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Knowledge of green turtle (Chelonia mydas) foraging ecology in the northwestern Gulf
of Mexico (GOM) is critical as populations begin to recover from heavy harvesting in
prior centuries. We present a comprehensive long-term assessment of green turtle diets
from carcasses salvaged from 1987 to 2014 along the Texas coast. Digestive tract
contents were examined from 420 green turtles, ranging in size from 7.3 to 86.0 cm
in straight carapace length (SCLmax). Green turtles as small as 16.2 cm SCLmax recruit
from the oceanic environment to nearshore foraging habitat in the northwestern GOM
and consume macroalgae principally. A successive shift in diet and habitat to inshore
seagrasses was evident by the seagrass-dominated diet of turtles larger than 30 cm
SCLmax. Animal matter remained a frequently ingested diet item suggesting these
immature green turtles are better classified as omnivores. The overall evidence indicates
that Texas’ recovering green turtle assemblage is exhibiting foraging plasticity within
seagrass meadows changing species composition and density.

Keywords: sea turtle, Chelonia mydas, gut content analysis, foraging ecology, Texas

INTRODUCTION

Green turtles (Chelonia mydas) were once so abundant in Texas waters that they supported a
commercial fishery, with a peak annual landing of approximately 265,350 kg of turtles in 1890
(Hildebrand, 1982). Pressures on this marine turtle assemblage were inexorable. By 1903 the
green turtle fishery had virtually collapsed due to the commercial harvest and severe hypothermic
stunning events in the winters of 1894–1895 and 1899, which decimated the turtle population
(Hildebrand, 1982; Doughty, 1984). Since green turtles were listed under the protection of the
U.S. Endangered Species Act in 1978 and Mexico banned the commercial harvest of all sea turtles
in 1990, Texas waters once again support a rapidly growing immature green turtle aggregation
(Shaver et al., 2013). In-water research indicates increased green turtle population growth, with
a catch per unit of effort on the lower Texas coast at 10 times greater in 2002–2010 than in
1991–1994 (Metz and Landry, 2013). Furthermore, the Sea Turtle Stranding and Salvage Network
(STSSN) provides evidence of an increased Texas green turtle population. The STSSN reports
increasingly high stranding numbers of immature green turtles (Stacy et al., 2020) and record-
breaking stranding events from cold weather. From 1980 through 2015, the largest totals (>450
turtles) of turtles cold-stunned were during the winters of 2009–2010, 2010–2011, 2013–2014, and
2014–2015 (Shaver et al., 2017).
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Immature green turtles in Texas primarily originate from
Mexican rookeries in the western Gulf of Mexico (GOM)
(Shamblin et al., 2016). They disperse from their nesting beaches
as hatchlings and occupy an oceanic stage in the offshore
waters of the GOM (Bolten, 2003). During this life-history stage,
young green turtles reside and feed within the large Sargassum
mats floating in the GOM (Witherington et al., 2012). The
aforementioned algae mats break away in massive segments
and wash ashore in the spring and summer seasons in massive
wracks along the Texas gulf coast (Gherskiere et al., 2006;
Gower et al., 2006; Webster and Linton, 2013). Large recruitment
pulses of immature oceanic green turtles frequently accompany
these Sargassum mats (Shaver et al., 2017; Stacy et al., 2020).
Post-oceanic recruits often reside at neritic granite rock jetties
designed to stabilize channels that connect to inshore bays and
lagoons (Manzella et al., 1990; Renaud et al., 1992; Williams
and Manzella, 1992; Coyne, 1994; Renaud et al., 1994; Shaver,
1994; Renaud and Williams, 1997; Williams and Renaud, 1998).
These structures provide protection and abundant invertebrate
and macroalgae food sources, with over 80 macroalgae species
reported at the Port Mansfield jetty in south Texas (Edwards
and Kapraun, 1973; Kaldy et al., 1995). Green turtles have been
documented to inhabit jetty channels for up to 1,100 days (Shaver,
2000), where they consume macroalgae (Coyne, 1994). Some of
the smallest daily movements recorded for juvenile green turtles
were at a jettied pass in South Texas (Renaud et al., 1995), further
evidence of the green turtles’ dependency on this habitat.

Texas green turtles exhibit a size-based transition, typically at
25–45 cm SCL, from jetty inhabitation to residency in inshore
seagrass beds (Gorga, 2010; Howell, 2012). Among these beds,
there are macroalgal communities (Breuer, 1962; Hildebrand
and King, 1978). Data on the green turtle foraging habits in
the northern GOM are historically limited. While Atlantic green
turtles are known to maintain and selectively feed within seagrass
plots (Bjorndal, 1985), only recently was this identified for the
first time in the northern GOM (Rodriguez and Heck, 2020).
Research suggests seagrasses are the dominant diet item for
turtles captured in Texas’ lagoon and bay systems (Landry
et al., 1992; Coyne, 1994). The three most common species
of seagrass in Texas waters are shoal (Halodule beaudettei),
Gulf manatee (Cymodocea filiformis), and turtle (Thalassia
testudinum) grass (Quammen and Onuf, 1993; Withers, 2002).
The 209-km long Laguna Madre accounts for 81% of the
Texas coast’s entire seagrass coverage (Mendelssohn et al.,
2017). Consequentially, the Laguna Madre supports the greatest
abundance of inshore green turtles in the state (Doughty, 1984;
Metz and Landry, 2013).

Ecological succession in seagrass beds typically starts with
the colonization of shoal grass in disturbed or barren areas
and climaxes with turtle grass (Patriquin, 1975). Historically,
shoal grass dominated Texas’ estuaries. However, from the
mid-1960s to 1998, bare regions increased, and shoal grass
acreage declined by 36%, with partial replacement by turtle
and manatee grass (Quammen and Onuf, 1993; Onuf, 1996;
Pulich and Onuf, 2007; Gutierrez et al., 2010; Hobson and
Whisenant, 2018). The changes in seagrass coverage and
composition are attributed to maintenance dredging, propeller

scarring, brown tide algae blooms, and natural processes (Onuf,
1994; Pulich and Calnan, 1999; Dunton et al., 2002). With the
drafting of a Seagrass Conservation Plan for Texas in 1999,
efforts to protect and enhance Texas seagrass beds’ health and
quality were implemented. They were expected to be effective
at seagrass restoration within 2 years once high-priority actions
were accomplished (Pulich and Calnan, 1999). Although seagrass
distribution and density are essential to Texas’s green turtle
occurrence (Shaver et al., 2017), the impact of changes in seagrass
composition and coverage on turtles’ foraging habits is unknown.

The Texas coast is temperate to a subtropical system, with long
hot summers and short, mild winters. Temperature frequently
drives the macroalgal seasonality in warm-water regions like
Texas (Mathieson and Penniman, 1986). Seagrass beds in Texas
have displayed similar growth and biomass changes from the
seasons’ light and temperature-dependent fluctuations (Kowalski
et al., 2009). Variability in resource availability can bring about
variation in turtle foraging habits (López-Mendilaharsu et al.,
2008; Guebert-Bartholo et al., 2011). For these reasons, it is
critical to understand Texas green turtle foraging habits within
their year-round range and how the diet might change with
seasonal environmental fluctuations.

Describing the diet of green turtles found stranded in Texas
for nearly three decades may discern any food-related changes
due to seagrass composition and abundance variations. Further,
examining the diet of multiple life-history stages in this rapidly
increasing assemblage will provide a baseline for future diet
studies. The significance of conventional gut contents analyses
(GCA) to improve nutrition interpretation is highlighted in the
sea turtle literature (Parker et al., 2005; Hatase et al., 2006;
Revelles et al., 2007; Casale et al., 2008; Hoarau et al., 2014; Behera
et al., 2015). We used GCA to examine the dietary composition of
all size ranges of green turtles stranding on the Texas coast and to
explore ontogenetic, temporal, and seasonal diet trends.

MATERIALS AND METHODS

Study Area
Seven major estuaries are covering 2.6 million acres along
the Texas coast (Figure 1). Across the 350 miles long
Texas coast, nine federally maintained jettied ship channels
(Army Corps of Engineers, 2021) provide access to the
bays and the Laguna Madre. Red algae species are most
numerous in the jetty habitat, followed by brown and green
algae (Fikes and Lehman, 2010). There are five species of
seagrass in Texas, including widgeon (Ruppia maritima),
star (Halophila engelmannii), shoal (Halodule beaudettei),
Gulf manatee (Cymodocea filiformis), and turtle (Thalassia
testudinum) grass. Amongst the seagrass beds, there are
macroalgal communities dominated by Cladophora sp., Digenea
simplex, Gracilaria spp., Hypnea musciformis, Ulva lactuca, and
Yuzurua poiteaui (Breuer, 1962; Hildebrand and King, 1978).

Sample collection. We collected diet samples from 306 green
turtles stranded from 1987 to 2014 from the Texas coast’s inshore
and offshore waters, and we incorporated the unpublished weight
data from 114 Texas green turtles (Howell et al., 2016); for
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FIGURE 1 | Map of the Texas, United States, and coast, showing the major estuaries and the geographic area where green turtles (Chelonia mydas) were stranded
from 1987 to 2014. The Laguna Madre is one estuary but is labeled upper and lower for illustrative purposes and is given in bold. Inset shows the location of Texas in
the western Gulf of Mexico.

TABLE 1 | The number of stranded green sea turtles (Chelonia mydas) analyzed temporally and seasonally in this study (n = 306) and from previously unreported data
from Howell et al. (2016) (n = 114), within each size class.

Samples Temporal Seasonal

Size class, straight
carapace length (cm)

Present study
(dry gravimetric)

Howell et al., 2016 (wet
gravimetric)

1987–2000 2001–2014 Spring Summer Fall Winter

Oceanic (≤20.0 cm) 10 5 6 9 8 6 1 0

Recruit (20.1–30.0 cm) 88 42 67 63 50 29 28 23

Transitional (30.1–40.0 cm) 139 43 93 89 31 28 34 89

Inshore (≥40.1 cm) 69 24 46 47 16 15 10 52

Total 306 114 212 208 105 78 73 164

a total of 420 samples from individual turtles (Table 1.) All
measurements presented are maximum straight carapace length
(SCLmax); ±0.1 cm, measured from carapace notch to the
posterior-most tip. Turtles sampled for this study ranged in size
from 7.3 to 86.0 cm SCLmax, and their body condition suggested
normal behaviors (i.e., actively foraging) prior to death. Data
were grouped into four size classes, based on previous size-based
distribution studies in Texas, to improve our assessments of size-
based diet and habitat differences (Coyne, 1994; Shaver, 2000;
Shaver et al., 2013; Howell et al., 2016). These size classes are
referred to herein as oceanic (≤20.0 cm), recruit (20.1–30.0 cm),
transitional (30.1–40.0 cm), and inshore (≥40.1 cm).

Necropsies were performed on carcasses following standard
sampling procedures (Wyneken, 2001), and the entire digestive
tracts were extracted and frozen for subsequent analysis. Diet
items were removed from the whole gastrointestinal tract
and identified to the lowest taxon possible with a dissecting
microscope. Diet items were quantified by dry (n = 306) and
wet (n = 114) gravimetric analyses (Hyslop, 1980; Bigg and
Perez, 1985; Forbes, 1999). Dry weights were obtained by drying
identified taxa samples for 24–48 h at 60◦C and measuring
the cooled samples to the nearest hundredth of a gram. The
wet mass of each identified taxa was weighed to the nearest
hundredth of a gram.
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Sample Analysis
Cumulative prey curves were employed to determine if an
adequate number of samples had been collected to describe
Texas’s green turtle diet (Ferry and Cailliet, 1996). The order in
which the samples were analyzed was randomized 10 times to
reduce bias to construct the prey curve. The cumulative number
of prey types was plotted against the cumulative number of
guts analyzed. The number of samples analyzed is considered
sufficient for describing dietary habits when the resulting curve
reaches an asymptote.

The percent weight (Wi) by individual diet taxon was used
as a more effective measure to reduce variance, minimize bias
from the difference in individual sample weights, and standardize
amongst quantification methods. The Wi calculated by dividing
each diet taxon’s weight in a given sample by the total weight
of that turtle’s foregut contents (×100). The gravimetric method
may overestimate the relative importance of slowly digested hard-
bodied items (George and Hadley, 1979); accordingly, additional
metrics are useful to interpretations (Amundsen and Sánchez-
Hernández, 2019). The frequency of occurrence (Fi) for each
diet item was determined by dividing the number of samples
containing each food item by the total number of samples
examined (×100). The relative importance of each item in the
diet was determined using an index of relative importance (IRI;
Bjorndal et al., 1997):

IRI (%) =
100 (FiWi)∑i

n=1 (FiWi)

where F is the frequency of occurrence of the target taxon i, and
W is the mean percent taxon weight in all individual turtles (Wi)
for the collective gravimetric methods.

The IRI is a compound index incorporating frequency of
occurrence and weight into a single numerical measure to
estimate dietary importance. While single metrics aid diet
interpretations, compound indices can additionally provide a
general picture of prey items’ importance in predators’ diets
(Liao et al., 2001). Higher IRI values indicate a less diverse diet.
Depending on the gravimetric method employed, hard-bodied
prey can bias prey importance outcomes by contributing more
to the Wi (Hyslop, 1980). The IRI values for each gravimetric
method were calculated independently and collectively to
explore differences between them. There were no differences
detected amongst the principal diet groups’ estimated dietary
importance. Therefore, all gravimetric data were collectively
combined and analyzed.

Food habits were analyzed in relation to the size class,
the season of stranding (northern meteorological seasons of
winter, spring, summer, fall), and two time periods (1987–2000,
2001–2014). The year divisions of 1987–2000 and 2001–2014
were used to compare general diet information after the 2-year
implementation of the 1999 Texas Seagrass Conservation Plan.
The frequency of occurrence approach provides a comprehensive
and reliable account of diet composition, is unaffected by the
diet item’s condition, and can be used to make comparisons
across studies (Baker et al., 2014). With a large sample size for

this study, the frequency of occurrence allows for population-
wide assessments with minimal bias. The frequency of occurrence
was the consistent metric used for statistical analyses. Chi-
square tests were conducted using the software package IBM
SPSS 25.0 to examine the relationship between size class and
whether a particular diet taxon was consumed. The Cochran-
Armitage test of trend was used to determine whether there was
a linear trend in the primary diet group chosen within each
life-history stage over the study period. The Cochran-Armitage
test was additionally conducted to examine any linear trends
in seagrass species selected by all combined size classes. The
binomial logistic regression procedure in SPSS Statistics was used
to generate the result of the Cochran-Armitage test of trend.
The Goodman and Kruskal’s lambda test was used to measure
the strength of the association between the diet items selected
by each size class within the stranding season. For all analyses,
α= 0.05.

RESULTS

The cumulative prey curve reached asymptote indicating most
major prey items had been collected to describe green turtles’ diet
in Texas waters (Figure 2). Green turtles consumed 73 unique
species, comprised of five seagrasses, 33 red algae, 12 green algae,
eight brown algae, and 15 animals (Supplementary Table 1).
Food items were classified as six major diet groups based on an
overall F≥ 25%: seagrasses, animal matter, anthropogenic debris,
red, green, and brown macroalgae. All F values presented refer
to the frequency of occurrence from all 420 turtles. Results were
collectively presented on Sargassum species and Gelidium species,
which intermix in their respective habitat.

Ontogenetic Shifts
Multiple size-based diet shifts were evident in the IRI values
(Figure 3). There was a significant association between the
ingestion of brown macroalgae and size class [χ2(3) = 70.149,
p < 0.0001]. Brown macroalgae, specifically Sargassum spp., were
the principal diet item of oceanic stage turtles (F = 93.3%,
IRI = 73.9%). Red macroalgae and the size class feeding on
them were significantly associated [χ2(3) = 21.538, p < 0.0001].
The highest IRI values for recruits demonstrated red and brown
macroalgae were the most important diet groups (IRI = 24.2%,
IRI = 27.4%, respectively). The relationship between the
frequency of green algae consumption and size class was
significant [χ2(3) = 9.563, p = 0.022]. The food items with the
highest frequency of occurrence in the recruits were Sargassum
spp. (63.0%), turtle grass (38.5%), mollusks (36.9%), shoal grass
(33.1%), red algae Gelidium spp. (29.2%), and green algae Ulva
spp. (23.1%). A secondary size-based diet shift was apparent with
significant differences in seagrass consumption among the size
classes [χ2(3) = 46.0047, p < 0.0001]. Seagrass was the principal
diet item for the transitional class (IRI = 51.2%) and inshore
class (IRI = 83.6%). The highest frequency of occurrence among
food items in the transitional turtles was shoal grass (44.5%),
turtle grass (43.9%), Gelidium spp. (41.7%), mollusks (38.4%),
manatee seagrass (24.2%), and Ulva spp. (21.3%). Turtles of the
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FIGURE 2 | Cumulative prey curve (prey taxa per gastrointestinal tract) for green turtles (Chelonia mydas) (n = 420) collected along the Texas coast. Error bars
represent one standard deviation.

inshore class most frequently consumed turtle grass (62.4%),
shoal grass (51.6%), mollusks (36.56%), manatee grass (33.3%),
and star grass (Halophila englemannii) (33.3%). Foraging on
anthropogenic debris occurred most frequently (F = 60.0%) in
oceanic class turtles with significant variation amongst all size
classes [χ2(3) = 19.521, p = 0.0002]. In all collective size classes,
≥53.3% of individuals ingested animal matter. There was not a
significant association between animal matter consumption and
the size class feeding on it [χ2(3)= 2.965, p= 0.397].

Temporal Trends
There was a significant decrease in the frequency of seagrass
consumption in recruits (p < 0.0001) and transitional turtles
(p = 0.031) between the two study periods (Figures 4B,C).
Ingestion of red macroalgae by recruits increased significantly
(p = 0.028) over time while there was no significant change in
transitional turtles (p = 0.131). The presence of anthropogenic
debris in gastrointestinal tracts decreased significantly between
the two time periods for oceanic and recruits (p < 0.05)
(Figures 4A,B). Inshore class turtles consumed red algae
(p = 0.045) and brown algae (p < 0.0001) less frequently
over time (Figure 4D). Among all size classes combined,
turtle grass consumption decreased significantly over time, from
F = 50.0% to 40.0% (p = 0.023). The ingestion of shoal grass
decreased across the collective size classes, from F = 50.9%
to 31.8% between the two periods (p < 0.0001). Manatee
grass consumption did not change over time (F = 21.6–22.2%,
p= 0.989).

Seasonal Differences
The interseasonal differences in oceanic turtles’ diet were not
statistically analyzed as samples were unavailable for all seasons
(Figure 5A). The proportion of recruits consuming red algae
was significantly associated with the time of year of stranding
(λ = 0.022, p = 0.037), with red algae consumption documented
the least in the spring months (Figure 5B). The proportion of
brown algae recorded in recruits was predicted by the season
(λ = 0.150, p = 0.006), present in 92% of the spring turtles.
In the winter and spring months, recruits ingested animal
matter proportionally more than the other seasons (λ = 0.020,
p = 0.050). There was a significant association between seagrass
consumption and season of stranding in transitional turtles
(λ= 0.060, p= 0.0005), wherein seagrass was documented more
frequently in the winter months (Figure 5C). The presence of red
algae in the diet was significantly associated with the season in
which transitional turtles were stranded (λ = 0.026, p = 0.003).
It was documented less frequently in the winter months than any
other season. The consumption of green algae by the inshore class
was significantly associated with the time of year (λ = 0.039,
p = 0.014). Inshore size class turtles ingested green macroalgae
most frequently in the spring (Figure 5D).

DISCUSSION

The green turtle population in Texas is increasing rapidly, and, as
such, understanding the diet of this growing assemblage is critical

Frontiers in Marine Science | www.frontiersin.org 5 April 2021 | Volume 8 | Article 658368

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-658368 April 11, 2021 Time: 10:45 # 6

Howell and Shaver Texas Green Turtle Foraging Habits

FIGURE 3 | Percent index of relative importance (IRI) (%) of major diet items
from size classes of stranded green sea turtles (Chelonia mydas) in Texas.

to endangered species management. Conservation managers
can then prioritize preservation areas and policies designed to
protect these essential green sea turtle foraging grounds. We
characterized the diet of green turtles stranding along the Texas
coast for 28 years to evaluate changes over time. This first
long-term diet study of Texas green turtles demonstrated turtles
ingest a diversity of food items across size classes with foraging
differences observed seasonally and temporally.

Diet of the smallest size class suggested this group was
mostly representative of the oceanic life-history stage. The
frequency of brown macroalgae (F = 93.3%), specifically the
Sargassum spp., in oceanic turtles diet, was similar to the
esophageal and fecal samples (F = 86, 87%, respectively) from
oceanic size green turtles captured in pelagic Sargassum habitat
off Florida, United States (Witherington et al., 2012). The
authors suggested the ingestion of Sargassum was incidental
to foraging on sessile, epiphytic animals on the brown algae.
Furthermore, the high occurrence of Sargassum in the oceanic
size class is similar to studies that have reported turtles
foraging at the surface (Carr, 1987b; Morais et al., 2014).
Stable isotope results (δ15N values) from the scutes of some
of our oceanic-sized green turtles indicate they are not
assimilating the Sargassum-dominated diet. Instead, they had
tissue isotope values reflective of the animals that frequent the
floating algae mats (Howell et al., 2016). Primarily the animals
ingested by this size class are organisms known to be closely
associated with the Sargassum community (e.g., Cnidarians,
Schypozoans, Teleosts) (Witherington, 2006; Boyle and Limpus,
2008; Jones and Seminoff, 2013).

FIGURE 4 | Frequency of occurrence (F) (%) of major diet items from (A)
oceanic (1987–2000, n = 6; 2001–2014, n = 9), (B) recruit (1987–2000,
n = 67; 2001–2014, n = 63), (C) transitional (1987–2000, n = 93;
2001–2014, n = 89), and (D) inshore (1987–2000, n = 46; 2001–2014,
n = 47) size classes of stranded green sea turtles (Chelonia mydas) in Texas,
grouped by years (1987–2000, n = 212; 2001–2014, n = 208).

Convergence zones are oceanographic features that collect
Sargassum and marine debris (Carr, 1987a), and as such,
anthropogenic debris consumption was highest in oceanic turtles
(F = 60%). Anthropogenic rubbish ingestion by marine turtles
has been linked to numerous health issues, including blockage
and compaction of the digestive tract, ultimately with lethal
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FIGURE 5 | Frequency of occurrence (F) (%) of major diet items from (A) oceanic, (B) recruit, (C) transitional, and (D) inshore size classes of stranded green sea
turtles (Chelonia mydas) in Texas, grouped by northern meteorological seasons.

effects (Bjorndal et al., 1994; Tourinho et al., 2010; Gonzalez
Carman et al., 2014; Wilcox et al., 2016). Our findings were
similar to a study on oceanic green turtles captured in the
Sargassum habitat, where synthetic material was the third
most frequently ingested diet item (Witherington et al., 2012).
Reduction of marine debris is identified as a recovery action in
the Atlantic green turtle’s ESA Recovery Plan (NMFS, 1991), and
prioritization should continue.

Previous diet studies in Texas showed seagrass was not present
in turtles ≤20 cm SCLmax in Texas (Howell, 2012); therefore,
our finding of seagrass in the diet of ≥16.2 cm–20 cm SCLmax
turtles (F = 20.0%) was unexpected. These oceanic size class
turtles also consumed macroalgae frequently found along the
Texas coast (Kaldy et al., 1995; Agan and Lehman, 2002; Fikes
and Lehman, 2008, 2010), suggesting nearshore occupancy for
them. Young green turtles inhabiting jetty channels feed on
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flotsam, including seagrass blades detached from nearby inshore
grass beds (L. N. Howell, D. J. Shaver, per. obs.). Our diet data
suggest these individuals were likely foraging on benthic algae
and floating seagrass blades in the nearshore environment before
death. There are inherent variabilities in obtaining these smallest
turtles, and our interpretations are based on a limited sample
size. Nonetheless, the presence of multiple benthic species of
neritic diet items in the oceanic class demonstrates recruitment
at ≤20 cm SCLmax to Texas’ nearshore waters. Marine turtles are
vulnerable to being taken as bycatch in coastal fishery operations
and other anthropogenic threats (Magnuson et al., 1990). An
explicit understanding of size ranges occupying Texas nearshore
waters is critical to protected species management, as threats vary
depending on the size class.

While green turtles in neritic foraging grounds typically
consume benthic items (Redfoot, 1997; Holloway-Adkins, 2001;
Gilbert, 2005; Makowski et al., 2006; Foley et al., 2007), floating
Sargassum spp. were the most frequently ingested item in recruits
and dominated the diet of turtles found in spring months.
The mean digestive passage time for a food item consumed by
immature green turtles was determined to be 23.3 ± 6.6 days
(Amorocho and Reina, 2008). The size at recruitment to the
neritic zone varies for oceanic stage green turtles (summarized
in Avens and Snover, 2013). Consequently, the Sargassum-
dominated diet of oceanic stage turtles could still be present in
newly recruited turtles’ gastrointestinal tracts. Alternatively, it is
equally plausible that Texas recruits are resourcefully foraging
inside the massive wracks of Sargassum that enter the channel
passes in the spring months (Breuer, 1962) while continuing to
feed benthically within the jetty environment. Immature neritic
Atlantic green turtles foraging amongst artificial structures in
Florida, United States, were noted to opportunistically consume
flotsam in addition to their benthic macroalgae-dominated diet
(Holloway-Adkins and Hanisak, 2017). The stomach contents
of multiple recruits contained jetty algae (e.g., Gelidium spp.
and Ulva spp.) and Sargassum spp., indicating this size class
inhabits the jetty habitat. Dedicated surveys of turtle feeding
behavior within the channel environment when Sargassum mats
are present would help elucidate the foraging activity of turtles
resident in these channels. Collectively, benthic macroalgae
found on the Texas coast (Wynne, 2008) dominated the recruits’
diet indicating this size group is in the jetty habitat.

Several recruits (F = 23.3%) ingested all three primary species
of seagrasses, suggestive of foraging in seagrass beds and not
on the floating matter in the jetty channels. Tracking data
revealed that turtles occupying the jetty environment made brief
expeditions into the nearby inshore habitat but returned to
jettied-channels (Shaver, 2000). Recruitment may not represent
a distinct unidirectional shift from one habitat to the next. As
an alternative, younger turtles may display an intermediate stage
sampling on macroalgae and seagrasses in diverse environments
(Arthur et al., 2008). Considerably, the fluctuation in density
and concentration of macroalgae on jetty structures (Kaldy et al.,
1995; Renaud et al., 1995; Fikes and Lehman, 2008) could force
turtles to feed at alternative sites. Studies incorporating fecal
analysis and esophageal lavage may provide a more precise
understanding of recruitment size and principal diet.

Green turtles in the western Atlantic are frequently considered
obligate seagrass consumers (Mendonca and Ehrhart, 1982;
Bjorndal, 1997), with omnivory reported in the Atlantic
southwest (Bugoni et al., 2003) and the Pacific (Bjorndal, 1997;
Seminoff et al., 2006; Fukuoka et al., 2019). More than half the
individuals in all collective size classes ingested animal matter,
indicating that Texas’s immature green turtles are omnivores in
these developmental foraging grounds. This finding is similar
to other studies that have demonstrated animal consumption
persisting through ontogeny (Amorocho and Reina, 2008;
Cardona et al., 2010; Carrión-Cortez et al., 2010; Morais et al.,
2014). The relative importance of animal matter varied across the
size classes, with the highest collective IRI value noted in recruits,
primarily due to mollusk consumption. Mollusc ingestion may
occur incidentally to foraging on macroalgae in the jetty habitat
or represent a selective effort. The more frequent ingestion of
animals in the winter and spring months by the recruit size
class could be proportional to the seasonal variation in the
macroalgal abundance documented in the Texas jetty habitat
(Fikes et al., 2010). In a previous study in the northern GOM,
immature green turtles consumed animal matter more in the
winter months due to the seasonal fluctuations in seagrass and
algae biomass (Williams et al., 2014). Furthermore, green turtle
digestive efficiency decreases when water temperatures drop
(Bjorndal, 1980); and animal matter is easier to digest than
plant material for green turtles (Bjorndal, 1985). Conceivably, the
recruit class selects easier to digest animal matter more frequently
during the cooler months when jetty algae composition changes.
Regardless of seasonal environmental variations, we recommend
that juvenile green turtles foraging in Texas be described as
omnivores. Multisource stable isotope mixing models have
highlighted invertebrate consumption and assimilation among
omnivorous green turtles (Lemons et al., 2011). Therefore, future
diet studies in Texas should incorporate isotope mixing models
to gain supplemental information on the nutritional contribution
and importance of animal matter to all size classes’ diets.

The recent seagrass conservation efforts in Texas have
achieved some success. Seagrass acreage was reported to have
increased to cover a mean area of 87.7 ± 25.5% in the upper and
50.0 ± 38.4% in the Lower Laguna Madre (Dunton et al., 2013).
However, transitional turtles consumed seagrass less frequently
over time, indicating that this size class utilizes different habitat
niches. Any beneficial effects of recovering seagrass meadows
may be negated by an exponentially growing turtle population
(Shaver et al., 2017). Plausibly driven by resource competition
from turtles in the seagrass beds, transitional turtles incorporate a
varied diet of seagrasses and algae. Satellite tracking data revealed
green turtles (mean SCL 37.9 ± 5.2 cm) migrate in and out of
the Laguna Madre seagrass beds via the jetty habitats (Shaver
et al., 2013). The high frequency of ingestion of the typical jetty
red algae, Gelidium spp. by transitional turtles indicates turtles
supplement their seagrass diet with benthic macroalgae as they
transit from inshore waters to the GOM. The concept above is
further supported by analyzing digesta boluses throughout the
gastrointestinal tract, which indicate separate feeding sessions.
Some transitional turtles alternated their diets between seagrass
(e.g., Cymodocea sp.) and jetty algae (e.g., Gelidium spp.).
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In contrast to transitional turtles, the more frequent
consumption of seagrasses by the inshore size class indicates
these larger turtles have become highly reliant on the seagrasses
with time. Immature green turtles are more susceptible to cold
stunning in Texas as they overwinter and show strong site fidelity
for inshore habitats (Arms, 1996). Cold stunning is the most
significant cause of stranding events in Texas (Shaver et al.,
2017) and cold-stunned turtles comprised most winter samples
for transitional and inshore size classes. The high frequency
of seagrasses in the diet of the two largest classes of turtles
stranded in the winter months most certainly reflects this strong
seagrass bed dependency.

Shoal grass in the lower Laguna Madre has declined in
abundance and increased in bed fragmentation, while the upper
Laguna Madre has indicated some expansion in coverage (Onuf,
2007; Wilson and Dunton, 2017). Previous research revealed
green turtles in the Laguna Madre selected shoal grass over the
other seagrasses (Coyne, 1994). Interestingly, we documented
a significant decrease of shoal grass in all size classes’ diet
over time with no parallel increase in the frequency of other
seagrass species consumed. Turtle grass was still frequently
consumed and dominated the diet of our inshore size classes.
Conceivably, immature turtles are exhibiting foraging plasticity
within their changing seagrass meadows by consuming a variety
of macroalgae and animal matter species. Overall, seagrass
collectively dominated the diet of turtles larger than 30 cm
SCLmax, illustrating the necessity of conserving and monitoring
seagrass habitats along the northwestern GOM coast. Potential
impacts of changes in seagrass composition and distribution on
this green turtle assemblage’s diet should be rigorously monitored
through future diet studies.

Management and Conservation
Implications
Marine turtles inhabiting the Texas coast face a variety of threats,
both human-related and natural. As this green turtle population
continues to increase rapidly, it is critical to incorporate foraging
ecology studies into conservation management decisions that
strengthen the species and habitat protection. Size-related
variation in sea turtle foraging habits necessitates integrated
management strategies that reduce impacts to immature turtles
in Texas jetty and seagrass habitats. Gear modifications in
commercial fisheries could be implemented to reduce the
incidental take in our nearshore waters, hence providing
increased protection of this threatened species. Additionally, it is
essential to manage the seagrass beds fundamental to the survival

of this exponentially growing green turtle assemblage that will
eventually recruit to the breeding population.
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