE
estimators respectively.

The ordination of EBS samples in the two first axes of an
H-PCA based on polynoid assemblage structure is illustrated in
Figure 7A. The first two axes explained 61% of total variance
in the composition of polynoid assemblage (Figure 7A). The
first axis explained 40% of total variance and discriminated
eastern areas (IOM and GSR) from APEI no. 3. The second
axis, explaining 21% of total variance, discriminated the Ifremer
area, and particularly one EBS sample. TOC was identified
(post hoc) as the environmental variable most significantly related
(p < 0.01) to the first axis (Figure 7A). POC, silt and clay
were also significantly related to the first axis (p < 0.05). The
ordination of species (Figure 7A) showed that Macellicephala
sp. 180 and Macellicephaloides moustachu were the species most
characteristic in eastern areas (particularly in IOM and GSR for
the first, and in GSR and Ifremer for the second).

The relationship between distance and assemblage
similarity showed no significant correlation (R2 = 0.12,
p = 0.49; Supplementary Figure 1A) but two groups of

pairwise comparisons can be highlighted. The three pairwise
comparisons between exploration contracts and APEI no. 3
consistently show the lowest values of similarity, irrespective
of distance. For pairwise comparison among the three
exploration contracts, similarity decreases with distance but
the correlation is not statistically significant (R2 = 0.84, p = 0.26;
Supplementary Figure 1C).

Phylogenetic Diversity
Out of the 239 specimens recovered from fully examined EBS,
230 were sequenced and identified to one of the 80 species
represented in the phylogenetic tree. Maximum likelihood and
Bayesian inference resulted in very similar phylogenetic trees
(Supplementary Figure 2). For phylogenetic diversity analyses,
the distance between species in the Bayesian inference tree
has been considered. The rarefaction curves of the Faith
phylogenetic diversity showed significantly higher diversity in
APEI no. 3 than Ifremer, GSR, and IOM areas (Figure 6B).
The same pattern was observed for the estimated asymptotes
where APEI no. 3 was expected to have two to three times
higher diversity (Table 4). Pooling of samples from the four
areas did not result in rarefaction curve levelling off either
(Figure 6D).

The PCoA based on phylogenetic distance showed similar
patterns to the H-PCA ordination (Figure 7B). APEI no. 3 was
discriminated from southern areas, and Ifremer separated from
GSR and IOM, which are closely related.

The phylogenetic distance showed no relationship with
geographic distance (R2 = 0.10, p = 0.54; Supplementary
Figure 1B). Two groups of pairwise comparison were evident, as
previously found with taxonomic similarity. Pairwise comparison
with the APEI no. 3 had the highest phylogenetic distances
irrespective of geographic distances while pairwise comparison
among exploration contracts showed a pattern of increasing
phylogenetic distance as a function of geographic distance. This
pattern was however not statistically significant (R2 = 0.84,
p = 0.26; Supplementary Figure 1D).
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Eulagiscinae
Macellicephalinae with median antenna

Polynoinae
Subfamily

Macellicephalinae without median antenna APEI no. 3
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IOM
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FIGURE 2 | Maximum likelihood inference of polynoid phylogeny based on concatenated gene data (COI, 16S, and 18S) showing distribution of each sequence
within the eastern CCFZ. Some species and respective DNA data were already published by Bonifácio and Menot (2018). Dataset includes all sequences of
specimens from ROV, EBS, and box corer. Colors indicate subfamilies or sampled area. Circles on branches represent bootstrap supports ≥90%. Bayesian
inference has not converged to the stationary distribution (not presented).

DISCUSSION

Causes of Polynoid Species Turnover in
the Clarion-Clipperton Fracture Zone
Taxonomic and phylogenetic beta diversity patterns were
similar for polynoid assemblages across the eastern CCFZ. The
composition of polynoid assemblages discriminated the eastern
(i.e., IOM and GSR) from the western areas (i.e., Ifremer and
APEI no. 3). It was also possible to notice clear differences
between the Ifremer and APEI no. 3. These patterns in species
turnover resemble those already reported among the same
sampling sites for infaunal polychaetes (Bonifácio et al., 2020),
tanaids (Błażewicz et al., 2019), and nematodes (Hauquier et al.,
2019). So far, the three main processes evoked to explain

these patterns were food inputs, sediment grain size, and a
barrier to dispersal.

Conflicting Patterns of Community Structure Along a
Gradient of Surface Primary Productivity
Sea surface primary productivity decreases from south-east to
north-west across the eastern CCFZ with POC fluxes ranging
from 1.54 mg C m−2 d−1 at IOM to 1.07 mg C m−2 d−1 at APEI
no. 3 (Volz et al., 2018a). In previous studies, beyond species
turnover, the influence of food inputs on community structure
was supported by positive correlations between POC fluxes and
the abundance or taxonomic richness of infauna (Błażewicz et al.,
2019; Hauquier et al., 2019; Bonifácio et al., 2020). However,
here, the highest species richness of polynoids was found at
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APEI no. 3, the most oligotrophic site. The EBS used in this
study, while very efficient in sampling the poorly known vagile
epifauna (Brandt and Schnack, 1999), is a qualitative sampler
contrary to the box corer used to sample infauna. Diversity data
extrapolated from EBS trawls should thus be interpreted with
caution. Yet, without ruling out the sample bias, a high number of
specimens and species of polynoids at APEI no. 3, driven mainly
by Macellicephalinae, might also be explained by adaptations to
oligotrophy (see below).

The Influence of Sediment Grain Size – Fact or
Artefact?
In addition to low POC flux, the sediments at APEI no. 3
were characterised by a lower average grain size, higher clay

content and lower porosity (Volz et al., 2018a; Hauquier et al.,
2019). Higher contents of finer sediments have been postulated
to increase sediment shear strength making it more difficult for
fauna to burrow (Trueman et al., 1966). Chuar et al. (2020)
pointed out that sediment shear strength may impact negatively
infaunal abundance in the OMS area located at the south-eastern
end of the CCFZ. Together with low food input, inhospitable
sediments may thus have contributed to the low abundance
of infaunal polychaetes, tanaids, and nematodes at APEI no. 3
(Błażewicz et al., 2019; Hauquier et al., 2019; Bonifácio et al.,
2020). In turn, the low infaunal standing stock may increase the
relative availability of resources to epifaunal communities. Like
polynoids, isopods from EBS samples also showed a number of
specimens and species similar to or even higher at APEI no.
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TABLE 3 | Observed species richness (Sobs) and individual-based estimators of
polynoid species richness for each sampled area and for the eastern CCFZ
(pooled areas) from the fully processed EBS samples.

Assemblage Sobs Sample size n Chao1 ACE ES12 ES35

IOM 24 54 64 ± 29 62 ± 4 9 ± 1 18 ± 2

GSR 19 73 25 ± 5 27 ± 3 6 ± 1 13 ± 2

Ifremer 19 35 54 ± 26 68 ± 2 8 ± 1 19 ± 0

APEI no. 3 49 72 123 ± 36 114 ± 4 11 ± 1 28 ± 2

Eastern CCFZ 84 234 176 ± 36 202 ± 9 9 ± 1 22 ± 2

ES indicates the expected number of species for a given number of individuals “n.”
“±” indicates the standard error.

3 than at the southern areas (Ifremer, GSR, IOM, and BGR;
Brix et al., 2020). Contrasting patterns in community structure
between infaunal and epifaunal assemblages at APEI no. 3
are thus consistent for different taxonomic groups. However,
sampling bias cannot be ruled out, as sediment heterogeneity
may influence the sampling efficiency of an EBS (Guggolz
et al., 2018). At APEI no. 3, the higher clay content might
have facilitated sediment flushing through the nets, limiting
sediment clogging and increasing the effective sampling time,
contrary to southern sites where the EBS mesh would have
filled up faster.

Clarion Fracture, a True Barrier to Dispersal?
The pairwise comparisons of taxonomic and phylogenetic
composition show that the polynoid assemblage from APEI no.
3 is systematically the most different from all other assemblages,
regardless of geographic distance between sites. This may suggest

that the Clarion fracture is a biogeographic barrier between the
northern APEI no. 3 and the southern exploration contract areas
(Ifremer, GSR, IOM, and BGR). This fracture represents a long
and narrow submarine mountain range displaying peak-and-
trough patterns with up to 1800 m of difference in elevation
(Hall and Gurnis, 2005).

Ridges and fractures can work as physiographic barriers
affecting the dispersal of different taxa to a lesser or greater
degree. For example, the Mid-Atlantic Ridge (MAR) allows
the dispersal of nematodes of the genus Acantholaimus (Lins
et al., 2018), copepods of the genus Mesocletodes (Menzel
et al., 2011) and isopods of the family Munnopsidae (Bober
et al., 2018), but is mostly impermeable to isopods of the
families Macrostylidae, Desmosomatidae, and Nannoniscidae
(Bober et al., 2018). Polychaetes did not show a clear pattern in
the permeability of the MAR as a barrier (Guggolz et al., 2018).
Guggolz et al. (2018) examined the distribution of polychaetes
and species composition of spionids and polynoids along the
Vema Fracture Zone across the MAR. They observed significant
changes in species composition across the MAR and suggested
them to be the result of limited dispersal potential and different
habitat characteristics. Only six of 32 polynoid species crossed the
MAR (Guggolz et al., 2018).

Based on our CCFZ samples, 11 of 96 polynoid species
(10%) were found on both sides of the Clarion Fracture Zone,
which is a much higher proportion of faunal sharing than for
infaunal polychaetes (1%; Bonifácio et al., 2020) or infaunal
tanaidaceans (0%; Błażewicz et al., 2019), in the same order of
magnitude as isopods sampled with an EBS (5%; Brix et al.,
2020), and still lower than scavenging amphipods (90%; Patel
et al., 2020). For isopods, variations in species ranges across
the CCFZ were attributed to variable swimming habits, and
thus dispersal abilities (Brix et al., 2020; Janssen et al., 2015).
Among the most abundant species of polynoids, Bathyfauvelia
sp. 224 (10 specimens) remarkably occurs on both sides of the
fracture while Macellicephaloides moustachu (37 specimens), and
Macellicephala sp. 180 (45 specimens) were clearly restricted to
south of the fracture. The subfamily Macellicephalinae, which
is dominant among deep-sea polynoids, shows morphological
characters that facilitate a benthopelagic lifestyle (see below).
However, M. moustachu has been described as having very thin
neurochaetae which would evidently affect its ability to swim, and
may have contributed to limit its distribution south of the Clarion
fracture. This species also has morphological structures attached
to the body that may potentially be related to reproduction
(Bonifácio and Menot, 2018).

The life cycle of polynoids is mostly known from shallow
water species, which have generally a planktotrophic larval
development (Giangrande, 1997). A few species in the
deep sea are however assumed to undergo lecithotrophic
development (Glover et al., 2005), a more suitable condition in
oligotrophic waters (Tyler and Young, 1999). External brooding
of eggs under the dorsal elytra has also been observed in
polynoids of the Antarctic shelf (Gambi et al., 2001). Species
from the CCFZ also showed swollen or sac-like structures
on the dorsal side, which may be linked to reproduction
(Bonifácio and Menot, 2018).
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Overall, the benthopelagic lifestyle of some deep-sea polynoids
combined with the planktotrophic larval development inherited
from their shallow-water relatives might explain the relatively
large geographic ranges of Polynoidae at community scale in the
CCFZ, with 10% of species shared between north and south of the
Clarion fracture. However, this is still a low sharing proportion,
considering that the purpose of APEI no. 3 is to preserve
representative biodiversity of benthic communities within the
CCFZ (Wedding et al., 2013). Further, while some polynoids
radiated in the deep sea, much remains to be learned about their
reproduction and mode of life.

Enhanced Diversity at Great Depths
Potentially Related to Low Food Input
and Mode of Life
In a global census of abyssal polychaetes (Paterson et al., 2009),
polynoids represented the most species-rich family with 91
species out of a total of 768 polychaete species occurring below
2000 m depth. In addition, 13 out of the 15 species occurring
below 4000 m depth belonged to the subfamily Macellicephalinae.
Interrogation of the Ocean Biodiversity Information System
yielded 125 valid species of polynoids below 2000 m depth (OBIS,
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TABLE 4 | Individual-based phylogenetic diversity (PD) of polynoid assemblages.

Assemblage Sobs Sample size n Observed PD Sample coverage (%) Estimated asymptote PD 95% confidence interval

IOM 53 23 9.9 72 15 ± 4 9.9, 23.2

GSR 72 18 9.6 89 12 ± 1 9.6, 14.3

Ifremer 35 19 9.5 58 17 ± 5 9.5, 25.8

APEI no. 3 70 47 18.7 53 47 ± 10 26.8, 67.9

Eastern CCFZ 80 230 27 79 43 ± 6 31.7, 54.7

Dataset includes all sequenced specimens from fully examined EBS. Sobs indicates observed species richness. Eastern CCFZ comprises IOM, GSR, Ifremer, and APEI
no. 3 data pooled. “±” indicates the standard error. The 95% confidence intervals were calculated by a bootstrap method based on 200 replications.

2020). The Macellicephalinae (sensu Bonifácio and Menot, 2018)
is the most species-rich deep-sea subfamily with 70 species,
followed by Polynoinae with 41 species. The depth ranges of OBIS
records differ for these two subfamilies. For 311 valid species of
Polynoinae, the depth range varies from 0 to 5400 m depth, with
a median at 21 m; while for 89 valid species of Macellicephalinae
the depth range varies from 298 to 10,180 m, with a median
at 2451 m. In total, 121 species are currently described within
Macellicephalinae (36 genera) including only 15 Anantennata
(Read and Fauchald, 2021), with the recent additions of 37 new
species and four new genera (Bonifácio and Menot, 2018; Jimi
et al., 2018; Neal et al., 2018a; Zhang et al., 2018; Zhou et al., 2018;
Lindgren et al., 2019; Wu et al., 2019; Hatch et al., 2020; Kolbasova
et al., 2020).

Our results (including 16 named species from Bonifácio
and Menot, 2018) indicate the presence of at least 92
Macellicephalinae species with 42 being Anantennata in the
eastern CCFZ, in the north-east Pacific. In the Atlantic Ocean,

Guggolz et al. (2018) were able to identify eight Anantennata
species among the 31 Macellicephalinae species recognised.
Macellicephalins are thus polychaetes thriving in cold and
dark environments that have successfully colonised deep-sea
habitats such as chemosynthetic ecosystems (hydrothermal vents
and cold seeps; Pettibone, 1983; Chevaldonné et al., 1998;
Hatch et al., 2020), trenches (Levenstein, 1971; Pettibone,
1976), manganese nodules (Bonifácio and Menot, 2018), and
the deep Antarctic shelf (Neal et al., 2018a,b) but also
analogous shallow water habitats such as submarine caves
(Pettibone, 1985b).

Macellicephalins differ from other polynoid subfamilies in
having lost their antennae. Polynoids from shallow waters
typically possess two lateral and one median antennae, whereas
macellicephalins have either only a median antenna or no
antennae at all. Macellicephalins without antennae form a
monophyletic group (i.e., the “Anantennata clade”; Bonifácio
and Menot, 2018). Macellicephalinae probably originated from
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short-body polynoids such as Bathymoorea (Eulagiscinae),
a morphology that is reminiscent of macellicephalins from
chemosynthetic habitats (a robust body, thick elytra and short
body appendages; Desbruyères and Hourdez, 2000) and is
likely associated with a basal position within Macellicephalinae
(Bonifácio and Menot, 2018).

Deep-sea, polar and cave-endemic macellicephalins not living
in chemosynthetic habitats share mostly distinct morphological
characters such as a soft body, delicate elytra, loss of eyes,
relatively thin, flattened and long chaetae, elongated parapodia,
and sometimes extremely long dorsal cirri or reduction of jaws
(Uschakov, 1977, 1982; Bonifácio and Menot, 2018; Gonzalez
et al., 2018). Pettibone (1985a) also observed some of these
morphological characters specific for pelagic life in Natopolynoe
kensmithi Pettibone, 1985a which was described to be abundant
not only on the seafloor but also swimming up to 10 m
above it. Some Macellicephalinae seem to be benthopelagic,
swimming in near-bottom water in search of food (Knox,
1959; Pettibone, 1976; Uschakov, 1977, 1982). Other studies,
examining megafauna, have also recorded macellicephalins
swimming in the water column (Smith and Hamilton, 1983;
Rybakova et al., 2019). Some macellicephalins also have elongated
papillae on their pharynx, assumed to be helpful in rapid
capture of small suspended particles, a character also shared
with the pelagic family Alciopidae (Pettibone, 1976; Uschakov,
1982). Evidence presented so far supports the hypothesis of
Gonzalez et al. (2018) of a secondary pelagic mode of life
as a deep-sea adaptation in polynoids. These authors also
suggested that scale worms living in aphotic environments (i.e.,
submarine caves and the deep-sea) are subjected to the “darkness
syndrome” promoting morphological and behavioral changes
such as loss of eyes, elongation of appendages and shifting to
swimming behavior.

Elongated appendages could provide an evolutionary
advantage in two ways for deep-sea polynoids. Firstly, cirri
elongation increases the surface area thus contributing to
attainment of neutral buoyancy (Gonzalez et al., 2018).
Secondly, cirri elongation could increase their sensitivity
to prey detection. By removing the sensory appendages in
Harmothoe species, Daly (1972) showed that the ability to
locate a source of vibrations is an important factor in feeding
behavior. His experiments further suggested that palps provide
the worm with contact exploration of the object and chemical
information (e.g., if suitable as prey or not) whereas dorsal
cirri were responsible for relaying chemical information and
vibration source location (Daly, 1972). Therefore, the elongation
of appendages in deep-sea polynoids could represent an
adaptation of the subfamily Macellicephalinae to food limitation
by increasing the access to food (invasion of new niches)
and prey detection.

The swimming behavior in Macellicephalinae was likely
the key to exploitation of new trophic resources, unavailable
to worms with a benthic lifestyle. This rare semi-pelagic
mode of life within polynoids has been well-documented for
a Polynoinae species, Bylgides sarsi (Kinberg in Malmgren,
1866), which rises above the bottom to mid-water during
the night, escaping the poor oxygen conditions close to the

bottom and feeding on small pelagic crustaceans or scavenging
dead planktonic organisms on the bottom (Pettibone, 1993).
Evolution of similar behavior may have enabled macellicephalins
to explore benthic and pelagic niches in the deep sea, particularly
within hadal depths where they are the most characteristic
and diverse polychaetes (Paterson et al., 2009; Jamieson,
2015).

CONCLUSION

Variations in epibenthic polynoid assemblages across the CCFZ
show similarities with other faunal groups in that species
turnover covaries with POC flux and thus food supply. A major
difference from the infaunal pattern (Bonifácio et al., 2020) is
that species richness was similar to or even higher at APEI no. 3,
the most oligotrophic site located north of the Clarion fracture,
in comparison to other exploration mining areas to the south.
This unexpected pattern may result from sampling bias, but could
also be due to: (i) higher shear strength of APEI no. 3 sediments
making them less hospitable to infauna to the benefit of epifauna
and (ii) evolutionary adaptations of macellicephalins towards a
benthopelagic life strategy under oligotrophic conditions in the
deep sea. The difference in species composition and community
structure at APEI no. 3 brings into question the key principles of
the APEI network, as this area appears not representative of the
biogeography and habitat of the broader region (Wedding et al.,
2013). However, such a conclusion is tentative, given the limited
sampling within this APEI.

The polynoids in the CCFZ are highly diverse, with most
diversity confined to the subfamily Macellicephalinae, which has
particularly radiated in the deep sea. Together with the results of
Bonifácio and Menot (2018) from the same areas in the CCFZ,
our results increase the number of known Macellicephalinae
species worldwide. We have newly identified 42 Anantennata
species whereas only eight species have been described worldwide
prior to our visit in 2015. This number indicates, how
underestimated macellicephalin diversity currently is. Other
questions remain unanswered as well: Do they have a pattern of
vertical movement? Is the elongation of appendages driven by
swimming behavior or prey detection? How do they interact with
other species? How do they reproduce and disperse?
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Supplementary Figure 1 | Distance decay of New Normalized Expected Species
Shared (NNESS) between IOM, GSR, Ifremer, and APEI no. 3 (A) and the same
areas excluding APEI no. 3 (C). Distance decay of UniFrac phylogenetic distance
between IOM, GSR, Ifremer, and APEI no. 3 (B) and the same areas excluding
APEI no. 3 (D).

Supplementary Figure 2 | Molecular phylogenetic relationship among sampled
polynoid species based on concatenated genes (COI, 16S, and 18S) and
performed with maximum-likelihood (A) and Bayesian inference (B) analyses.
Outgroup (sigalionid species) colored in gray. Node values indicate the
maximum-likelihood bootstrap (A) and Bayesian posterior probabilities (B).
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