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The increase in anthropogenic activities and their potential impact on wildlife requires
the establishment of monitoring programs and identification of indicator species. Within
marine habitats, marine mammals are often used as ecosystem sentinels, which has
led to investigations into their abundance, distribution, and mortality patterns. However,
trends in sightings and strandings are rarely analyzed in combination. This is necessary
to distinguish elevated stranding rates caused by changes in local abundance from
increased mortality as a consequence of other natural, environmental or anthropogenic
factors. Therefore, the objective of this study was to assess whether harbor porpoise
(Phocoena phocoena) stranding frequency in the southern North Sea can be explained
by local population density derived from more than 400 thousand hours of systematic
observations along the Dutch coast between 1990 and 2018. Since the late 1990s, both
the number of stranded porpoises and the sighting rate increased rapidly up to around
the mid-2000s, after which they remained high, but with large inter-annual fluctuations.
On an annual basis there was a strong correlation between porpoise strandings and
sightings, but with a seasonal mismatch. Highest stranding rates occur in late summer,
while highest sighting rates occur in early spring. Despite low sighting rates in late
summer, August appears to be the best predictor for the monthly variation in the number
of stranded porpoises, which could be explained by post-reproductive dispersal and
mortality. Excessive high porpoise stranding numbers after accounting for variations in
local density could signpost unusual mortality events (UMEs). The corrected stranding
rates show that in the early 1990s, when porpoise sightings were rare, and after 2010,
the number of stranded porpoises exceeds the expected number. Especially in the
summer of 2011, the number of dead porpoises found ashore was excessively high and
this might reflect an UME. These results demonstrate that a comparative interpretation
of marine mammal strandings and coastal sightings can be a valuable management and
conservation tool that could provide an early warning signal for population change.

Keywords: Phocoena phocoena, marine mammal, indicator species, abundance, distribution, unusual mortality
event
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INTRODUCTION

The increasing human impact on the marine environment has
created a responsibility to monitor human effects on wildlife
(Tyne et al., 2016; Tablado and Jenni, 2017). A successful
monitoring program should detect changes in population
parameters, which can be related to conservation objectives
(Bubb et al., 2005). In the marine environment, marine mammals
are often used as environmental indicator species, because
they are long-lived and feed at or near the top of the food
chain (Moore, 2008; Bossart, 2011). Furthermore, most marine
mammal species are protected by a range of international and
national regulations (Camphuysen and Siemensma, 2011; Evans,
2019). This comes with the need to assess their abundance
and distribution. For cetaceans, population assessment is mainly
achieved through ship-based or aerial line-transect surveys
(Hammond et al., 2002; Scheidat et al., 2012; Geelhoed and
Scheidat, 2018; Nachtsheim et al., 2021). Disadvantages of line-
transect surveys are that they are costly, logistically challenging
and often only sample a very small proportion of the population,
despite a considerable effort. In addition, it is only possible to
get snap-shot population abundance estimates, with precipitous
declines or smaller-scale changes not easily detected (Taylor
et al., 2007; Peltier et al., 2013; Ten Doeschate et al., 2018). This
demonstrates a need for other methods that could provide an
early warning signal for population change.

Due to the statutory requirement of several international
conventions, stranding networks that record and sample marine
mammals found ashore have been implemented in several
European countries for decades. While spatiotemporal changes in
stranding frequencies have been used as indicator of population
health (Hart et al., 2006; Pyenson, 2011; Williams et al., 2011;
IJsseldijk et al., 2018a; Betty et al., 2020), it remains unknown
whether they are representative for the at-sea population.
This is caused by the complexity in quantifying the various
components that influences the stranding process (Hart et al.,
2006; Peltier et al., 2013; Ten Doeschate et al., 2018; IJsseldijk
et al., 2020). In particular, an increase in marine mammal
strandings may not only reflect an increase in the per-capita
mortality, it may also result from increases in local abundance,
or environmental conditions.

In North-western Europe, the North Sea basin is inhabited
by approximately 350.000 harbor porpoises (Phocoena phocoena)
(Hammond et al., 2002, 2013, 2017). Their summer distribution
appears to have shifted from north (SCANS, 1994) to south
(SCANSII, 2005) (Hammond et al., 2002, 2013). Both sightings
and strandings of harbor porpoises in the southern North Sea
have increased significantly since the early 1990s (Camphuysen,
2004; Camphuysen et al., 2008; Keijl et al., 2016; Haelters et al.,
2018; IJsseldijk et al., 2020). Since 2005, there were periods with
excessively high numbers of stranded porpoises (IJsseldijk et al.,
2020), raising concerns whether this was solely a result of a higher
abundance or may (also) reflected elevated or unusual mortality.

Elevated mortality could be a result of increased threats and
pressures that negatively affect the population. The North Sea is a
hotspot of anthropogenic activities, where many anthropogenic
stressors occur and overlap (Halpern et al., 2008, 2015;

Nachtsheim et al., 2021). Harbor porpoises in the North
Sea are impacted by fishery activities (bycatch and competition)
(Kirkwood et al., 1997; Leeney et al., 2008; IJsseldijk et al.,
2018c), chemical pollution (Pierce et al., 2008; Weijs et al., 2009;
Jepson et al., 2016), noise pollution from shipping (Wisniewska
et al., 2018), seismic surveys and underwater explosions (von
Benda-Beckmann et al., 2015; Aarts et al., 2016), and more
recently, habitat loss due to the rapid growth of offshore activities
related to the construction of wind farms (Madsen et al., 2006;
Gilles et al., 2009). International legislation requires these
activities to minimize impacts on marine mammal populations,
It is therefore essential to quantify and qualify spatiotemporal
mortality trends and threat-specific mortality patterns (Peltier
et al., 2012; IJsseldijk et al., 2020).

To investigate if excessive strandings are the result of changes
in porpoise occurrence or reflect elevated mortality caused by
other factors, the objective of this study is to assess whether
the temporal variability in the number of porpoise strandings
on the Dutch coast can be explained by local population
density, as derived from shore-based observations. We estimate
discrepancies between the observed strandings and predicted
strandings based on sightings, which may signpost temporal
excessive high or low mortality rates. These analyses will define
the credibility of stranding records as a population indicator and
serve a key example on how comparative analyses of long-term
sightings and strandings data could provide insight into fine-scale
population density and mortality patterns.

MATERIALS AND METHODS

Strandings Data
Harbor porpoise stranding records in The Netherlands are
managed by Naturalis Biodiversity Center in Leiden1. The Dutch
strandings network consists of a consortium of organizations
and volunteers. Given the high human population density and
the accessibility of (sandy) shorelines, it is expected that there
is full coverage along the mainland coast and in the southern
Delta area (province of Zeeland), but a slightly lower coverage
(expected 80%) in the more remote Wadden Sea area and Frisian
islands (Camphuysen et al., 2008; Camphuysen and Siemensma,
2011; Peltier et al., 2013; Keijl et al., 2016; IJsseldijk et al., 2020).
A total of 9,229 harbor porpoise stranding records from 1990
to 2019, both dead and alive, were included in this study, with
each record representing a stranding event of a single individual.
For those records with information on the status of the stranded
individual, a distinction could be made between alive (n = 301),
freshly dead (n = 2129) and animals with advanced signs of
decomposition (n = 3906). This information was unknown for
n = 2893 strandings.

Coastal Sighting Data
Harbor porpoise local abundance was analyzed by extracting
sightings from the database of the Dutch Seabird Group
(Nederlandse Zeevogelgroep NZG/CVZ database) and

1www.walvisstrandingen.nl

Frontiers in Marine Science | www.frontiersin.org 2 July 2021 | Volume 8 | Article 668038

http://www.walvisstrandingen.nl
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-668038 July 8, 2021 Time: 11:39 # 3

IJsseldijk et al. Predicting Strandings Based on Sightings

www.trektellen.nl (Camphuysen, 2011; Troost and Boele,
2019; Hornman et al., 2020). For the analysis, we used coastal
sightings data from 1989 to June 2018 and records from
observation sites with >5,000 h of effort (Figure 1). In all
years, total sighting effort exceeded 100,000 h (Supplementary
Figure 1). Counts were conducted year-round, but with
increased intensity during periods of bird migration in spring
(March–May) and autumn (August–October). Observers used
binoculars or telescopes mounted on a tripod with magnification
of 10–30 times, and watched uninterrupted perpendicular to
the coastline, normally for at least one hour, sometimes up
to ten hours or more per day (de Miranda and Koenekoop,
1980; Camphuysen and van Dijk, 1983; Camphuysen, 1985;
Fijn et al., 2017). Observations were made from vantage points
(dune-tops, piers, dikes), with observatories normally at a height
of 5–15 m above sea level, to provide views over the near shore
strip (up to 10 km distance). Harbor porpoises were detected
predominantly within 2 km from the location of the observer.
Observers recorded date, duration of the observation period
(start and end time), and weather characteristics, and log their
sightings usually per hour of observation. Weather conditions
logged per observation hour are: wind force (in Beaufort), wind
direction, cloud cover (8-point scale) and visibility (in kms).

FIGURE 1 | Location of coastal observation points in The Netherlands (black
open circles) and those with sufficient data (red circles, observation sites with
>5,000 h of effort) to be included in the analysis. The orange triangle
represents the observation site “Castricum aan Zee” (site id = 527) which was
used as reference site for further analysis.

The observers are well-trained and sufficiently experienced in
porpoise identification.

Correcting for Weather Effect on
Sightings
To correct for the effect of weather conditions on sighting
probability, the number of porpoises observed Nt was modeled
as a function of several weather-related covariates:

Nt ∼ NB(γt, θ) (1)

γt = exp

 year : month+ observation site+ part of day
+wind force+ wind direction+ cloud cover
+visibility+ log(observation duration)


where NB represents a negative binomial distribution, γt the
expected sighting rate and θ the dispersion parameter (based
on Soldaat and Poot, 2020). All explanatory variables were
included as factor variables. The explanatory variables were
year (1989–2018), month (January–December), part of day
(morning, mid-day or late afternoon), observation site (18 unique
sites), wind force (weak, moderate and strong), wind direction
(onshore, offshore or other), cloud cover (overcast, partly and
no cloud cover) and visibility (good, moderate and poor). The
log of the observation duration was included as the model
offset. Next, the fitted model was used to predict the expected
sighting rate (number of porpoises per hour) for each year
and month combination using fixed values for the observation
conditions. Predictions were made for one observation site,
namely “Castricum aan Zee” (site id = 527), which is centrally
located along the Dutch shore and had a high observation effort
(Figure 1). The fixed values for the other conditions were part
of day = morning, wind force = weak, wind direction = onshore,
cloud cover = overcast and visibility = good. These model-based
estimates of the sighting rate (Xt ; number of porpoises per hour)
were used in subsequent analyses (Supplementary Figure 2).

Data Exploration
Data exploration consisted of estimating and presenting total
number of strandings by month and year. A distinction was made
between all strandings and those classified as “fresh” or “alive,”
based on photographs and comments collected during stranding
events. The porpoise sighting rates in any month might predict
the stranding rate in any other month. For example, sightings
in summer might reflect local recruitment and influence the
stranding rates in the following winter. Therefore, we investigated
how well the number of porpoise stranded in a month m could
be explained by the porpoise sighting rate in any of the other n
months in the same year.

St ∼ NB(λt, φ) (2)

λt = λm = exp (β0 + βXn)

This resulted in 144 models (i.e., 12 strandings months × 12
sighting months). For each model, the General Linear Model
(GLM) equivalent of R2 [i.e., 1-(deviance/null deviance)] was
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calculated and plotted as raster object (library: raster). Models
were fitted using the R-function glm.nb (library: MASS).

Modeling Strandings as Function of
Coastal Sightings
The temporal variation in stranded porpoises was modeled as
a function of the coastal sightings to examine and quantify
general trends and seasonal patterns. In addition, we assessed
differences between the observed and predicted strandings based
on coastal sightings, to determine anomalies in the observed
monthly porpoise strandings.

Predicting Porpoise Strandings Based on Coastal
Sighting Rates
A model formulation was designed to investigate if the monthly
number of stranded porpoises St could be explained by porpoise
sighting rate Xt . The baseline model was formulated as follows:

St ∼ NB(λt, φ) (3)

λt = λm = exp (β0 + βXn) (4)

where St and λt are the observed and expected number of
strandings per month, respectively. NB is a negative binomial
distribution with mean λt and dispersion parameter φ. β0 is
the intercept and υi represents an autoregressive AR1 temporal
correlation:

υ1 ∼ N(0, τυ
(
1− ρ2)−1

) (5)

υt ∼ ρυt−1 + εt, t = 1, . . . ,T

εt ∼ N (0, τε)

This base model (Eq. 4) was extended by adding αmXt to the
linear predictor:

λt = exp (β0 + αmXt + υt) (6)

where αm represent the month (m) specific parameters for the
effect of sighting rate Xt on the observed variation in porpoise
strandings. We explored a variety of models with different
formulations for Xt , where Xt was defined as:

(1) The porpoise sighting rate in the same year and month (i.e.,
Xt = Xy,m)

(2) The porpoise sighting rate of the month preceding
stranding month (i.e., Xt = Xy,m−1)

(3) The sighting rate in each of the 12 months of the same
year (i.e., Xt = Xy,1, Xt = Xy,2, . . . or Xt = Xy,12). This
involves 12 models.

(4) Like 3, except that year breaks occurred on the first of
July, instead of the first of January. For example, when
Xt = Xy,8, the number of strandings in March are related to
the porpoise sighting rate in August of the preceding year.

The performance of each model was assessed based on the
Deviance Information Criterium (DIC) and compared to the
baseline model without the inclusion of a dependence on the
sighting rate, but with inclusion of the autoregressive temporal
correlation structure (see Eq. 4).

The model with the lowest DIC value was subsequently used
to predict the expected number of porpoises found ashore.
Particular attention was paid to υt , which describes the seasonal
trend in deviations in the number of stranded animals relative to
the expected values based on coastal sightings.

RESULTS

Corrected Coastal Porpoise Sightings
The model, fitted to the coastal sightings of porpoises to correct
for the effect of weather related environmental conditions (see
Supplementary Data 1), showed that the highest porpoise
sighting rates were recorded during low wind force (i.e., highest
parameter estimate for “wind force weak,” Supplementary
Data 1), while strong winds resulted in the lowest sighting rate.
Sighting rates were also higher under good visibility, high cloud
cover and offshore winds (see Supplementary Data 1). Sighting
rates were also slightly higher later during the day (day section
2 and 3). There were also differences in sighting rates between
the observation sites. The sighting rate (corrected for conditions)
was highest at Castricum aan Zee (site no. 527), Maasvlakte II
(no. 1272) and Camperduin (no. 429) and lowest at Ouddorp
Light house (no. 410), Westkapelle (no. 3) and Maasmond (no.
147). The fitted model was subsequently used to estimate the
sighting rate for one central observation site (Castricum aan
Zee, no. 527) and a fixed set observation conditions (weak
onshore wind, good visibility and high cloud cover). Despite the
potential effect of weather, there was still a large correspondence
between the observed and corrected porpoise sighting rates
(Supplementary Figures 2–4). Note that the absolute values of
the corrected model-based sighting rates were on average higher
because the model-based estimates were made for more favorable
weather conditions.

Annual and Seasonal Patterns in
Sighting Rate
The observed porpoise sighting rate rapidly and consistently
increased up to 2005 (Figure 2), but after 2005 sighting
rate fluctuated and remained relatively high with around 0.08
porpoise per hour (Figure 3). The highest average sighting rate
was in 2013, but in 2015, it dropped to the lowest values since
2000 (Figure 3A).

Seasonal patterns revealed that sighting rates were highest
during the winter months, with overall high values between
December and March, and a peak in February. The sighting
rates were very low in May and June (Figure 3B). Although the
monthly pattern in porpoise sighting rate was fairly consistent
between years, there were some annual variations. For example,
the highest average sighting rate was in January 2014 (Figure 2).

Annual and Seasonal Patterns in
Strandings
The number of stranded animals rapidly increased up to 2006,
after which the trend seemed to be less consistent with large
inter-annual variability (Figures 2, 3C,D). The largest number
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FIGURE 2 | Seasonal and annual patterns in observed sighting rate (A), all strandings (B), fresh and alive strandings (C) with the size of the circles representing the
respective variables (on the log-scale).

of stranded animals were reported in 2011 and 2013. In the last
decade, the lowest stranding number was recorded in 2015. In
this year, porpoise sightings were also very low (Figures 2, 3A).
When the annual pattern in strandings and coastal sightings were
normalized (i.e., subtracting the average value and dividing by
its standard deviation), normalized strandings were lower from
1997 to 2007 (Figure 3E). From 2008 to 2018 the normalized

strandings exceeded the normalized sighting rate, except for
2013 and 2014. While both 2011 and 2013 were characterized
by a high number of porpoises washing ashore, only 2011 was
particularly high compared to the normalized stranding rate. The
total number of stranded porpoises (between 1990 and 2018)
revealed that most porpoises were found in July and August,
with a smaller peak in March (Figures 3D,F). In March, a
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FIGURE 3 | Annual and monthly sightings and stranding patterns (orange = sightings, blue = all strandings, yellow = fresh and alive strandings). The lines reflect the
variability in the sighting rate averaged by year (A) and month (B), all strandings, and fresh and alive strandings by year (C) and month (D) and the normalized
sightings and strandings by year (E) and month (F).
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much larger proportion of fresh and alive animals were found
ashore and total number of porpoises recorded as fresh and alive
are highest in that month. The normalized monthly pattern in
porpoise strandings and coastal sightings showed some similarity
in early spring, although the peak in strandings (March) occurs a
month after the peak in coastal sightings (February) (Figure 3F).
Both strandings and sightings were very low in May and June.
However, while strandings were at their highest in July and
August, the coastal sightings were very low. The monthly pattern
of strandings of fresh and alive porpoises appears to show more
similarity with the monthly pattern in coastal sighting rate,
although patterns in the summer months still differ (Figure 3F).

When we inspect the porpoise strandings for all year
and month combinations, some inter-annual changes become
apparent, with the summer peak in porpoise strandings becoming
more prominent in the last decade, compared to the peak in
March which was more prominent in the 2000s.

The Ability to Predict Strandings Based
on Coastal Sightings
Sightings in a specific month can be related to the number
of stranded porpoises in any other month, and this reveals
large differences in the strength of the correlation. Sightings in
July, August and September correlated well with the number
of strandings observed in most months (Figure 4), despite the
relatively low absolute sighting rate in those summer months. For
example, the number of stranded porpoises in January in year
y correlate strongly with the porpoise sighting rate in July and
August the preceding year (i.e., R2 was 0.82 and 0.79, respectively,
with a slope coefficient p-value < 0.0001 for both months). In
contrast, while February and March were characterized by the
highest sighting rates, they correlated less well with the number
of stranded porpoises in the same month (February R2 = 0.53,

March R2 = 0.52). Sighting rates in February and March also
correlated less well with strandings in other months. For example,
the R2-value of August strandings as function of the sighting rate
in March was only 0.36. Temporal variability in the sighting rates
in June showed very little correlation with the patterns in the
strandings (i.e., average R2-values of 0.27).

If there would be a strong correlation between the monthly
stranding and sighting rate, the diagonal in Figure 4 would reveal
overall high R2-values, which is not the case. This suggests that
the sighting rate in a specific month is a poor predictor of the
number of strandings in that month.

The observed correlation between sightings and strandings as
shown in Figure 4 might be the consequence of confounding
temporal processes. To test whether sighting rates significantly
contribute to explaining the observed variation in porpoise
strandings, a model with only an AR1 structure (Eq. 6) was
compared to a model with an AR1 structure and also the
inclusion of a dependency on the sighting rate of August in the
corresponding year (Eq. 4). The latter resulted in a lower DIC
(2074.8 versus 2163.8). A model without an AR1 structure but
with the inclusion of a dependency on the August sighting rate
resulted in a much lower DIC compared to a similar model
with an AR1 structure (i.e., 2074.8 versus 2445.6, Table 1).
The observed and predicted stranding rate of the best model
with and without an AR1 correlation structure are shown in
Supplementary Figure 5.

When this comparison is repeated for the fresh and alive
stranded porpoises, the inclusion of a dependency on sighting
rate leads to a much better model fit, compared to a model
with only an AR1 correlation structure (DIC 1524.6 versus
1582.2). A model without an AR1 structure but with the
inclusion of a dependency on the sighting rate resulted in
a much higher DIC compared to a similar model with the
inclusion of an AR1 structure, i.e., 1674.627 and 1524.6 versus.

FIGURE 4 | R2 of model where a stranding in each month is explained by the sighting rate in another month in the same year. The diagonal, bordered column
represents coastal sighting rates from the same month and year as a stranding.
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TABLE 1 | Estimates and performance of models with different explanatory variables for the sighting rate.

µdispersion µprecision µp σdispersion σprecision σp WAIC DIC

Xy,m 0.055 1,089 0.974 0.1875 0.386 0.01 2175.2 2170.2

Xy,m−1 0.046 0.989 0.973 0.1307 0.342 0.011 2172.1 2163.9

Xy,1 0.043 1,039 0.968 0.1142 0.364 0.014 2162.7 2155.5

Xy,2 0.041 1,094 0.96 0.0976 0.364 0.016 2160 2153.3

Xy,3 0.045 1.04 0.968 0.1238 0.358 0.013 2170.7 2163.3

Xy,4 0.045 0.903 0.976 0.1302 0.324 0.01 2169.2 2163

Xy,5 0.042 0.971 0.973 0.1149 0.338 0.011 2158 2150.8

Xy,6 0.043 0.783 0.977 0.121 0.288 0.009 2164.4 2158.3

Xy,7 0.045 0.907 0.973 0.1257 0.351 0.012 2169.9 2163.5

Xy,8 0.004 3,045 0.784 0.0026 0.526 0.043 2061.1 2074.8

Xy,9 0.029 1,358 0.937 0.0514 0.444 0.032 2132.3 2125

Xy,10 0.041 0.818 0.974 0.108 0.319 0.011 2163.3 2156.6

Xy,11 0.039 1,053 0.962 0.0904 0.393 0.018 2157.8 2151.2

Xy,12 0.042 0.812 0.976 0.1147 0.302 0.01 2165.2 2159.3

Xy,m represents the sighting rate in the same year and month as stranding frequency, Xy,m−1 represents the sighting rate in the month prior to month of the stranding,
and Xy,1−12 represents the sighting rate in each of the 12 months. µ and σ are the mean and standard errors, respectively. WAIC and DIC are the Watanabe–Akaike
information criterion and Deviance.

In summary, coastal sightings can explain patterns in strandings,
particularly for the fresh and alive stranded porpoises. A first
order autoregressive correlation structure can absorb a large part
of the temporal variability.

Residuals Observed and Predicted
Strandings
The autoregressive correlation (AR1) term in the model captures
the residual variability in the observed strandings that could not
be explained by the variability in sighting rates in August. In the
first 8 years (1990–1997) the variance of the estimated residuals
in strandings was large which was partly due to very low and
stochastic sighting rates in those years (Figure 5). Between 2002
and 2005, less porpoises stranded than expected based on the
sightings. This, however, changed in more recent years, with the
number of porpoise strandings exceeding the predicted number
of strandings based on the coastal sightings (Figures 5, 6).
Particularly the number of harbor porpoise strandings in summer
2011 was excessively high.

DISCUSSION

Coastal sightings of harbor porpoises strongly correlated with
stranding rates throughout the study period (1990–2018). Hence,
an increase in local abundance largely explains the increase
in strandings of harbor porpoises on the Dutch coast. There
was, however, a strong seasonal mismatch between stranding
and sighting rates. While most porpoises were sighted in
February, porpoises stranded more frequently in summer (July
and August). Interestingly, despite low absolute sighting rates in
late summer, sighting rates in August were the best predictor
for the observed monthly variability in the number of stranded
porpoises, even for other seasons like late winter and early spring.
In addition, the number of porpoises classified as fresh and live
stranded were more related to the seasonal and annual variability
in coastal sightings. Finally, the number of stranded porpoises

exceeded the number expected based on the sightings in the last
decade (except for 2013 and 2014), perhaps revealing temporal
elevated mortality levels in recent years.

Variability in Strandings and Sightings in
Relation to Phenology
The rapid growth in the porpoise sighting and stranding
rate in the southern North Sea has been reported extensively
(Camphuysen, 2004; Hammond et al., 2013; Gilles et al., 2016;
IJsseldijk et al., 2020; Nachtsheim et al., 2021). It has been
suggested that this increase is linked to North Sea wide changes
in prey distribution and abundance, although currently solid
evidence is lacking (Camphuysen, 2004; Hammond et al., 2013).
Another hypothesis is that porpoises disappeared after the second
World War for reasons unrelated to food (e.g., detonations
of explosives, von Benda-Beckmann et al., 2015; Aarts et al.,
2016), and that the southern region experienced a delayed
return in the last decades. The steady increase in porpoise
sightings and strandings since the early 1990s continued up
to 2006, but since that year the numbers showed considerable
inter-annual variations. This pattern resembles that of other
populations reaching carrying capacity, whereby the trajectory is
initially unconstrained by resource availability, while variations
in resource availability are subsequently reflected in predator
abundance (e.g., Brown et al., 2005).

Porpoise sighting and stranding rates showed large seasonal
variability. Sightings usually peaked in late winter (i.e., February
and March), a period characterized by the lowest water
temperatures. Although low temperatures may facilitate capture
of (cold-blooded and slower moving) prey (Grady et al., 2019),
it also results in large thermo-regulatory costs for marine
mammals. We therefore hypothesize that a large proportion of
porpoises sighted in February and March are winter visitors
that remain in the southern North Sea only temporarily. This is
supported by aerial surveys that reveal much higher population
size estimates for the Dutch North Sea in March compared to
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FIGURE 5 | Temporal pattern in the observed and predicted strandings. The
top figure (A) shows the temporal pattern in sightings used to predict the
stranding rate. The middle figure (B) represents the observed (vertical bars)
and expected number of all stranded porpoises based on a model relying
solely on the sighting rate in August (red line). The bottom figure (C)
represents the observed (vertical bars) and expected number of fresh and
alive stranded porpoises.

summer (Geelhoed et al., 2013; Aarts et al., 2016; Gilles et al.,
2016). From April onward, the coastal sighting rates decrease
rapidly. Few animals are seen from coastal vantage points in
May–July, a timing which corresponds with the calving period
(Sørensen and Kinze, 1994; Addink et al., 1995; Lockyer, 2003).
Apparently, porpoises move away from the nearshore regions
out of sight from the Seabird watchers, who detect porpoises
predominantly within 2 km from shore. These porpoises possibly
move to nearby offshore waters (e.g., Geelhoed and Scheidat,
2018) or elsewhere (e.g., toward German and Danish waters) to
give birth and nurse (Gilles et al., 2009; IJsseldijk et al., 2020;
Nachtsheim et al., 2021). Porpoise coastal sighting rates slowly
increases from August and into autumn. The increase in coastal
sighting rate in late summer might be due to an increase in
prey availability or accessibility in the coastal zone, however,
porpoises may also actively move toward warmer waters to
facilitate skin maintenance, as observed for several other cetacean
species (Frost et al., 1993; Pitman et al., 2020). Porpoises in
captivity also show rapid skin turn-over when exposed to sudden
changes in temperature and salinity (Personal Communication,
Ron Kastelein). Despite the relative low coastal sighting rates
in August, the nearshore abundance in this month turns out

FIGURE 6 | Residual pattern between the observed and expected porpoise
strandings (based on the sightings) as captured by the temporal correlation
structure (A). Values are on log-scale. Peak values (above the mean of 0)
imply more porpoise strandings than expected and low values (below the
mean of 0) imply less strandings than expected. A fairly similar pattern was
observed for the fresh and alive strandings, although this showed a closer
resemblance between the observed and expected strandings (B).

to be the best predictor for the overall observed variation in
porpoises found ashore.

Another explanation for the seasonal variation in stranding
frequency may be varying coastal anthropogenic activities in
time. For example, in the North Sea, accidental bycatch in gillnet
fisheries is considered to be a major threat to harbor porpoises
(Leeney et al., 2008; Dolman et al., 2016; IJsseldijk et al., 2018c;
Evans, 2019). Also gillnet fishery in the coastal waters of the
southern North Sea has increased from the early 90’s onward,
at least up to 2007 (Couperus et al., 2009). However, studies
investigating porpoise stranding rate as a function of fishery
intensity are still lacking for the southern North Sea.

Residual Porpoise Strandings Unrelated
to Coastal Sightings
When correcting the strandings rate for the coastal sightings
rate, the temporal patterns showed that in the early 1990s, when
porpoise sightings were still rare (Camphuysen, 2004, 2011),
and after 2010, the number of stranded porpoises in most years
exceeded the expected number of porpoise strandings based on
coastal sightings. Especially in the summer of 2011, numbers
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of porpoises found ashore were excessively high. The elevated
mortality most likely reflects a period of unusual mortality. The
declaration of an unusual mortality event (UME) for a common
species in an area is often challenging and requires understanding
of the “normal” stranding patterns, for which the quantification
of the multiple components that are involved in the stranding
process are needed (Hart et al., 2006; Williams et al., 2011; Ten
Doeschate et al., 2018). These include physical processes, like drift
and carcass buoyancy, social processes, like changes in reporting
effort, and biological processes, like changes in distribution or
increases in mortality (Peltier et al., 2012, 2013; Ten Doeschate
et al., 2018; IJsseldijk et al., 2020). It should, however, be noted
that any changes in distribution relative to the coast could
not fully be corrected for, since we focused on observations in
the coastal zone (<2 km from the land-based vantage points).
Harbor porpoise distribution and occurrence within the coastal
zone is likely only a small fraction of the sea area from which
strandings may derive. This is therefore not fully representative
of the general habitat of the species in the North Sea. Besides,
we differentiated alive and fresh strandings from those reported
to be more putrefied, but seasonal changes in water and air
temperature may influence carcass appearance. Therefore, there
may be unknown seasonal, temporal or other patterns which
could have confounding effects on our conclusions.

Implications for Conservation and
Management
Increases in mortality, including UMEs, are of interest for
ecologists as well as in the context of conservation management
(Ten Doeschate et al., 2018). Marine mammal mortality events
can result from anthropogenic activities (Fernández et al., 2005;
Schwacke et al., 2014; Sharp et al., 2019), disease outbreaks
(Rubio-Guerri et al., 2013; Kemper et al., 2016), or nutritional
deficiency (Trites and Donnelly, 2003; Christiansen et al., 2021).
Obviously, there may be combinations of factors involved,
and pinpointing one cause is not always possible (Mazzariol
et al., 2011; IJsseldijk et al., 2018d). In The Netherlands, post-
mortem examinations on stranded marine mammals have been
conducted since 2006 (IJsseldijk et al., 2018b). Databases hold
information on causes of death, their physical condition, disease
burden and nutritional condition. Additionally, data and tissue
archives are in place, which facilitate studies into life history,
diet and contaminant levels. The assessment of a combination of
these data together with time-area information of anthropogenic
activities can be analyzed to determine trends.

To minimize negative impacts on wildlife populations when
licensing proposed anthropogenic activities, managers need to
consider the potential impact of such activities. While North Sea
wide assessments of abundance are essential for the identification
of population size and structure (Hammond et al., 2002; Evans
and Hammond, 2004), they cannot reveal the scale or cause
of mortality in a species. The current monitoring frequency
(i.e., every 10 years for SCANS (Hammond et al., 2002, 2013,
2017) and 1–2 times a year nationally (Geelhoed and Scheidat,
2018) is probably insufficient to accurately capture temporal or
seasonal changes in abundance. When the statistical credibility
of the marine mammal stranding records is improved, such as

by investigating the discrepancies between stranding rates and
measures of local abundance, these records could serve a valuable
source of information in a monitoring perspective and a cost-
effective method to assess fine-scale population changes.
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