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Omega-3 long-chain polyunsaturated fatty acids (hereafter, omega-3), including
eicosapentaenoic-acid (EPA) and docosahexaenoic-acid (DHA), are essential nutritional
compounds for humans, providing several benefits related to cardiovascular and neural
health. Human intake of omega-3 occurs mostly via seafood, particularly fish. The
primary source of omega-3 in aquatic systems is represented by primary producers,
from which omega-3 are transferred throughout the food web. Nitrogen is an essential
nutrient for primary producers and can be supplied to surface waters as nitrate upwelled
from below, or as ammonium and other regenerated nitrogen forms recycled in situ.
Eastern Boundary Upwelling Systems (EBUS) are the most productive marine systems
on Earth, together covering only 2% of the ocean’s surface area but supporting 25%
of the global fish catch, thereby providing food for humans. In EBUS, nitrate and other
nutrients are advected to the surface to support the proliferation of a phytoplankton
community dominated by known omega-3 producers (i.e., diatoms). Given current
climate change-related projections of ocean warming, acidification, deoxygenation, and
increased upwelling intensity, phytoplankton community composition in EBUS may
change. Additionally, the global production of EPA + DHA is expected to decrease by
up to 30%, rendering its supply for human consumption insufficient by 2050. Here we
discuss the state of knowledge related to omega-3 transfer from phytoplankton to small
pelagic fish in EBUS, including factors that can influence omega-3 production, links to
nitrogen cycling, climate change implications for the omega-3 supply to humans, and
suggestions for future research directions to improve our understanding of omega-3 in
the ocean.

Keywords: omega-3, food web, small pelagic fish, nitrogen supply, coastal upwelling, plankton, climate change,
biogeochemical model

INTRODUCTION

Omega-3 long chain polyunsaturated fatty acids (hereafter, omega-3) such as eicosapentaenoic-
acid (20:5n-3, EPA) and docosahexaenoic-acid (22:6n-3, DHA) are essential compounds for marine
consumers and human health (Ruess and Müller-Navarra, 2019), and are acquired through dietary
intake (Arts et al., 2001). The main producers of omega-3 in the ocean are phytoplankton, with the
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amount of omega-3 contained in consumers being determined
by the type of phytoplankton at the base of the food chain, and
the transfer efficiency of omega-3 across trophic levels (Dalsgaard
et al., 2003). In this context, zooplankton represent a key trophic
link between the producers of omega-3 and small pelagic fish
(e.g., sardine, anchovy, and herring; Bi and Sommer, 2020), the
latter being a major source of omega-3 for human consumption
(Hicks et al., 2019), as well as a main constituent of aquaculture
feeds (Tacon and Metian, 2009). The supply of omega-3 is
expected to change in the near future as a consequence of climate
change (e.g., Hixson and Arts, 2016; Colombo et al., 2020), with
implications for meeting the omega-3 requirements of a growing
human population that is predicted to reach 11 billion by 2100
(Roser, 2013). Major climate-driven factors relevant to omega-
3 production include warming (Hixson and Arts, 2016), ocean
acidification (Dörner et al., 2020), and variability in upwelling
intensity (Puccinelli et al., 2016a).

Coastal upwelling areas are amongst the most productive
ocean regions owing to the wind-driven advection of nutrient-
rich waters to the surface that promote primary and secondary
production (Peterson et al., 1988; Vargas et al., 2007; Flynn et al.,
2018). In these regions, nitrate (NO3

−) upwelled from depth
is the major source of nitrogen (N) for primary production
(Waldron and Probyn, 1992; Messié et al., 2009; González-
Galisteo et al., 2019), often supporting >>50% of phytoplankton
growth (Chavez and Messié, 2009; Messié et al., 2009). At the
cellular level, N is required for the synthesis of nucleic acids,
amino acids, and chlorophyll (Dagenais-Bellefeuille and Morse,
2013), thus affecting omega-3 production (Yongmanitchai and
Ward, 1991; Griffiths et al., 2012). Eastern Boundary Upwelling
Systems (EBUS) occupy 2% of ocean surface but support 25%
of the global fish catch and 8% of global primary production
(Pauly and Christensen, 1995). These systems facilitate broad-
scale fertilization of the upper water column and sustain many
of the world’s important fisheries (Cury and Roy, 1989; Ward
et al., 2006), including those centered around small pelagic fish,
which provide up to 50% of annual human protein intake in
some regions (e.g., West Africa; FAO, 2014). This is particularly
relevant for the EBUS located off the African and South American
continents, upon which millions of people rely for economic
and food security. For instance, the Peruvian anchovy fishery
accounts for 65% of global anchovy production and contributes
90% to the Peruvian fishery sector’s Gross Domestic Product
(Aronés et al., 2019).

Here we provide an overview of the current state of
knowledge on omega-3 transfer from phytoplankton to small
pelagic fish in EBUS, including factors that can influence
omega-3 production, links to the N cycle, climate change
implications for omega-3 availability to humans, current gaps
in our understanding and suggestions for future developments
needed to increase our knowledge of omega-3 in the ocean.
As an essential compound for human health (Ruess and
Müller-Navarra, 2019), omega-3 could aid in ameliorating
malnutrition, thus playing a fundamental role in food security.
Additionally, understanding the role that upwelling plays in
omega-3 production and how this may vary with climate change,
is relevant to the following Sustainable Development Goals

(SDGs): zero hunger (SDG2), climate action (SDG13), and life
under the sea (SDG14).

OMEGA-3 PRODUCTION AND ROLE IN
THE OCEAN

In the ocean, omega-3 are mostly synthesized by phytoplankton,
and phytoplankton community composition is a major factor
regulating the amount of omega-3 produced in a particular
system (Galloway and Winder, 2015). High food-quality species
are characterized by high levels of EPA and/or DHA [e.g.,
diatoms and dinoflagellates, EPA and/or DHA > 25% of
total fatty acids (FA); Hixson and Arts, 2016; Jónasdóttir,
2019] and low food-quality species by lower concentrations of
EPA + DHA [e.g., cyanobacteria, which produce mostly short-
chain polyunsaturated FA (PUFA), i.e., ≤C18 PUFA; Parrish,
2013]. Specifically, diatoms appear to be a major producer of EPA
(Dalsgaard et al., 2003), while dinophytes and haptophytes are
the main sources of DHA in the ocean (Figure 1; Remize et al.,
2020). FA production can be affected by abiotic factors including
temperature, which plays a key role in controlling the level of FA
unsaturation, influencing the fluidity of cell membranes (Rousch
et al., 2003); light availability, which affects phytoplankton species
composition (Harrison et al., 1990); and salinity, which influences
membrane permeability (Chen et al., 2008).

Omega-3 are a limiting factor for zooplankton and higher
trophic levels production (Bi and Sommer, 2020), as these
organisms cannot synthesize these FA in sufficient quantities to
support their nutritional requirements and must thus acquire
them through their diet (Dalsgaard et al., 2003; Litzow et al.,
2006). Omega-3 are precursors to eicosanoid hormones and a
major component of cell membranes (Parrish, 2013), playing a
fundamental role in maintaining membrane functioning, which
can be modified by changing the length and the level of
unsaturation of the FA carbon chains (Sinensky, 1974; Guschina
and Harwood, 2006). The essential role of omega-3 in marine
organism fitness is widely known. For instance, zooplankton
growth, development and reproduction output are dependent on
the amount of omega-3 available in their food (Müller-Navarra
et al., 2000; Brett et al., 2006; Ravet et al., 2010). Similarly,
fish brain and optic tectum development and oocyte quality
depend on the DHA content of their prey (Bell et al., 1995;
Garrido et al., 2007), and fish larvae with a higher EPA + DHA
content present enhanced swimming ability, schooling behavior,
and higher survival rates after hatching (Ishizaki et al., 2001;
Mourente, 2003).

LINKS BETWEEN MARINE NITROGEN
CYCLING AND OMEGA-3

Phytoplankton community composition depends on several
factors including nutrient availability. In the euphotic zone,
phytoplankton growth can be supported by NO3

− supplied from
below, for instance via upwelling (yielding “new production”),
or by N forms such as ammonium (NH4

+) recycled in the

Frontiers in Marine Science | www.frontiersin.org 2 June 2021 | Volume 8 | Article 664601

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-664601 May 28, 2021 Time: 17:29 # 3

Puccinelli et al. Omega-3 in Upwelling Systems

FIGURE 1 | Schematic representation of omega-3 pathways in an upwelling system across trophic levels, focusing on the link between nitrogen (N) sources [newly
upwelled N (NO3

−, white) and recycled N (NH4
+, orange)], select primary producers (diatoms, dinoflagellates, autotrophic bacteria), primary consumers

(zooplankton), and higher trophic levels (small and large pelagic fish). The thickness of the white and orange lines indicates the relative use of upwelled NO3
− and

recycled NH4
+ by the different phytoplankton groups. Pie charts show the % of eicosapentaenoic-acid (EPA), docosahexaenoic-acid (DHA), and the sum of the

other fatty acids (Other) produced by the three phytoplankton groups. With climate change, upwelling is predicted to intensify, which may increase the upward
supply of NO3

− and drive the ecosystem towards enhanced diatom growth, higher transfer efficiency, and elevated omega-3 production (i.e., the thick white lines
will become thicker). Alternately, warming may drive a net decline in upwelled NO3

−, resulting in enhanced NH4
+ recycling, a shift toward smaller phytoplankton

species, less efficient trophic transfer, and a decline in omega-3 production (i.e., the thick orange arrows will become thicker, and the white arrows will become
thinner). We note that these scenarios represent just two possibilities, and that there are likely other potential outcomes. Additionally, it is conceivable that the four
EBUS will not respond to climate change in the same way.

upper ocean (“regenerated production”; Dugdale and Goering,
1967). When available, NH4

+ is often the preferred N form
consumed by phytoplankton because its low oxidation state (-
3, the same as organic N) renders its assimilation energetically
favorable (Dortch, 1990). However, surface NH4

+ concentrations
are typically << 1 µM (Paulot et al., 2015), although its flux
through the food web can be large (Gruber, 2008; Altieri et al.,
2021). High NO3

− availability typically leads to growth of large
phytoplankton including diatoms (Kudela and Dugdale, 2000;
Fawcett and Ward, 2011), while smaller phytoplankton such
as cyanobacteria tend toward NH4

+ dependence (Probyn and
Painting, 1985; Fawcett et al., 2011).

Upwelling events are among the main supply mechanisms of
nutrients essential for phytoplankton production (e.g., NO3

−,
silicate, iron; Dugdale and Wilkerson, 1998; Chavez and Messié,
2009). In upwelling systems, the ratio between new and total (i.e.,

new + regenerated) production is significantly higher than in
the open ocean (0.5–0.8 versus ∼0.1; Eppley and Peterson, 1979;
Laws, 2004) due to the near-constant supply of NO3

−, which
underpins the elevated productivity of these regions (Messié and
Chavez, 2015). Similarly, higher-than-average surface-water iron
concentrations favor phytoplankton consumption of upwelled
NO3

− over recycled N (Dugdale and Goering, 1967; Bruland
et al., 2001), leading to a phytoplankton community dominated
by omega-3-rich diatoms. A change in community from diatoms
to dinophytes is commonly observed during an upwelling
cycle, especially when silicate, essential for the synthesis of
diatom frustules, becomes depleted (Martin-Jézéquel et al., 2000;
Tilstone et al., 2000).

Since different phytoplankton contain different amounts
of omega-3, changes in community composition can cause
variations in omega-3 transfer to consumers, ultimately affecting
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the omega-3 supply throughout the food web (Bermúdez et al.,
2016; Garzke et al., 2016). For instance, it was shown that
an increase in pCO2 caused a shift from nanophytoplankton
to picoeukaryotes along with a decline in PUFA in both
phytoplankton size fractions, which was mirrored by a PUFA
reduction in the copepod species feeding on them (Bermúdez
et al., 2016). Similarly, interannual FA variations in small pelagic
fish in the California Current was attributed to a shift from a
dinoflagellate- to a diatom-dominated food source (Litz et al.,
2010). Upwelling food webs are made more complex by the
presence of mixotrophic nanoflagellates, organisms that are able
to directly consume bacteria and picoplankton (Frias-Lopez et al.,
2009), but that can also contribute significantly to primary
production, especially during periods of upwelling relaxation
(Figueiras et al., 2020). Disentangling omega-3 produced by
autotrophic versus mixotrophic organisms in the ocean is
challenging, and may lead to an over/underestimation of the
omega-3 supply from primary producers.

THE EASTERN BOUNDARY UPWELLING
SYSTEMS

The world’s four major EBUS are associated with the Benguela,
California, Canary, and Humboldt Currents. Rates of
primary production are comparable among these regions
(>900 gCm−2y−1, Table 1), with the exception of the California
system where they are two-fold lower (480 gCm−2y−1), probably
due to the lower NO3

− supply to the euphotic zone (Chavez
and Messié, 2009). The availability of regenerated N and the
mechanisms of its production (i.e., herbivores, heterotrophic
bacteria, higher trophic-level organisms) vary among the
systems (Dugdale, 1972). For instance, anchovies are responsible
for most N regeneration in the Humboldt system (Kämpf
and Chapman, 2016), while in the southern Benguela, up to
48% of the subsurface nutrients are regenerated on-shelf by
heterotrophic bacteria (Flynn et al., 2020). EBUS fertilization
by dust deposition also influences productivity, especially in
the Canary and Benguela systems where the Sahara and Namib
Deserts supply nutrients that regularly limit phytoplankton
growth, including iron and phosphate (Jickells et al., 2005;
Pabortsava et al., 2017).

The high primary productivity of EBUS propagates
throughout their ecosystems, with a given concentration of
phytoplankton supporting approximately 25- and 50-times as
much zooplankton biomass and fish production (Chavez and
Messié, 2009; Kämpf, and Chapman, 2016). In the Humboldt
system, fish production and zooplankton biomass are an
order of magnitude higher than in the other three systems
(Table 1), which has been attributed to a high transfer efficiency
among trophic levels, resulting in optimal conditions for the
proliferation and retention of zooplankton and fish (Chavez
and Messié, 2009). The same pattern is not evident in omega-3
content, which varies considerably within and among systems.
For instance, Benguela phytoplankton contain the lowest amount
of omega-3, while omega-3 in zooplankton and small pelagic fish
is higher compared to the other EBUS. We note, however, that

limited information is available on omega-3 in EBUS, especially
for the Canary system, precluding our ability to generalize while
also highlighting the need for further investigations.

CLIMATE CHANGE EFFECTS ON
UPWELLING SYSTEMS AND N SUPPLY

As a result of climate change, upwelling frequency appears to
be increasing in several EBUS (Sydeman et al., 2014) due to
increasing wind stress (Narayan et al., 2010). This may increase
the nutrient supply to phytoplankton, favoring large diatoms
and higher transfer efficiency, yielding enhanced production
of omega-3. However, changes to upwelling are likely to be
complex (Rykaczewski et al., 2015), and along with warming
and/or acidification of surface waters, will modify phytoplankton
metabolism and community composition, potentially favoring
smaller phytoplankton (e.g., picoeukaryotes) at the expense of
the nano- and microphytoplankton (e.g., diatoms, chlorophytes,
haptophytes; Pérez et al., 2010; Armbrecht et al., 2014).
A decrease in phytoplankton cell size will likely lead to longer
food webs and a reduction in trophic transfer efficiency, with a
consequent decline in omega-3 transfer to higher trophic levels
(Berglund et al., 2007; Bermúdez et al., 2016).

Global warming is predicted to enhance seawater stratification
while decreasing ocean mixing, reducing the upward NO3

−

supply (Falkowski et al., 1998; Sarmiento et al., 1998;
Capotondi et al., 2012) and favoring the growth of species
such as cyanobacteria and mixotrophic nanoflagellates (Peter
and Sommer, 2012; Leles et al., 2018). In general, smaller
phytoplankton preferentially consume NH4

+ (Fawcett et al.,
2011; Glibert et al., 2016), such that their growth should be
favored under lower-nutrient conditions, in comparison to that
of diatoms, which mainly utilize NO3

− (Kudela and Dugdale,
2000; Fawcett and Ward, 2011). In contrast, by increasing the
bioavailability of micronutrients such as iron, ocean acidification
may promote the growth of phytoplankton reliant on NO3

−,
the assimilation of which has a high iron requirement (Price
et al., 1991; Schoffman et al., 2016). That said, increased iron
availability is also predicted to favor the growth of N2 fixers
(Wannicke et al., 2018), a group of cyanobacteria (Monteiro
et al., 2010) that produce predominantly short-chain PUFA
(Parrish, 2013).

While much remains unknown of how different
phytoplankton species will respond to climate change,
particularly given the number of overlapping drivers and
their potentially complex interactions, any change in community
composition will have consequences for omega-3 production.
These effects will be reflected in the amount of omega-3
transferred to consumers, as well as on their performance and
survival strategies. For instance, a decrease in the amount of
essential FA available to consumers has been shown to reduce the
abundances, growth, and reproduction of zooplankton (Rossoll
et al., 2012). At lower pH (i.e., high pCO2), fish larvae tend to
stock omega-3 to increase their chances of survival (Díaz-Gil
et al., 2015), in contrast to Antarctic krill that appear unaffected
by increasing pCO2 (Ericson et al., 2019). Additionally, different
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TABLE 1 | Comparison of selected abiotic and biotic parameters in the four Eastern Boundary Upwelling Systems (Benguela, California, Canary, Humboldt) based on
published literature.

Benguela California Canary Humboldt References

28◦S-18◦S 34◦N-44◦N 12◦N-22◦N 16◦S-6◦S

Temperature (◦C) 9–18 7–15 12–24 11–22 Chavez and Messié, 2009; Messié et al., 2009

Average wind speed (m s−1) 7.2 7.8 6.8 5.7 Chavez and Messié, 2009; Messié et al., 2009

Upwelled volume (Sv) 1.5 1 1.4 1.6 Chavez and Messié, 2009; Messié et al., 2009

Nitrate supply (mmol m−1 mm−1) 30.9 19.3 32.2 33.8 Chavez and Messié, 2009; Messié et al., 2009

Potential new production (g C m−2 yr−1) 517 323 539 566 Chavez and Messié, 2009; Messié et al., 2009

Satellite primary production (g C m−2 yr−1) 976 479 1213 855 Chavez and Messié, 2009; Messié et al., 2009

Satellite chlorophyll (mg m−3) 3.1 1.5 4.3 2.4 Chavez and Messié, 2009; Messié et al., 2009

Mix layer depth (m) 44.8 43.3 28.9 30.7 Chavez and Messié, 2009; Messié et al., 2009

Dust deposition (g m−2) 11.7 0.3 33.1 0.3 Chavez and Messié, 2009; Messié et al., 2009

Phytoplankton abundance

Diatoms (cell L−1) 8–5240 7– 2328×103 37– 490×104 25–16802 Painting et al., 1993; Anabalón et al., 2014;
Du et al., 2015; Riquelme-Bugueño et al., 2020

Dinoflagellates (cell L−1) 1– 10×104 2– 425×103 20– 60×106 99– 340×103 Böttjer and Morales, 2007; Anabalón et al.,
2014; Du et al., 2015; van der Lingen et al.,
2016; Riquelme-Bugueño et al., 2020

Bacteria (cell mL−1) 1–14 3– 51×105 100–600 100– 300×103 Brown et al., 1991; Hauss et al., 2012;
Anabalón et al., 2014; Schulien et al., 2017

Total lipids (SPM, µg L−1) NA 50–70 NA 2–70 Gutiérrez et al., 2012; Fischer et al., 2014;
Puccinelli et al., 2016a

Omega-3 (SPM, µg L−1) 1–5 8–11 NA 1–18 Gutiérrez et al., 2012; Fischer et al., 2014;
Puccinelli et al., 2016a

Zooplankton

Abundance (individual m−3) 1–3500 10–2237 1–5250 1–512 Peterson et al., 1979; Verheye et al., 2005;
Fontana et al., 2016; Ndour et al., 2018;
Berraho et al., 2019; Schukat et al., 2021

Biomass (g C m−2) 0–12 0–>20 1–7 0–101 Mackas et al., 2006; Huggett et al., 2009;
Aronés et al., 2019; Medellín-Mora et al., 2020

Annual production (g C m−2 yr−1) 11–160 6–67 11–20 6–23 Huggett et al., 2009; Medellín-Mora et al., 2020

Total lipids (µg individual−1) 7–250 20–99 NA 18–84 Lavaniegos and López-Cortés, 1997; Verheye
et al., 2005; Schukat et al., 2014, 2021

Omega-3 (% TFA) 19–52 10–31 NA NA Lavaniegos and López-Cortés, 1997; Verheye
et al., 2005; Schukat et al., 2014;
Riquelme-Bugueño et al., 2020

Small pelagic fish

Fish production (landing, KT) 12–36
(anchovy)

3–1096
(sardine)

0–424
(anchovy)

59–13060
(anchovy)

Lluch-Belda et al., 1989; Rykaczewski and
Checkley, 2008; Lanz et al., 2009; FAO, 2014;
Diankha et al., 2015; Shabangu et al., 2019

Omega-3 (% TFA) 38–68 38–43 16–24 36–39 Njinkoué et al., 2002; Okada and Morrissey,
2008; Castro et al., 2010; Standal et al., 2012;
Connan et al., 2017

Data on temperature, phytoplankton, zooplankton and small pelagic fish are reported as ranges. Fish production is listed only for the main small pelagic fish species in
each system. SPM, suspended particulate matter; NA, not available; TFA, total fatty acids. Omega-3 refers to long chain polyunsaturated fatty acids (≥C20 PUFA).

consumers have different omega-3 requirements (Litzow et al.,
2006), such that their responses to climate change are likely to be
variable and difficult to predict.

KNOWLEDGE GAPS AND FUTURE
DIRECTIONS

There is broad consensus that upwelling shapes the diets of
primary and secondary consumers, from coastal (Puccinelli et al.,
2016a,b; Docmac et al., 2017) to open-ocean environments
(Hauss et al., 2012; Schukat et al., 2021). Globally, the omega-3

supply from fish is projected to soon become insufficient for the
growing human population, although the sign and magnitude
of future changes in EBUS omega-3 production are unknown.
Global estimates indicate that phytoplankton and zooplankton
EPA + DHA supplies amount to 80 Mt, yet approximately 90%
of EPA + DHA is lost between primary producers and higher
predators (Hamilton et al., 2020). Humans require 1.4 Mt of
EPA + DHA annually to meet the 500 mg daily recommended
intake, yet only 0.8 Mt are available, largely from aquaculture
and fisheries (Tocher, 2015; Hamilton et al., 2020). Despite
the general understanding that the omega-3 supply to humans
is limited, information on omega-3 production and transfer
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in productive upwelling systems is scarce, and almost absent
at the level of primary consumers such as zooplankton and
small pelagic fish (Table 1). The available studies are largely
laboratory- or mesocosm-based investigations that constrain
selected environmental parameters in order to investigate a
specific metabolic or physiological pathway (De Troch et al.,
2012; Mayor et al., 2015). Meta-analyses have been used as
an alternative tool to formulate predictions related to omega-
3 supply (e.g., Galloway and Winder, 2015; Hixson and
Arts, 2016), but they are usually conducted at a large scale
(regional, global) and focused on primary producers. Recently,
an algorithm that links satellite chlorophyll-a data and EPA
production was developed for the northwestern Atlantic and
used for global EPA estimates (Budge et al., 2014). Applying
this algorithm to EBUS that collectively support 8% of global
primary production yields an EBUS EPA production rate of
19.2 Mt year−1. Assuming a transfer efficiency of 10% among
trophic levels and a three-level food chain, we estimate that
0.19 Mt year−1 of EPA is available in the small pelagic fish of
EBUS. While this approach is useful for illustrating the role of
EBUS in omega-3 production, it has several limitations, such as
assuming that diatoms are the only EPA producers, neglecting
DHA production, and assuming a 10% transfer efficiency.
Additionally, while the studies cited above have advanced our
knowledge of omega-3 in the ocean, they do not provide reliable
estimates of EPA + DHA or consider future changes in omega-
3 production.

Coupled physical-biogeochemical models are powerful
tools for understanding ocean dynamics and their role in
biogeochemical cycles at various spatial (from global to regional)
and temporal (event to climate) scales (Brasseur et al., 2009;
Bachèlery et al., 2016). Biogeochemical models are often used
to represent the cycles of carbon and selected nutrients (e.g.,
N), but they can also simulate energy flow to higher trophic
levels (Koné et al., 2005; Chust et al., 2014). These models
encompass a variety of complexities and applications, ranging
from Nitrate-Phytoplankton-Zooplankton-Detritus to more
complex planktonic food webs (Rose et al., 2007; Aumont et al.,
2015; Butenschön et al., 2016). They depend, however, on field
observations and experimental data to define parameters and
constrain assumptions. 3D-physical-biogeochemical models
have been developed for the four EBUS to simulate marine
productivity and carbon cycling at low trophic levels (i.e.,
phytoplankton and zooplankton) (Lachkar and Gruber, 2012;
Gutknecht et al., 2013; Auger et al., 2016; Espinoza-Morriberón
et al., 2017; Glock et al., 2018; Cheresh and Fiechter, 2020).
While the models account for the N source(s) available
to phytoplankton and the main nutrients ratios (cell-quota

formulation), none of them track omega-3 in either the
primary or secondary consumers. The only mathematical model
to investigate omega-3 transfer between phytoplankton and
zooplankton is the mechanistic approach developed by Perhar
et al. (2012, 2013), which accounts for omega-3 availability
in its calculation of grazing efficiency. This model has been
used to investigate the role of N, phosphorus and omega-3 in
zooplankton growth and abundances. A combined physical-
biogeochemical model that includes the approach of Perhar et al.
(2012, 2013) could be implemented for EBUS to (i) elucidate the
mechanisms governing the fate of omega-3 production based on
the N source(s) available to phytoplankton, and (ii) quantify the
amount of omega-3 available to small pelagic fish, at present and
in the future, considering EBUS-specific parameters.

SUMMARY

Omega-3 are essential compounds for all living organisms and
their supply is tightly connected to phytoplankton growth and
community composition in the ocean, as well as to the efficiency
of their transfer through the food web. Human population
growth and the likely decline in omega-3 availability linked to
global warming underscore the urgency of prioritizing long-term
predictions of omega-3 supply in EBUS. In particular, there is
a clear need for a predictive model to explore climate-induced
changes in omega-3 supply throughout the food web; such a
model would be valuable to multiple sectors, including fisheries
management and food production.
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