'.\' frontiers

in Marine Science

ORIGINAL RESEARCH
published: 12 October 2021
doi: 10.3389/fmars.2021.658135

OPEN ACCESS

Edited by:
Charlie Huveneers,
Flinders University, Australia

Reviewed by:

Brendan Ebner,

James Cook University, Australia
Daniel Marrable,

Curtin University, Australia

*Correspondence:
Rod M. Connolly
r.connolly@griffith.edu.au

Specialty section:

This article was submitted to
Ocean Solutions,

a section of the journal
Frontiers in Marine Science

Received: 25 January 2021
Accepted: 24 September 2021
Published: 12 October 2021

Citation:

Connolly RM, Fairclough DV,

Jinks EL, Ditria EM, Jackson G,
Lopez-Marcano S, Olds AD and

Jinks Kl (2021) Improved Accuracy
for Automated Counting of a Fish

in Baited Underwater Videos for Stock
Assessment.

Front. Mar. Sci. 8:658135.

doi: 10.3389/fmars.2021.658135

Check for
updates

Improved Accuracy for Automated
Counting of a Fish in Baited
Underwater Videos for Stock
Assessment

Rod M. Connolly™, David V. Fairclough?, Eric L. Jinks?, Ellen M. Ditria’, Gary Jackson?,
Sebastian Lopez-Marcano3, Andrew D. Olds* and Kristin I. Jinks'

" Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University,
Gold Coast, QLD, Australia, ? Aquatic Sciences and Assessment, Department of Primary Industries and Regional
Development, Hillarys, WA, Australia, ° Quantitative Imaging Research Team, CSIRO, Marsfield, NSW, Australia, * School
of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia

The ongoing need to sustainably manage fishery resources can benefit from fishery-
independent monitoring of fish stocks. Camera systems, particularly baited remote
underwater video system (BRUVS), are a widely used and repeatable method for
monitoring relative abundance, required for building stock assessment models. The
potential for BRUVS-based monitoring is restricted, however, by the substantial costs
of manual data extraction from videos. Computer vision, in particular deep learning
(DL) models, are increasingly being used to automatically detect and count fish at low
abundances in videos. One of the advantages of BRUVS is that bait attractants help to
reliably detect species in relatively short deployments (e.g., 1 h). The high abundances
of fish attracted to BRUVS, however, make computer vision more difficult, because fish
often obscure other fish. We build upon existing DL methods for identifying and counting
a target fisheries species across a wide range of fish abundances. Using BRUVS
imagery targeting a recovering fishery species, Australasian snapper (Chrysophrys
auratus), we tested combinations of three further mathematical steps likely to generate
accurate, efficient automation: (1) varying confidence thresholds (CTs), (2) on/off use
of sequential non-maximum suppression (Seg-NMS), and (3) statistical correction
equations. Output from the DL model was more accurate at low abundances of snapper
than at higher abundances (> 15 fish per frame) where the model over-predicted counts
by as much as 50%. The procedure providing the most accurate counts across all fish
abundances, with counts either correct or within 1-2 of manual counts (R? = 88%),
used Seg-NMS, a 45% CT, and a cubic polynomial corrective equation. The optimised
modelling provides an automated procedure offering an effective and efficient method
for accurately identifying and counting snapper in the BRUV footage on which it was
tested. Additional evaluation will be required to test and refine the procedure so that
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automated counts of snapper are accurate in the survey region over time, and to
determine the applicability to other regions within the distributional range of this species.
For monitoring stocks of fishery species more generally, the specific equations will differ
but the procedure demonstrated here could help to increase the usefulness of BRUVS.

Keywords: automated fish identification, automated marine monitoring, computer vision, deep learning, object
detection, stock assessment, relative abundance

INTRODUCTION

The ongoing need to maximise fishery harvests while maintaining
stocks at sustainable levels demands efficient in-water monitoring
of fish abundances. The advent of robust yet inexpensive
underwater cameras provides a potential step-change in
increased efficiency of monitoring stocks. Unfortunately, the
requirement for manual processing of underwater videos to
count target species severely curtails the scalability of camera
systems (Sheaves et al, 2020). Automated image analysis
can overcome this bottleneck, but technical limitations have
restricted its use for routine fisheries monitoring to date (Tseng
and Kuo, 2020; Yang et al., 2020; Lopez-Marcano et al., 2021).

The most common measure of fish abundance derived from
underwater videos is the maximum count of a target species in
any one frame (MaxN). A single MaxN per video is the most
commonly reported metric (Whitmarsh et al., 2017), but multiple
MaxN measures over short time intervals of video, and averages
of these, are recommended as being more reliable statistically
(Schobernd et al.,, 2014). By removing the costly step of manual
counting, automation can encourage extraction of more values
for video and thus greater statistical rigour. Automated analysis
needs to extract these values accurately and efficiently to be useful.

Baited remote underwater video system (BRUVS) are the most
widely used application of videos for monitoring fish abundances
(Whitmarsh et al., 2017), and automated analysis therefore needs
to be accurate specifically for this method. Along with issues
common to all underwater image analysis, such as variable water
clarity and complex, dynamic backgrounds (Siddiqui et al., 2018;
Yang et al., 2020), the BRUVS technique raises another challenge
by generating potentially large ranges of fish abundances, from
none to many individual fish. Automated analysis needs to report
accurately across this wide range of abundances, overcoming
significant occlusion issues (where an individual fish can obscure
parts of another fish) at higher fish densities.

Efficient, automated identification and counting of fish in
underwater images has become possible with the development
of computer vision, in particular deep learning (DL), a branch
of machine learning that automatically extracts features from
raw imagery (LeCun et al, 2015). DL has been used for
classification of individual fish images into species classes
(Salman et al., 2016; Siddiqui et al., 2018; dos Santos and
Gongalves, 2019), and for object detection and classification
on underwater video streams (Mandal et al., 2018; Villon
et al., 2018). In unbaited remote underwater video stations,
video analysis has been successful on individual target species
(Ditria et al., 2020a) and multiple species selected from
fish assemblages (Villon etal., 2018,2020; Knausgard et al,

2020). Here, we build upon existing DL methods for fish
identification and counting to improve accuracy for BRUVS
over a wide range of fish abundances. The objective is to
demonstrate post-processing steps capable of automating the
current manual analysis of BRUVS videos for monitoring
abundances of a fisheries species. The example species,
Chrysophrys auratus (Australasian snapper, family Sparidae), is
a popular recreational and commercial species that has suffered
stock declines and corresponding management responses
across much of the species distribution in Australia (Fowler
et al, 2018). In Western Australia, there is renewed focus
on the development of fishery-independent methods for
monitoring relative abundance over time as an input to stock
assessment models.

MATERIALS AND METHODS

To achieve our aim of building on output from existing DL
models to improve counts of target species in BRUVS, we first
trained a DL model on footage from BRUVS deployed to monitor
abundances of Australasian snapper (snapper) off Shark Bay in
the Gascoyne region of Western Australia. We then applied
combinations of mathematical procedures to improve accuracy
of automated counts.

Dataset and Deep Learning Model

The stock of snapper in oceanic waters off Shark Bay (~26°S) in
the Gascoyne region of Western Australia was recently assessed
(2017) as being at high risk with a range of management actions
subsequently introduced in 2018 to reduce exploitation and
assist stock recovery (Jackson et al., 2020). Fishery-independent
monitoring of snapper at breeding aggregation sites off Shark Bay
is in its infancy, with underwater camera systems being tested
for future surveys. BRUVS were deployed from a commercial
vessel (FV Ada Clara) for 1 h during the day in July 2019
(between 0830 and 1630) at six sites along the northern and
western coasts of Bernier Island, Shark Bay. Sites comprised
mixed rock-sand habitats in 30-60 m water depth, where
commercial fishers normally target snapper. Each replicate
deployment was baited with 1 kg of pilchards (Sardinops
neopilchardus). The camera frame and system design followed
that of Langlois et al. (2020) and used Canon HF M52 cameras
with 1920 x 1080 HD resolution.

We created a dataset for training and validation from videos
at three sites (Sites 1, 3, and 5), and an independent dataset
for testing from videos at the other three sites (Sites 2, 4, and
6). Sites 1 and 2 had the highest densities of snapper, Sites
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3 and 4 had moderate densities, and Sites 5 and 6 had very
low densities. Individual snapper were identified manually by
one of the authors (KJ), who is an experienced fish biologist,
and manually annotated with bounding boxes (following Ditria
et al., 2020b). The annotator could play videos back and forth to
obtain different views of individual fish to increase confidence in
snapper detections. Of the annotated snapper, 4690 annotations
were used for training (80%) and validation (20%), and 3627
annotations were used for testing. Importantly, this included
fish at all angles to the camera, and parts of fish (e.g., head
only) where the remainder of the individual was unobservable,
either obscured by other fish or outside the field of view. In
a preliminary model using only snapper annotations, we noted
that two other species superficially resembling snapper (brown-
stripe snapper, Lutjanus vitta, and stripey snapper, Lutjanus
carponotatus) sometimes caused misidentification (i.e., false
positive labelling as C. auratus), and we therefore also annotated
and trained these species (81 and 190 annotations, respectively)
to include in the final raw model. Including a small number of
annotations of these additional species resulted in a reduction of
false positives for the target snapper species (see Supplementary
Table 1 for comparison of the model with and without inclusion
of other annotated species).

The test dataset from the three independent sites was used
in three ways. We selected multiple segments from throughout
the videos from these three sites to provide a range of ground-
truth snapper densities (0-30), and compared predictions from
the raw model and the optimised model (see below) against
ground-truth counts. We also compared MaxN counts from
the optimised model against ground-truth counts for the first
5 min of videos from each site. In these 5-min test video
segments, the number of snapper (N) was recorded manually
every 30 s (i.e., 10 records over 5 min). These manually extracted
N values provided ground-truth results against which computer
predictions were tested. Detailed analysis of the first sections of
videos provides an appropriately wide range of fish densities,
since BRUVS typically have no fish present as the camera drop
begins, with high densities by the 5 min mark as the bait attractant
takes effect (Whitmarsh et al., 2017). Finally, we compared the
predicted MaxN for the entire 1 h of each video against the
ground-truth MaxN.

We used a convolutional neural network framework for
object detection, specifically an implementation of Faster R-CNN
developed by Massa and Girshick (2018). Model development
was conducted using a ResNet50 configuration, pre-trained on
the ImageNet-1k dataset. This method successfully detects and
counts target species at low densities in unbaited RUVs (Ditria
et al,, 2020a). Model training, prediction, and testing tasks were
conducted on a Microsoft Azure Data Science Virtual Machine
powered by an NVIDIA V100 GPU. Overfitting was minimised
using the early-stopping technique (Prechelt, 1998).

Mathematical Procedures

In seeking to improve the accuracy of DL model output, we
applied mathematical procedures to raw computer predictions.
We tested numerous combinations of three key mathematical
components considered likely to generate accurate, efficient

automation: (1) varying confidence thresholds (CTs), (2) on/off
use of sequential non-maximum suppression (Seq-NMS), and
(3) statistical correction equations. Seq-NMS was tried both
before and after varying CTs. Statistical correction equations were
always applied last. We also tried variations of other aspects,
such as image resolution, but these did not provide measurable
improvement and are not reported on further. Selection of
CTs, the values above which objects are classified into a class
(here, snapper), are an important determinant in balancing false
positive and false negatives (and, therefore, in maximising true
positives). We tried CTs from 0 to 95% in 5% increments. Seq-
NMS is a spatio-temporal filter that creates detection chains by
analysing neighbouring frames (Han et al., 2016). It is regarded
as a useful procedure where DL models are over-predicting,
which in initial trials on snapper BRUVS we identified as an
issue at high fish densities. As a final mathematical component,
we applied corrective equations to output from combinations of
CT and Seq-NMS. Given the patterns of errors in predictions
we most commonly observed, we tried linear, quadratic and
cubic polynomial equations with randomly varying constants.
In total, 120 combinations of the three components were tested
(combinations of 20 CTs, Seq-NMS on/oft, 3 forms of equations).
In all cases, the measure of accuracy was the fit of computer
predictions of N against ground-truth values, across the entire
range of fish densities (quantified by R? value).

RESULTS

Raw automated predictions were generally inaccurate, often
considerably above ground-truth values, particularly at mid to
high snapper abundances (15-25 fish per frame; Figure 1). The

40 .

30

20

Predicted counts (# fish)

@ Corrected model
@ Raw model

0 10 20 30 40
Groundtruth counts (# fish)

FIGURE 1 | Comparison of accuracy of automated counts of the target
species, Australasian snapper, from the raw deep learning output (raw model)
and the enhanced modelling procedure (corrected model). In both cases,
prediction counts are tested for accuracy against ground-truth (manual)
counts, with more accurate results closer to the 1:1 dashed line. Raw model
counts are unmodified from the deep learning model. Corrected model counts
use automated mathematical enhancements — Seq-NMS, optimum
confidence threshold, and corrective equation — on the deep learning output.
Data are combined from the three test sites. Error bars = SE.
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over-prediction was almost solely due to high numbers of false
positive detections of snapper, predominantly as double and
triple detection of the same individual fish; for example, the head
and tail of one fish were counted as two fish (see example in
Supplementary Figure 1).

After optimising combinations of mathematical procedures,
computer predictions became more accurate (Figure 1).
Corrected predictions were on average the same as ground-
truth values at all fish abundances, with only slight under-
prediction at ground-truthed abundances above 25 fish. The
optimal enhancements were, in order: (1) Seq-NMS on, (2) CT
of 45%, and (3) a cubic polynomial corrective equation applied
(N'=A+ BN+ CN? + D.N> where A= 14.8, B=112.8,C=7.2,
D = —12.1). This optimum was selected at the highest R* from
the 120 combinations (Supplementary Table 2). A comparison
of automated counts from the final revised modelling procedure
against manual ground-truth counts gave an R? of 88%.

The effectiveness of the optimum model procedure is
illustrated in predictions at each 30 s over the first 5 min of
BRUVS drops, shown for the three test sites (Figure 2). The
MaxN values and the average MaxN values from computer
generated predictions were very similar to ground-truth values
at each time interval, i.e., either exactly the same or within 1 or 2
of actual counts (Figure 2). MaxN values for the entire 1 h video
predicted by the optimised model and ground-truth, respectively,
were; Site 2: 25 vs. 30, Site 4: 8 vs. 7, Site 6: 1 vs. 1.

DISCUSSION

The refined procedure of DL with additional automated
mathematical operations produced an effective method for
identifying and counting target fish from BRUVS. The processing
procedure provides rapid, automated extraction of snapper
counts from zero to high abundances. The final optimised
procedure utilised a combination of Seq-NMS, a specific CT,
and a cubic polynomial corrective equation (Figure 3). Our
intention with the current dataset was to demonstrate the
series of post-processing steps. Considerable additional testing
is required for the automated processing procedure to be useful
for snapper monitoring more broadly. After this additional
work, the procedure can potentially encourage expansion of
monitoring sites and times while avoiding increased costs of
manual processing. It will also encourage reporting of MaxN
values at much more frequent intervals within BRUVS videos, an
important aspect of increasing the rigour of fisheries monitoring
(Schobernd et al., 2014).

The procedure demonstrated here can stimulate
improvements in automation of BRUVS data extraction
more generally, and be used for BRUVS automation for many
different species and situations. For species other than snapper,
selected CTs and the form of corrective equation can be expected
to vary. Even within a single dataset, the optimum CT is known to
differ among species and with different amounts of training data
(Villon et al., 2020). The specific models and post-processing
steps will need to be validated on relevant datasets. As with
any automation method, there is considerable up front effort

%51 Site 2

Model Ground-truth
5 MaxN 23 22

MaxN (x) 16 14

Model Ground-truth

EZO MaxN 6 7
2 MaxN (X) 3 4
- 15
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Site 6 @ Corrected model
20 @ Ground-truth
Model Ground-truth
15
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FIGURE 2 | Results illustrating the effectiveness of the modelling procedure at
automatically extracting counts of the target species, Australasian snapper,
from videos. Sites shown are a selection demonstrating accuracy at high (Site
2), medium (Site 4), and very low (Site 6) snapper abundances. At each site,
ground-truth and modelled (optimised model using deep learning and
additional operations) counts are shown every 30 s for the first 5 min of video.
This imagery was independent of that used in training. MaxN is the greatest
fish count over the 5 min period, and MaxN (x) is the average MaxN over the
5 min period.

required to ensure that models produce accurate output, but
once achieved, the method can efficiently analyse endless videos
and should provide very cost-effective extraction of fish counts
for stock assessment programs.

Although the demonstrated procedure has been successful,
there are some caveats and we have recommendations for further
trials and testing. Two common challenges in computer vision,
domain shift and concept drift, will need to be addressed when
applying our model more generally. Our model performance
depends on the environment, or domain, in which it was trained
(Ditria et al., 2020b). At this stage, the optimal procedure is
addressed only for snapper at the multiple sites within the
survey area in the Gascoyne region of Western Australia. The
usefulness of the model will ultimately need demonstrating in
different regions across the distributional range of snapper. The
model will need checking in other places where aspects such
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FIGURE 3 | Conceptual diagram summarising steps used to create the deep learning model and apply additional mathematical operations to improve accuracy of
automated counts of the target species, Australasian snapper, particularly at higher fish densities. This general procedure will have different specific parameters for
different places and species; for the particular case of Australasian snapper in this study, the optimal procedure used Seq-NMS, a confidence threshold of 45%, and
a cubic polynomial corrective equation, producing the accurate automated counts shown in Figure 1.
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as habitat backgrounds and species assemblages will vary — a
concept known as domain shift (Kalogeiton et al., 2016). It will
also require testing in situations where the size composition of
snapper differs from that in this study. For example, BRUVS
are used in monitoring the abundance of snapper recruits on
the lower west coast of Australia (Wakefield et al., 2013). We
expect that use of the model in other places will require different
CTs or corrective equations, although, it is also possible that
a more generic model might be developed that is effective
across the snapper distributional range. Our model is also linked

to a specific time, and so further work is required to guard
against inaccuracies due to concept drift (Hashmani et al,
2019). Changes in the environment or camera equipment over
time can reduce the accuracy of computer vision models (e.g.,
Langenkdmper et al., 2020). The current study produced a very
accurate procedure for videos from the initial survey of the
Gascoyne region. It will need testing over time as videos become
available from future monitoring surveys, to address aspects of
the environment likely to change, such as known tropicalisation
of reefal habitats in Western Australia (Arias-Ortiz et al., 2018).
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The post-processing steps evaluated here are necessary to
adjust raw predictions from DL models, but we also encourage
refinements to improve the accuracy of those model predictions
prior to post-processing steps. Analysis of underwater imagery
can continue to improve with the development of new computer
vision techniques. For example, algorithms to enhance the clarity
of underwater imagery are becoming available to improve the
accuracy of species identification in the context of variable
and changing backgrounds (Donaldson et al, 2020). More
generally, new methods are being developed to increase the
quality and quantity of annotations for training models (Perez
and Wang, 2017; Ditria et al., 2020c). Automated extraction of
more detailed data from videos might also provide opportunities
to estimate fish abundance more precisely than the commonly
used MaxN metric. Detection of individual markings or sizes of
fish, for example, could allow for distinctions among individuals
and ultimately for more informative estimates of abundance
(Gifford and Mayhood, 2014).

There is clear potential for DL automation to revolutionise
observation-based monitoring of animal abundances (Christin
et al., 2019). The applications of computer vision to fisheries
science are at the early stages of being realised (Lopez-Marcano
et al,, 2021). BRUVS are already used for safe and repeatable
monitoring of fish abundances in a range of situations (Harvey
etal., 2021), and we hope that the procedures demonstrated here
can increase the usefulness of BRUVS, while decreasing costs
of long-term monitoring programs, and ultimately improving
fishery-independent stock assessments.
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