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Recent advances in deep-sea exploration with underwater vehicles have led to the
discovery of vertical environments inhabited by a diverse sessile fauna. However,
despite their ecological importance, vertical habitats remain poorly characterized by
conventional downward-looking survey techniques. Here we present a high-resolution
3-dimensional habitat map of a vertical cliff hosting a suspension-feeding community
at the flank of an underwater glacial trough in the Greenland waters of the Labrador
Sea. Using a forward-looking set-up on a Remotely Operated Vehicle (ROV), a high-
resolution multibeam echosounder was used to map out the topography of the
deep-sea terrain, including, for the first time, the backscatter intensity. Navigational
accuracy was improved through a combination of the USBL and the DVL navigation
of the ROV. Multi-scale terrain descriptors were derived and assigned to the 3D
point cloud of the terrain. Following an unsupervised habitat mapping approach, the
application of a K-means clustering revealed four potential habitat types, driven by
geomorphology, backscatter and fine-scale features. Using groundtruthing seabed
images, the ecological significance of the four habitat clusters was assessed in
order to evaluate the benefit of unsupervised habitat mapping for further fine-scale
ecological studies of vertical environments. This study demonstrates the importance
of a priori knowledge of the terrain around habitats that are rarely explored for
ecological investigations. It also emphasizes the importance of remote characterization
of habitat distribution for assessing the representativeness of benthic faunal studies
often constrained by time-limited sampling activities. This case study further identifies
current limitations (e.g., navigation accuracy, irregular terrain acquisition difficulties) that
can potentially limit the use of deep-sea terrain models for fine-scale investigations.

Keywords: marine habitat mapping, deep-water vertical cliff, ROV, multibeam echosounder, terrain point cloud,
Greenland glacial trough, suspension-feeding community, underwater exploration
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INTRODUCTION

Deep-water vertical and overhanging cliffs are important marine
habitats that often host diverse and abundant communities
(Huvenne et al., 2011; Johnson et al., 2013; Morris et al., 2013;
Robert et al., 2020), including ecosystem engineers such as cold-
water corals and deep-sea sponges (Ramirez-Llodra et al., 2010).
Vertical cliffs are often associated with broadscale geomorphic
features, such as continental margin troughs (Edinger et al.,
2011), canyons (Freiwald et al., 2009; Huvenne et al., 2011, 2012;
Gori et al., 2013; Brooke and Ross, 2014; Brooke et al., 2017;
Robert et al., 2017; Pearman et al., 2020) and fjords (Haedrich and
Gagnon, 1991; Gasbarro et al., 2018). Ecological studies usually
assume that habitats providing a variety of environmental niches
also promote enhanced biodiversity (MacArthur and Wilson,
1967; Kohn and Leviten, 1976). Vertical habitats are known to
be hotspots of biodiversity (Robert et al., 2017, 2020) because of
a number of interacting processes such as the complex small-
scale topography defined by the geomorphology (Althaus et al.,
2012; Carter et al., 2018), the depth (Stewart et al., 1985),
hydrodynamics (Frederiksen et al., 1992; Mortensen et al., 2001;
Kiriakoulakis et al., 2007; Lim et al., 2020; Pearman et al., 2020)
and the substrate type (e.g., hard substrate for cold-water coral
settlement; Gass and Roberts, 2006; Buhl-Mortensen et al., 2017;
Davies et al., 2017).

One of the biggest anthropogenic threats to deep-sea benthic
communities is the destructive action of bottom trawling. Deep-
sea trawling activities severely damage the biogenic structure
formed by epibenthic species such as sponges and cold-water
corals (Hall-Spencer et al., 2002; Wheeler et al., 2005; Malecha
and Heifetz, 2017). However, these environments are often
characterized by increased concentrations of commercial fishes
resulting in exploration and active management of Northwest
Atlantic areas known to host structure-forming fauna, classified
as “Vulnerable Marine Ecosystems” (VMEs, as defined by the
United Nations General Assembly (UNGA) resolution 61/105 of
2006) (Costello et al., 2005; Ross and Quattrini, 2007). Crucially,
deep-sea trawling activities do not have access to vertical habitats
and it has been suggested that deep-water vertical habitats may
provide refugia for species under trawling pressure elsewhere
(e.g., Huvenne et al., 2011). Therefore, mapping the habitats and
identifying the factors driving species distribution on vertical
structures are of high importance for defining conservation plans
in complex deep-sea environments.

Habitat mapping ‘enables to represent or predict biological
patterns’ (Brown et al., 2011) as habitats reflect particular
physico-chemical conditions that are delineated in space and that
influence species distribution (Lamarche et al., 2016). Since the
geomorphology and the substrate of the seabed are important
proxies for explaining benthic species distribution, the recent
advances in acoustic mapping (using multibeam echosounders
[MBES] or sidescan sonars) make it a cost-effective remote
sensing tool (LaFrance et al., 2014; Lamarche et al., 2016) widely
used to map and characterize seafloor habitats (e.g., Greene
et al., 1999; Kostylev et al., 2001; Brown and Blondel, 2009;
Verfaillie et al., 2009; Brown et al., 2011; Hill et al., 2014; Ismail
et al., 2015; Hogg et al., 2016; Vassallo et al., 2018; Zelada

Leon et al., 2020). Typically, acoustic surveys are combined with
groundtruthing validation of the benthic habitats (Micallef et al.,
2012; LaFrance et al., 2014). However, acoustic surveys remain a
technical challenge in deep vertical environments.

In many seabed studies, shipboard MBES is used to produce
a broad-scale bathymetric map of the seabed that can serve
for habitat mapping (Brown and Blondel, 2009; Costello
et al., 2010; Harris and Whiteway, 2011). However, the poor
resolution of deep-water bathymetry data (∼25–100 m pixel size)
overlooks smaller-scale complexity (∼0.1–5 m) of the seabed.
In addition to being overlooked by vessel acoustic surveys,
vertical marine habitats are historically undersampled and rarely
visited (e.g., Haedrich and Gagnon, 1991). Recent advances in
remotely operated technology and underwater vehicles have
now increased our capability for the exploration of deep-sea
vertical environments (Wynn et al., 2014; Huvenne et al., 2018).
In particular, Remotely Operated Vehicles (ROVs) offer the
potential to map vertical habitats with a fine-scale resolution
(Huvenne et al., 2012, 2018; Robert et al., 2017). The selection
of the appropriate configuration of the mapping equipment
is crucial, as a downward-facing orientation can limit the
acquisition of fine-scale features of steep environments in digital
terrain models (Huvenne et al., 2016). Outcrops and overhanging
features obstruct downward acoustic measurements in complex
vertical habitats (Robert et al., 2017) meaning forward-facing data
acquisition is optimal for the terrain reconstruction of vertical
features (Yoerger et al., 1997).

At centimetric scales, photogrammetry methods integrate
biological information with the fine-scale heterogeneity and the
complexity of the benthic habitat (Gerdes et al., 2019; Price
et al., 2019; Girard et al., 2020; Lim et al., 2020). Acoustic data
acquisition can achieve 3D reconstructions of the terrain from
a decimeter to a meter resolution over larger areas for the same
amount of time than photogrammetry methods (Robert et al.,
2017; Huvenne et al., 2018). Recent studies using forward-looking
MBES mounted on ROVs have retrieved digital models of near-
vertical walls of >60,000 m2. They have been used to assess
the geomorphology of the vertical walls to investigate landslide
processes (Huvenne et al., 2016) and in relation to the small-
scale distribution of biological communities for ecological studies
(Huvenne et al., 2011; Robert et al., 2017).

Substrate properties (e.g., grain size and stability) are
important features affecting cold-water coral and sponge
community composition and density (Wilborn et al., 2018; De
Clippele et al., 2019). MBES offers the opportunity to quantify
the backscatter echo intensity as a proxy for substrate roughness,
composition and texture. The backscatter corresponds to the
overall “inner and micro-scale” material properties of the seabed
(Jackson and Briggs, 1992; Brown and Blondel, 2009; Micallef
et al., 2012). So far, this aspect of acoustic vertical mapping
has not yet been investigated, nor has it been used for the
study of substrate characteristics and their distribution at vertical
geomorphological features.

This study uses acoustic data collected with a MBES front-
mounted onto a ROV at a deep-sea wall located offshore
Western Greenland with the aim to (i) improve the workflow to
obtain well-navigated vertical bathymetry and retrieve substrate
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information, (ii) map out the habitat diversity by applying
an unsupervised habitat mapping method based on abiotic
terrain variables and (iii) test if the unsupervised abiotic
classes contain different benthic communities characterized with
ROV photography.

MATERIALS AND METHODS

Study Site
On July 20th 2017, the ROV Isis was deployed from the RRS
Discovery during the DY081 expedition (Dive 333), and explored
the terrain of an underwater wall off the Greenland west coast
(63◦51.9′N, 53◦16.9′W) in the Labrador Sea (Figure 1A; Hendry,
2017; Hendry et al., 2019). The vertical feature represented
a portion of a north-facing cliff which marked the transition
between a 900 m-deep glacial trough and the more elevated
seabed of the Greenland continental shelf (Figure 1B). This site
was then selected to investigate habitat characteristics following
an unsupervised habitat mapping approach using small-scale
descriptors derived from a near-vertical terrain mapped in high
resolution during the Isis Dive D334 of July 21st 2017.

Unsupervised Habitat Mapping
Digital Terrain Model Acquisition
A portion of the underwater wall was mapped using a Reson7125
multibeam echosounder (MBES; 400 kHz, max. 140◦ swath angle,
512 beams) front-mounted onto the ROV Isis piloted from the
RRS Discovery (Dive D334). Over 2h40, the ROV performed 7
survey lines at a constant distance (25 m) parallel to the wall.
Horizontal survey lines were achieved at three depths, 25 m apart
(Figure 1C). They were undertaken with two different headings
(i.e., 137 and 214◦) to ensure better coverage of the different
parts of the wall, as the terrain displayed different orientations
(Figure 1C). In total, seven survey lines were carried out by
keeping Isis’ attitude as constant as possible. The MBES system
was operated through the Seabat7K software, while the data were
recorded with PDS2000, v.3.9. Supplementary Figure 1 details
the workflow followed to create the vertical terrain point cloud.

The depth of Isis was recorded by a Parascientific Digiquartz
pressure sensor. The position of the ROV was recorded at a
frequency of < 1 Hz with an Ultra Short Baseline acoustic
positioning system (Sonardyne USBL) and a Doppler Velocity
Log (DVL). The USBL has a positioning error of 1% of the vehicle
depth. At great depth, this can result in noisy ROV positioning.
The DVL is an inertial system that uses dead-reckoning to
calculate the ROV position. Over time, this may result in a
gradual drift of the ROV navigation. The DVL positions are
therefore characterized by high precision but lower accuracy
than the USBL (e.g., Supplementary Figure 2). Reconstructing
the terrain model therefore required merging of the USBL and
DVL navigation to best reconstruct the fine-scale topography
(Kwasnitschka et al., 2013; Huvenne et al., 2018). Corrected
navigation was acquired by adding the coordinates recorded by
the DVL to the average offset between the DVL and the USBL
recordings, calculated using a 180-s interval rolling average (e.g.,
Supplementary Figure 2).

Acoustic data files were converted from the .pds format to
.s7k files using PDS2000 (version 3.7), and then transferred
into the CARAIBES software (Ifremer) for computing of the
terrain point cloud of the wall. As established by Huvenne
et al. (2016) and Robert et al. (2017), smoothed navigation
coordinates were transformed to a metric coordinate reference
system (UTM Mercator) for rotation in R (version 3.2.3; R Core
Team, 2013) in order to simulate a conventional downward-
looking configuration for processing the acoustic data, as to
date no acoustic processing software offers the option of
processing forward-looking MBES data. Furthermore, attitude
data were transformed to comply with the new downward-
looking configuration of the navigation (see in Huvenne et al.,
2016).

The datasets of the survey lines recorded with similar heading
were merged after aberrant soundings were manually removed in
CARAIBES. This resulted in two 0.3 m-resolution point clouds,
one for each part of the wall, which were exported as point
clouds in .txt and back-rotated to their initial reference system
in R (Robert et al., 2017). The software CloudCompare (v.2.11;
2019) was used to spatially combine the point clouds collected
with different ROV headings. Small lateral adjustments (<10 m)
had to be made as slight offsets of latitude and longitude arose
between both point clouds, possibly as a result of the smoothing
operations of the navigation.

Backscatter intensity was corrected in the Seabat7k software
for spherical spreading and absorption losses based on the water
temperature and salinity at depth. The acoustic signal amplitudes
recorded in the .s7k files did not represent the actual reflectivity in
dB, but nominal values (i.e., no unit). The backscatter extraction
with the function Epremo of CARAIBES simply relays that
information while the function Ereamo performs the projection
in the 3D space. No correction accounting for the true incidence
angle on the seafloor was applied. A mosaic was created using
the smoothed and rotated navigation coordinates, and further
exported in a point cloud with a resolution of 0.3 m. The
backscatter was also back-rotated in R, and merged with the
bathymetry point cloud by averaging the four nearest backscatter
values based on the X,Y,Z coordinates of the bathymetric points.

For further information on the bathymetry and backscatter
extraction workflow in CARAIBES, Supplementary Figure 1
details the complete processing workflow.

Topographic Descriptors
Topographic descriptors were computed using a kernel radius
centered on each point of the point cloud using different kernel
radii to account for multi-scale variability of the terrain (Ismail
et al., 2015). Topographic descriptors were calculated using
Kernel radii of 0.9, 3, and 9 m, representing approximately an
exponential series starting from the 0.3 m initial resolution of
the point cloud. The maximum kernel size was constrained by
the average extent of our study area and represented 1/15th

of the height of the vertical wall (e.g., Robert et al., 2017).
Topographic descriptors were chosen to reflect the bathymetry
(depth), the steepness (slope), the variability (roughness and
Terrain Ruggedness Index, TRI), orientation (northness and
eastness), curvature (Gaussian and mean curvatures) and
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FIGURE 1 | (A) Location map of the study site on the W Greenland continental margin. The red boxes indicate the position of the underwater wall (63◦51.9′N,
53◦16.9′W) in the Labrador Sea, where the dives D333 and D334 of the ROV Isis took place. The bathymetry displayed was acquired on board the RRS Discovery
(DY081; Hendry, 2017; Hoy et al., 2018). The background bathymetry (contour lines) was retrieved from ETOPO (NOAA). The wall marks the boundary between a
cross-shelf glacial trough and the Greenland continental shelf. (B) 3D repositioning of the deep-sea wall according to the shipboard bathymetry (DY081; Hendry,
2017; Hoy et al., 2018). Panel (B) was computed on ArcScene (v. 10.8.1). (C) The underwater wall with segments representing the ROV tracks carried out at depths
of 740, 765, and 790 m with a multibeam echosounder (MBES) front-mounted on the underwater vehicle Isis. The ROV was piloted 25 m off the vertical terrain with
headings of: 137◦ (green lines) and 214◦ (red lines).

relative topographic position (Bathymetric Position Index, BPI)
of the terrain in addition to the backscatter values which
were used as a proxy for substrate physical characteristics
(Wilson et al., 2007; Brown et al., 2011). Normal vectors
were computed with a quadric function to derive multi-scale
topographic variables (Table 1) and were transformed to “dip/dip
direction” for computing the slope and the aspect from which
the roughness, the mean and the Gaussian curvatures were
derived in CloudCompare following Robert et al. (2017). Terrain
Ruggedness Index (TRI), Orientation and Topographic Position
Index (TPI) were computed in R [R Core Team, 2013; code
provided from Robert et al. (2017)]. Abiotic descriptors were

calculated for each point of the point cloud. This produced
the input dataset for the subsequent clustering: a matrix where
each point (i.e., rows) were assigned a specific depth, longitude,
latitude, backscatter intensity and its terrain derivatives values
(i.e., columns).

Dimensionality Reduction
Unsupervised habitat mapping was achieved following a
procedure established by Verfaillie et al. (2009) and modified
by Ismail et al. (2015) and Hogg et al. (2016). The distribution
of each variable was centered on a zero mean and scaled to a
unit variance to give each input variable the same weight in a
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TABLE 1 | Variables used for the unsupervised habitat mapping.

Terrain variable Acquisition Unit Scale

Depth Acoustic data processing m 0.3

Backscatter Acoustic data processing nominal values 0.3, 0.9

Slope First derivative of the point
cloud bathymetry

◦ 0.9, 3, 9

Bathymetric Position Index
(BPI)

Difference between the
mean and the average
bathymetry

m 0.9, 3, 9

Terrain Ruggedness Index
(TRI)

Average difference between
the bathymetry of a point
and its neighbors

m 0.9, 3, 9

Roughness Distance between a point
and a plane

m 3, 9

Mean curvature Second derivatives of the
point cloud bathymetry

m−1 3, 9

Gaussian curvature Second derivatives of the
point cloud bathymetry

m−1 3, 9

Eastness cos(aspect) − 3, 9

Northness sin(aspect) − 3, 9

Acquisition information, units and scale of calculation (size of Kernel
radius) are listed.

Principal Component Analysis (PCA). PCA is useful to reduce
the number of variables into a new set of linearly independent
variables called Principal Components (PCs). PCs consist of
a linear combination of the initial variables hence discarding
collinearity of the variables. Only PCs with eigenvalues > 1 were
retained for the clustering analysis following the Kaiser-Guttman
criterion (Legendre and Legendre, 1998). Varimax rotation was
performed on the retained PCs resulting in Rotated Components
(RCs) which were used as input data for the clustering analysis
(package ‘psych’; Revelle and Revelle, 2015). Orthogonal rotation
improves the PCs’ independence by maximizing the variance
shared among items related to one factor therefore enabling
easier interpretation of the factor loading pattern.

Definition of the Number of Clusters
In unsupervised classification, a critical step is to define the
optimal number of clusters to consider in the analysis. Typically,
indices based on the proportion of variance explained by a given
number of clusters are used in order to find a tradeoff between
the model output complexity (i.e., number of clusters) and the
clusters inertia (i.e., variability of observations in relation to the
cluster center indicated by the within-cluster sum of squares;
WSS). The Elbow and Caliński-Harabasz (C-H; Caliński and
Harabasz, 1974) criteria were calculated over a range from 2
to 15 clusters in order to determine the optimal number of
clusters (Milligan and Cooper, 1985; Milligan, 1996). The Elbow
criterion aims to identify the optimal number (K) of clusters
based on a decrease, or a local maximum in the gradient, of
the total WSS when increasing the number of clusters (Legendre
and Legendre, 1998). The C-H criterion seeks to find a local
maximum in the ratio of the between-cluster sum of squares and
the WSS as the number of clusters is increased (package vegan;
Oksanen et al., 2013).

K-Means Clustering
The RCs were used as input variables for an unsupervised
clustering. The K-means clustering method (Lance and Williams,
1967; MacQueen, 1967) has been extensively used for classifying
features of the seabed (e.g., Legendre et al., 2002; Verfaillie et al.,
2009). The K-means algorithm first randomly positions K cluster
centers (Hartigan, 1975; Hartigan and Wong, 1979; Milligan and
Cooper, 1987). Subsequently, (i) every data point is assigned
temporarily to the closest center in the Euclidean space defined
by the RCs, and (ii) each cluster center is then repositioned to the
average coordinates of the temporary cluster. Both operations (i)
and (ii) are repeated iteratively until the positions of the cluster
centers converge below a chosen threshold.

Clustering Confidence
As the cluster centers converge to fixed coordinates, the distance
between each individual sample and each cluster centroid is
calculated as a measure of the similarity of the sample to each
cluster (Bezdek, 1974). The membership of each point to its
cluster can be expressed as a distance ratio (Burrough et al., 1997;
Lucieer and Lucieer, 2009) by the following expression adapted
by Ismail et al. (2015).

µik =
1

d2
ik
×

1∑n
k=1

1
d2

ik

where µik is the membership value of the i-th data point to cluster
k, which results in

∑n
k=1 µik = 1, dik is the distance between the

i-th point and the cluster center k in the Euclidean space built by
the RCs, n is the number of clusters defined in section 2.4.

An evaluation of the certainty of assigning the point i to the
cluster k and not to another is performed using the confusion
index (CI; Burrough et al., 1997). The CI is expressed as the ratio
between the data point memberships with the second-closest
cluster and the cluster to which it was allocated by the K-means
clustering.

CIi =
µ(max−1)i

µmaxi

Where µ(max−1)i is the membership value of the point i with
the second-closest cluster center in the Euclidean space of the
RCs, while µ(max)i is the membership value of that same point
with the closest cluster center (i.e., to which it was assigned by
the K-means clustering algorithm). The CI holds the property to
tend to 0 when the membership value for the cluster to which
it was allocated is high whereas it tends to 1 when the distance-
based allocation of one point to the cluster was not well justified
compared to the distance with the second-closest cluster.

Biological Assemblage Characterization
The abiotic clusters represent an unsupervised summary of a
combination of environmental factors. Unsupervised clusters
therefore describe the multidimensional environmental space
that the fauna experiences and that may potentially contribute to
driving community differences. Starting from this hypothesis, we
tested for significant differences between a-priori unsupervised
abiotic clusters in terms of community composition metrics
derived from photograph annotations. In other words, the null
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hypothesis posits that there was no difference of assemblage
composition among unsupervised clusters.

Acquisition of Seabed Imagery and Biological Data
The biological data were extracted from seabed images collected
during DY081, Dive D333 (Hendry, 2017; Culwick et al., 2020).
In total, 159 images were extracted across a depth gradient (715
to 807 m) explored during two vertical transects that crossed the
flank of the cross-shelf glacial trough (Figure 2; Broad, 2020; see
methodology within). The position of the images corresponded
to the area mapped using the forward-facing MBES during Dive
D334. Images of the wall were collected every 30 s using the ROV
Isis at an approximate horizontal distance from the wall of 2.5 m.
The ROV is equipped with a forward-facing camera “Scorpio”
(Insite Pacific Inc.) which is offset from the ROV frame at a down-
facing angle of 22.5◦ and carries parallel lasers spaced 0.1 m apart.
Due to the near-vertical orientation of the substrate, estimations
of seabed area were calculated as if the images were obtained
from a down-facing lens across a flat substrate. Annotation of
marine megafauna and estimation of the seabed area within each
image were carried out using the online BIIGLE 2.0 platform
(Langenkämper et al., 2017). A morphospecies approach was
used to characterize the diversity of the epibenthic megafauna,
as standardized taxonomic classification of species from deep-sea
imagery is not always accurate (Howell et al., 2019).

Generation of Point Cloud Majority Clusters
The area of the point cloud that corresponded with the position
of each image was spatially identified by projecting a 2.25 m2

square in the 3D space, originating from centralized coordinates
recorded by the ROV USBL. This area was consistent with the
average area captured by seabed images (2.33 m2). The ROV
heading, combined with the sum of the pitch and the inclination
of the Scorpio camera, were used to orientate the projection of
the 2-dimensional footprint of the initial image squares onto the
point cloud, delimiting the estimated field of view recorded by
the camera. The terrain points within each field of view did not
always display a homogenous affiliation to a particular K-means
cluster, therefore we applied a majority filter to create a single
assignment of each photograph to a majority cluster.

Community Composition of Majority Clusters
In many cases, individual images of the seabed are not
representative of localized species composition, as they sample
too small an area (Benoist et al., 2019). Therefore we found it
necessary to compile composite replicate samples to accurately
account for faunal patchiness over scales larger than captured
in single images (Benoist et al., 2019). Individual images
were assigned to a majority cluster established by the method
described in section “Generation of Point Cloud Majority
Clusters.” Following Broad (2020), images were then pooled at
random within their respective majority cluster and aggregated
into composite samples representing a seabed area of 20 m2

(±SD, 1.30 m2). The aim was to pool the fauna according
to similar conditions they experience within the multivariable
environmental space (i.e., environmental proximity) rather
than spatial proximity (Benoist et al., 2019; Broad, 2020).

Morphospecies abundances were summed in each composite
sample. To test for differences in the biological assemblages
characterizing each majority cluster, morphospecies abundance
data within composite samples were Hellinger transformed
and investigated with nonmetric multidimensional scaling plots
(nMDS) using a Bray-Curtis dissimilarity matrix calculated in
R with the vegan package (Oksanen et al., 2013). An Analysis
of Similarities (ANOSIM) and Similarity Percentages (SIMPER)
were calculated in PRIMER Version 7 to identify significant
differences between majority clusters and the morphospecies
responsible for pairwise dissimilarity (Anderson et al., 2008).

RESULTS

Cliff Geomorphology in Relation to
Terrain Variables
The high-resolution point cloud (0.3 m average resolution,
292,577 points; Figure 2) characterized the morphology of the
wall. The average topography of the point cloud displayed a slope
of 60◦ (±SD, 18◦) oriented north, extending from a depth of 820
to 685 m. The area mapped was ca. 276 m wide with a planar
area of 35,880 m2. Groundtruthing pictures are positioned in
the terrain point cloud in Supplementary Figure 3 to visualize
coinciding fine-scale features and different terrain habitat types.

The deepest part of the wall exhibited a smoother slope
of ∼50◦ at 780 to 818 m depth (Figure 3A), stretching over
the whole width of the wall (>200 m). This illustrated a
homogeneous horizontal geomorphic transition within the wall
(Figure 2). Above that smooth depth band, the underwater cliff
displayed areas with steeper slopes reaching on average 60◦, but
with local gradients up to 90◦.

The upper cliff was characterized by a more heterogeneous
relief with near-vertical areas (Figure 3A) and zones with
slopes < 45◦, resulting in higher values of the TRI and roughness
variables in areas of a few square meters (Figures 3B,D). The BPI
was rather homogeneous throughout the wall, but it underlined
elongated near-horizontal features corresponding to transitions
between areas with different slopes presented above (Figure 3C).
The Gaussian curvature, although it displayed a few localized
high values, was generally low (Figure 3E), in contrast to the
mean curvature (Figure 3F) which did not exhibit such a
homogeneous pattern.

The underwater cliff was not characterized by a homogeneous
orientation (Figures 3G,H). Areas with a distinct orientation
demonstrated the presence of elongated and protruding features
visible (25 m width) in the cliff (Figure 2). Lower backscatter
values on the upper sections of the point cloud suggested
sediment accumulation (Figure 4). In fact, lower backscatter
intensities are typically associated with finer-grained and
well-sorted substrata, while higher backscatter intensities are
correlated with coarse or hard substrata. These low-backscatter
areas also extended on the sides of the protruding features,
appearing like incisions in the backscatter map (Figure 4). They
may be interpreted as local sediment buildups originating from
sediment flow processes.
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FIGURE 2 | Front view of the high-resolution (0.3 m) terrain point cloud of the underwater wall marking the boundary between a trough and the West Greenland
continental shelf (63◦51.9′N, 53◦16.9′W). The depth ranges from –685 to –820 m and is displayed as a color gradient. The deep-sea cliff terrain was mapped using
a forward-looking MBES mounted onto the ROV Isis (Dive D334) and is displayed as a point cloud using the software CloudCompare. Pink dots locate the position
of the ROV when taking seabed groundtruthing pictures (Dive D333) used to assess for assemblage differences among abiotic clusters.

FIGURE 3 | Spatial distribution of terrain derivatives at the finest scale of calculation: (A) Slope (0.9 m), (B) Terrain Ruggedness Index (0.9 m), (C) Bathymetric
Position Index (0.9 m), (D) Roughness (3 m), (E) Gaussian curvature (3 m), (F) Mean curvature (3 m), (G) Eastness (3 m), (H) Northness (3 m).

Artifacts
The point cloud displayed fine-scale vertical stripes or ‘ribbing,’
perpendicular to the ROV survey tracks. Such across-track
artifacts can arise when mapping the terrain, particularly
when using high-frequency acoustic sonar and high ping
rates, and can be caused by several types of dynamic errors
related to the time series recordings of the attitude sensors

and the sonar’s relative angle (Hugues Clarke, 2003). These
regular artificial stripes can also arise from noisy USBL
recordings in the case of underwater vehicles (e.g., Robert
et al., 2017) and can be removed through post-processing using
cosine filters. However, meter-scale 3-dimensional structures
were observed in images of bedrock veneer indicating an
unsupervised filtering could clean out real terrain features
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FIGURE 4 | Spatial distribution of the backscatter intensity retrieved from the MBES. The gray scale refers to untransformed, nominal values retrieved from
CARAIBES (Ifremer) with darker gray depicting lower backscatter intensity. Low backscatter intensity indicates a substrate characterized by a combination of smooth
and/or soft properties of the “inner” material.

that may be important for ecological studies. Hence this was
not applied here.

Other artifacts arose when calculating terrain derivatives such
as the slope (Figure 3A) and the mean curvature (Figure 3F) in
the form of sections of the cliff displaying highly heterogeneous
values. We inferred two different causes for these issues. Firstly,
the merging of the two point clouds was not perfect as small-
scale offsets (∼m) in the reconstructed point clouds remained.
This resulted in higher spatial variability of the terrain derivatives
along the section where the two point clouds overlapped.
Secondly, many sections exhibiting high local variability in the
terrain descriptor values coincided with areas with high eastness
(Figure 3G) and low northness (Figure 3H) but also with
low point density (Supplementary Figure 4). Therefore, we
hypothesize these artifacts to be related to the orientation of
the cliff: as the ROV kept a constant heading during survey
lines, sections of the cliff that were not locally facing the sonar
swath were more overlooked as fewer beams were scanning
these areas. This explains a locally poorer resolution of the
point cloud, which makes it more sensitive to variability in
the data when calculating the terrain descriptors with a given
Kernel radius size. Similarly, low backscatter intensity (Figure 4)
also locally corresponded with low-density areas, and may be
caused by the local orientation of the cliff away from the sonar
(Supplementary Figure 4).

Unsupervised Habitat Mapping
Principal Component Analysis
The Principal Component analysis (PCA) was performed on 10
terrain variables calculated at different scales (Table 1). Five RCs
with eigenvalues > 1 were retained and explained 58% of the total
variance. Factor loads are displayed in the component’s matrix
(Table 2) and allow to investigate the correlation between the
terrain variables and the RCs retained. Factor loads (Table 2)
rarely exceeded a value of 0.5 which indicates a poor one-to-
one relationship (Hogg et al., 2016). Terrain variables computed
at different scales displayed similar factor loads. Overall, except
for the northness and the backscatter, all variables displayed
an exclusive relationship with the RCs. The slope and the
TRI accounted for the highest factor loads of RC1 (Table 2);

backscatter for RC2; eastness for RC3; TPI for RC4; backscatter
and roughness for RC5. The mean and the Gaussian curvatures
did not exhibit high loads in the five RCs retained by the
K-means algorithm.

K-Means Clustering
A K-means clustering was performed on 292,557 data points
with the five RCs. The Elbow criterion exhibited a decrease in
the gradient of the WSS at 4 clusters (Supplementary Figure 5).
The C-H criterion confirmed this observation with a maximum
at 4 and 6 clusters (Supplementary Figure 5). We favored the

TABLE 2 | Component matrix showing correlation between the Varimax rotated
principal components (RC) and the terrain input variables computed at
different scales.

Terrain variable Resolution [m] RC1 RC2 RC3 RC4 RC5

Depth 0.3 −0.19 0.32 −0.08 0.06 −0.14

Backscatter 0.3 0 −0.46 0.17 0.09 0.4

0.9 0 −0.47 0.17 0.09 0.39

Slope 0.9 −0.34 −0.02 0.14 −0.04 −0.06

3 −0.41 −0.05 0.09 −0.04 −0.08

9 −0.38 −0.1 0.11 −0.04 −0.07

TPI 0.9 −0.03 0.03 −0.01 0.47 0.1

3 −0.08 0.06 −0.04 0.64 0.08

9 −0.14 0.13 −0.06 0.53 0

TRI 0.9 −0.32 0 0.12 −0.07 −0.04

3 −0.42 −0.07 0.11 −0.05 −0.04

9 −0.37 −0.10 0.11 −0.05 −0.03

Roughness 3 −0.11 0.12 −0.22 −0.11 0.38

9 −0.06 0.15 −0.12 −0.09 0.39

Mean curvature 3 −0.07 0.08 −0.13 −0.06 0.22

9 −0.12 0.17 −0.24 −0.12 0.36

Gaussian curvature 3 −0.11 0.16 −0.16 0.01 0.07

9 −0.13 0.18 −0.24 −0.1 0.28

Eastness 3 −0.13 −0.17 −0.44 0.05 −0.16

9 −0.1 −0.23 −0.45 0.01 −0.14

Northness 3 0.02 0.31 −0.29 −0.01 −0.13

9 −0.03 −0.33 −0.39 0.01 −0.12

Factor loads > 0.3 or < −0.3 are highlighted in bold.
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least-complex clustering result with a low number of groups
(i.e., four clusters).

Terrain Data Partitioning
The four clusters provided by the unsupervised method of
data partitioning were mapped in the 3D space as each point
of the point cloud was assigned to one of the four clusters
(Figure 5). Broadly speaking, clusters T1, T2 and T3 were related
to different depth bands, also characterized by differences in
slope and backscatter. Cluster T4 exhibited a more discontinuous
spatial distribution (Figure 5), suggesting it was related to
variability in terrain characteristics at the scale of the point cloud
resolution (i.e., 0.3 m).

The terrain characteristics of each cluster can also be described
using violin plots in order to link differences in the data
distribution and range of each input variable to each cluster
(Figure 6). All data in this section are also presented with
their mean ± standard deviation in the table in Supplementary
Table 1. As noted above, depth appeared to be an important
variable in constraining the clustering of the point cloud of
the underwater cliff. T1 was characterized by the shallowest
portion of the vertical wall (−733 ± 19 m) whereas T3 was
positioned in the deepest areas (−781 ± 26 m; Figure 6) and
T2 was located at intermediate depths (−758 ± 22 m). T4
did not occur in a preferential depth range (−751 ± 27 m;
Figures 5, 6). Low backscatter values of T1 (36.1 ± 7.2, nominal
units) possibly described a different substrate in comparison to
T2, T3 and T4 (>50 ± 6, nominal units; Figure 6). T3 contained
terrain data with smoother slopes (44.7 ± 12.6◦) and lower TRI
(0.29± 0.06 m), while T2 reached the highest values (70.9± 12.5◦
and 0.37 ± 0.04 m; Figure 6). The slopes of T1 and T4 were
much more variable but still higher in average than those of
T3. T4 showed higher and more variable values of roughness
(59.83 ± 36.31 10−2 m) compared to T1 which exhibited the
second-highest roughness (28.69± 27.79 10−2 m; Figure 6). The
BPI did not show any clear distinction between clusters notably
due to its high variability within clusters. Similarly, the curvatures
displayed a relatively similar distribution (Figure 6) although the
distinction between T1–2–3 and T4 was more pronounced in the

case of the Gaussian curvature, with the latter being less positively
skewed in the case of T4 (Figure 6). Eastness and northness were
distributed in an opposite way overall, while no distinct patterns
could be observed between clusters (Figure 6).

Clustering Confidence
Confusion between clusters can be monitored using the
distribution of the CI values (Table 3). On average, no clear
distinction characterized the CI distribution of the different
clusters although T4 reached the highest mean CI and T2 held
the lowest mean CI followed by T3 (Table 3).

Confidence in the clustering outcome can also be assessed
considering the spatial distribution of the CI values (Figure 7).
The lower part of the cliff displayed very low CI demonstrating
a clear distinction between T2 and T3 in this area (Figure 7).
This deeper depth band also exhibited some small-scale variation
of CI (i.e., abrupt increase) coinciding with spatial transitions
between T2 and T3 (Figures 5, 7). These features correspond
to local changes of the topography suggested by the slope
spatial distribution (Figure 3A) and other bathymetry derivatives
(TRI, BPI, curvatures; Figure 3). The upper part of the cliff
displayed higher CI values overall (Figure 7) coinciding with a
mixed spatial arrangement of the clusters in small-scale patches.
This supports the interpretation of a more heterogeneous
habitat in this area.

Comparison With Biological
Communities
The wall supported a diverse community of generalist boreal
benthic fauna. Occurring in high abundance were encrusting
demosponge morphotypes, crinoids, ophiuroids and soft coral
species in the family of Nephtheidae. A number of specialist
ecosystem engineers (e.g., the scleractinian cold-water coral
Desmophyllum pertusum) were observed in isolated patches on
rocky outcrops but remained rare in comparison to the generalist
community (Table 4). Supplementary Figure 3 illustrates
different species and associated habitats found on the wall.

Characterization of epibenthic megafauna observed in the
majority clusters showed a general partitioning of the community

FIGURE 5 | Spatial distribution of the four abiotic clusters computed with a K-means clustering based on depth, backscatter intensity and terrain derivatives. Colors
refer to points assigned to one of the habitat clusters (T1–T4).

Frontiers in Marine Science | www.frontiersin.org 9 June 2021 | Volume 8 | Article 669372

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-669372 June 16, 2021 Time: 16:8 # 10

Van Audenhaege et al. Deep-Sea Vertical Habitat Mapping

FIGURE 6 | Violin boxplots showing the distribution of terrain variables for each cluster. In the box of the violin boxplot, the middle line is the median, the lower and
the upper box boundaries are the first and third quartiles. No statistical outliers are presented. These abiotic variables were used as input variables for the PCA and
subsequent K-means clustering that computed the clusters T1–T4. Cluster colors are synchronized with those displayed in Figure 5. Terrain variables presented are
A. Depth (0.3 m) [m], B. Backscatter (0.3 m) [nominal values], C. Slope (0.9 m) [◦], D. Terrain Ruggedness Index (TRI, 0.3 m) [m], E. Roughness (3 m) [m], F.
Bathymetric Position Index (BPI, 0.9 m) [m], G. Mean curvature (3 m) [m−1), H. Gaussian curvature (3 m) [m−1], I. Eastness (3 m) [–], J. Northness (3 m) [–]. Scales of
computation are presented in parentheses and units of the abiotic variable is specified in square brackets as well as in the subtitle of the figure panels.
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mapped in the point cloud (Figure 8). However, the low
ANOSIM global R statistic did not indicate a strong aggregation
of the assemblages within the clusters (ANOSIM Global R: 0.54,
p = 0.001; Table 4). The ANOSIM global significance could
be attributed to the cluster T4 which was characterized by the
exclusive presence of D. pertusum and a reduced abundance of
Drifa glomerata. Pairwise analyses also indicated T1 and T2 and
T1 and T3 communities were similar in composition (p ≥ 0.05,
Table 4). However, despite the larger distribution of data points
within T1 (Figure 8), only T2 and T3 were significantly different
(p < 0.01). The increased abundance of Acesta sp. clams
(T2, Table 4) and of the carnivorous sponge Asbestopluma
pennatula (T3, Table 4) appeared to be contributing the
most toward the dissimilarity. Echinoderm morphospecies that
contributed to pairwise dissimilarities (Table 4) were likely
driven by high abundance values promoting their contribution
toward dissimilarity.

DISCUSSION

This study successfully mapped and characterized the fine-scale
topography of a vertical wall located in deep Greenland waters
(760 m). Additionally, our study also extracted the backscatter
information from the MBES data and used it together with terrain
variables calculated in the 3D space, to create the first habitat
map of a deep-sea vertical wall. The subsequent comparison
with the faunal communities identified in groundtruthing images
indicated that the initial unsupervised classification resulted in
habitat categories holding ecological relevance.

Acquisition of High-Resolution Vertical
Bathymetry: Advantages and Limitations
Global bathymetry maps are the essential input information
for various disciplines such as hazard studies, ocean circulation
models, seafloor engineering and marine conservation (Wölfl
et al., 2019). However, by 2015 less than 18% of the seabed
had been mapped with a resolution of 1 km prompting a
global endeavor to acquire, standardize and share bathymetric
maps (e.g., Seabed2030; Mayer et al., 2018). Still, most of those
mapping initiatives are carried out at fairly coarse resolutions
(∼100–500 m pixel size or more). This means that the true
heterogeneity of the seabed usually remains underestimated
(Costello et al., 2010). At finer scales, terrain characterization
at a meter-scale resolution is of importance for ecological
investigations. For example, the presence of features increasing
seabed roughness can have an influence on ecological modeling
output (Robert et al., 2017).

While shipboard bathymetry of the Greenland margin
provided a 25 m-pixel map of the area (Figure 1; Hendry, 2017;
Hoy et al., 2018), the bathymetric and backscatter map supplied
by the ROV reached ∼100 times that resolution. A total of
2h40 were needed to map 35,880 m2 of vertical surface with
a resolution of 0.3 m. This is in the same order of magnitude
as other studies that mapped deep-sea vertical cliffs with a
high resolution (<1 m) using forward-looking acoustic sonar
for ecological studies (e.g. 9,000 to 15,000 m2 per hour in

Robert et al., 2017). Fine-scale geomorphological descriptions
have applications for studying geohazard events (e.g., Sichi et al.,
2005; Huvenne et al., 2016; Carter et al., 2018). This study
identified different geomorphic facies over a range of spatial
scales (e.g., 2 horizontal bands >200 m wide, with distinct
steepness, 25 m protruding features, meter-scale heterogeneity
revealed by unsupervised cluster T4) that provide new insights in
the geomorphology of the flank of a deep-sea glacial trough, and
that could not be mapped from the shipboard MBES data. These
geomorphic features result from differential erosion processes
affecting on the long term the geomorphology of the bedrock
exposed. The terrain will in turn affect the benthic community
composition by shaping local dynamics of the sediment and of
the currents and by influencing the stability of the terrain (e.g.,
friability; Edinger et al., 2011; Robert et al., 2017, 2020). Finally,
backscatter data acquired together with multibeam bathymetry at
a resolution under a meter have potential in ecological modeling
studies focusing on fine-scale influences of terrain heterogeneity
usually captured with imagery (e.g., Wilborn et al., 2018; Corbera
et al., 2019; De Clippele et al., 2019) or in spatial modeling
of dynamic sedimentary processes (e.g., Huvenne et al., 2007;
Lastras et al., 2011). While understanding of these processes
requires combination with larger-scale investigations, this case
study demonstrates current abilities for more extensive mapping
combined with a decimeter-scale resolution, even if survey time
at the study site currently remains a limiting factor in such
deep-sea investigation.

Establishing a robust link between backscatter echo intensity
and seabed properties usually requires groundtruthing
information to establish what property actually drives the
relative spatial differences in backscatter response (e.g., by
using images, Micallef et al., 2012; Lucieer et al., 2013; using
sediment cores, Lo Iacono et al., 2008; De Falco et al., 2010; and
geomorphological maps, Lucieer and Lamarche, 2011) since
the backscatter response results from a combination of factors
that remain difficult to disentangle without groundtruthing
validation (i.e., seabed roughness and substrate properties
such as grain size and porosity; Jackson and Briggs, 1992).
Interpretation of spatial differences in the backscatter at deep
underwater cliffs can therefore be challenging since they can
result from confounding variables poorly described in these
environments. Images of the seabed did show slight differences
in seabed type that could affect the acoustic backscatter (e.g.,
presence of pebbles, thin layers of sediment) while the effect of
dense biogenic structures such as D. pertusum framework can
have an influence on < 1 m resolution backscatter (e.g., Masson
et al., 2003, see Supplementary Figure 3 for localization of the
mentioned features). However, calibrating quantitatively the
link with the backscatter would have required sampling or a
specific groundtruthing investigation as images only picture the
superficial layer of the substrate, while backscatter intensity is
affected by the substratum characteristics down to a certain depth
(the so-called ‘volume effect,’ depending on acoustic frequency;
Lurton and Lamarche, 2015). Nowadays, with improvement
of sonar technology, there is a greater interest to integrate
backscatter as a substrate surrogate in investigations aiming to
characterize the seabed, as shown by recent effort for relating
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TABLE 3 | Mean and standard deviation of the CI (Confusion Index) computed
for each cluster.

Abiotic cluster Mean CI ± SD

T1 0.56 ± 0.24

T2 0.45 ± 0.26

T3 0.48 ± 0.25

T4 0.61 ± 0.23

Value of 1/0 (yellow/blue) refers to high/low clustering uncertainty.

FIGURE 7 | Spatial distribution of CI (Confusion Index) values calculated for
the four abiotic clusters. The color gradient refers to uncertainty of clustering
based on the membership of a point to the cluster it was assigned by the
K-means algorithm. Value of 1/0 (yellow/blue) refers to high/low uncertainty.

quantitatively the backscatter with the seabed properties (Brown
and Blondel, 2009; Lucieer and Lamarche, 2011). Backscatter
post-processing usually requires geometric and radiometric
corrections to remove artifacts produced by the operating device
settings (Lamarche et al., 2016; Lurton et al., 2018). While these
steps were not tackled in the framework of forward-looking
acoustic acquisition at vertical terrains, this work remains a
first attempt to aim for backscatter extraction. This study opens
space for further development to characterize the backscatter
response of vertical features using acquisition and processing
tools specifically tailored to vertical mapping configurations (see
recommendations in Lurton and Lamarche, 2015; Lamarche and
Lurton, 2018).

Other limitations have been identified. In the same way that
downward-looking sonar overlooks fine-scale details of steeply
sloping terrains, vertical cliffs exhibiting different orientations
cannot be evenly mapped using a single ROV heading, as was
illustrated by the merging of two sections of the cliff here in
this study. To overcome this issue, separate point clouds can be
acquired from survey lines with different heading orientations.
The data for each survey section are processed separately and
back-rotated, after which they can be merged in the overall point
cloud. Occasionally small offsets build up between the separate
sections. If the point clouds overlap in relatively homogeneous
areas displaying only smaller-scale features, these offsets can
trigger local inaccuracies in terrain descriptors. This can have an
influence on the unsupervised habitat mapping, especially with
clustering algorithms relying on variance partitioning methods.

The reason for these small point cloud offsets remains
uncertain, but we suggest it may arise from artifacts or
inaccuracies occurring in the navigation and attitude recordings.
Although pre-processing of underwater vehicle navigation (Rigby

et al., 2006; Batista et al., 2012; Kwasnitschka et al., 2013) and
attitude (Hugues Clarke, 2003) allows to optimize the quality
of fine-scale terrain reconstruction, the latter is intrinsically
dependent on the data quality primarily acquired by motion
sensors (i.e., spatial accuracy, lower recording time step than
acoustic soundings and temporal synchronization). Accuracy
and precision of underwater vehicle positioning in the deep
sea remains nevertheless a major technological challenge that
may particularly affect high-resolution terrain reconstruction
efforts. Noisy USBL navigation data of underwater vehicles can
create abrupt artifacts in the MBES bathymetry that may lead
to inaccurate fine-scale terrain models. In this study, we merged
the overall accuracy of the USBL navigation with the precision
of the DVL records, to achieve the optimal navigation dataset
to avoid terrain artifacts in a vertical reconstruction. To our
understanding, this was a necessary step in the workflow of
acoustic data processing since the decisions to remove soundings
at the manual cleaning stage remain difficult to make, particularly
in complex terrain. Meter-scale features such as outcrops could
easily be erased from the point cloud which could lead to
a reduction of the terrain complexity. Similarly, navigational
uncertainty can remain between separate ROV dives (e.g.,
between the MBES and photography dives), and can cause
difficulties in linking groundtruthing data to acoustic datasets.

Unsupervised Habitat Mapping
In this study, we applied an unsupervised clustering method,
as proposed by Verfaillie et al. (2009), to partition the terrain
descriptors in a reasonable number of categories displaying
distinct characteristics based on the computation of RCs. The
cluster analysis delineated four abiotic groups or so-called
‘potential habitats’ characterized by depth, backscatter, slope
and roughness. These groups revealed (with high clustering
confidence) contiguous zones of the cliff geomorphology even if
no information on the spatial autocorrelation of the variables was
provided to the cluster algorithm. The habitats included the ‘talus’
located at the bottom of the cliff, the steepest section of the cliff,
the upper, more sedimented parts, and a few large protruding
geomorphological features. Mapping such geomorphological
features is of importance when characterizing the vertical habitat,
particularly of sessile species, as they directly influence other
aspects of the abiotic environment (e.g., sedimentation, slope,
hydrodynamics). They may also reflect some of the geological
processes (e.g., erosion) that shaped the vertical cliff as a result
of its geological composition (Edinger et al., 2011).

Some aspects of the K-means partitioning method may
constrain the interpretation of the habitat mapping outcome.
Firstly, the K-means clustering method is based on spherical
partitioning resulting in the computation of clusters of similar
size in the multidimensional environmental space. This may not
always be useful if delineating terrain groups with different sizes
is required (Hogg et al., 2016). Density-based clustering (e.g.,
DBSCAN; Ester et al., 1996) is an alternative approach as it is
capable of identifying patterns with arbitrary sizes in datasets
even containing noise and outliers (Khan et al., 2014). Secondly,
some clusters did locally exhibit patchy and discontinuous
distributions also linked with lower confidence levels nested in
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TABLE 4 | Results of ANOSIM and SIMPER analysis on a Bray-Curtis dissimilarity matrix of transformed morphospecies abundance data.

ANOSIM: Global Test Sample
Statistic

Significance SIMPER

R = 0.54 p = 0.001***

Ta Tb Pairwise R
Statistic

Pairwise
Significance

Total Pairwise
Dissimilarity

(%)

Morphospecies Average Abundance (%) Diss/SD Cumulative
Contribution

to
Dissimilarity

(%)Ta Tb

T1 T2 0.48 0.05 − Not Significant − − − −

T1 T3 0.41 0.057 − Not Significant − − − −

T1 T4 0.5 0.029* 43.79 Drifa glomerata 0.26 0.11 1.30 2.88

Ophiuroidea thick
white

0.19 0.33 1.45 5.38

Desmophyllum
pertusum [head]

0.00 0.14 3.03 7.76

T2 T3 0.5 0.006** 37.37 Acesta sp. 0.21 0.08 1.52 2.30

Asbestopluma
pennatula

0.03 0.14 2.43 4.18

Ophiuroidea Hexact
pink

0.12 0.15 1.48 5.87

T2 T4 0.57 0.003** 37.44 Ophiuroidea thick
white

0.27 0.33 1.44 2.30

Ophiuroidea indet.
pink mix

0.37 0.25 1.55 4.60

Desmophyllum
pertusum [head]

0.02 0.14 2.33 6.84

T3 T4 0.83 0.029* 41.1 Ophiuroidea thick
white

0.20 0.33 1.54 2.32

Desmophyllum
pertusum [head]

0.00 0.14 3.18 4.62

Ophiuroidea
Demosponge pink

0.01 0.14 3.92 6.77

The top three species structuring the dissimilarity between pairwise tests are presented along with their average contribution to pairwise dissimilarity, the ratio between
dissimilarity and standard deviation values and cumulative contribution toward total pairwise dissimilarity. See Broad et al. (in prep) for further information on morphospecies
characteristics. p-value: * < 0.05, ** < 0.01, *** < 0.001.

the upper part of the underwater cliff. The clustering algorithm
works on examining the best data partitioning according to the
input variables’ variance but not on their spatial coherence and
continuity. Spatial coherence and continuity can be met with a
clustering method that accounts for spatial proximity between
data points (e.g., ST-DBSCAN; Birant and Kut, 2007). Recurrent
terrain patterns could also be investigated using approaches based
on signal decomposition (e.g., Empirical Orthogonal Function;
Preisendorfer and Mobley, 1988).

Biological Interpretation
As a last step in this study, we tested the ecological relevance of
the unsupervised habitat categories summarizing a multivariable
environment (i.e., depth, terrain and substrate) with the
biological information provided by groundtruthing imagery.
Abiotic clusters are regularly used as a proxy to reflect the habitat
of certain species or groups of species (Brown et al., 2011), but this
assumption requires validation in poorly understood ecosystems
such as the deep Greenland waters studied here. Although
some terrain descriptors may be greatly affected by biogenic

structures (e.g., cold-water coral reefs will affect backscatter
at < 1 m resolution, Masson et al., 2003; terrain heterogeneity at
0.1 m resolution, Huvenne et al., 2011), such biogenic structures
themselves create habitat for other species, and hence can be
considered part of the initial habitat characterization, particularly
if it has to be based on remote sensing data, with little or no
groundtruthing data available for quantitative validation.

Several clusters did show differences in assemblage
composition (Figure 8), although sometimes only explained by
few species. Being a rare species, D. pertusum drove most of the
significant differences related to the high-roughness habitat class
T4. D. pertusum live framework was observed at rocky outcrops
which is comparable with previous observations made at steep
terrains (Huvenne et al., 2011; Pearman et al., 2020). Patches of
Acesta sp. grew attached to the hard substrate of vertical features
similar to sightings reported in Northeast Atlantic canyons
(Johnson et al., 2013; Robert et al., 2017; Pearman et al., 2020).
However, community composition differences were not strong,
nor was any particular species predominantly contributing
to assemblage dissimilarity. For example, on the one hand,
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FIGURE 8 | Non-metric MDS ordination of Hellinger transformed Bray-Curtis
dissimilarity of assemblage compositions across the wall. Factors T1–T4 refer
to the K-means majority clusters. Cluster colors are synchronized with those
displayed in Figure 5.

D. glomerata showed higher abundances in the high-roughness
cluster T4, while on the other hand it still co-occurred with
A. pennatula, which was more sighted on smoother terrain
with low backscatter (T1). Linked together, these results suggest
assemblage differences explained by a few rarer species occurring
at particular terrain features, whereas the small extent of the
study area may have contributed to assemblage similarity as the
sessile communities tended to overlap in space. A more extensive
characterization of the wall communities is required to confirm
these patterns whereas species distribution models may be useful
to investigate specific spatial distributions independently from
the rest of the community.

Linking abiotic habitats with assemblage composition using
unsupervised habitat mapping may not always result in strong
delineation of communities, but is one of the only ways
to carry out a first-level interpretation of a seabed area if
biological data are sparse or non-existent (Hogg et al., 2018).
At least 3 additional factors possibly played a role in the
outcome of this community analysis. (1) The sampling, which
took place before the habitat mapping work was completed,
was not designed to collect images according to the spatial
arrangement of the abiotic clusters. Vertical ROV tracks aimed
to investigate communities across depths, but this can mislead
the validity of comparing biological communities across other
abiotic terrain categories because of a difference in sampling
strategy between both. The terrain investigation resulted in
abiotic clusters which did not fully distribute according to
depth. Other terrain characteristics, not distributed along
depth, also influenced the unsupervised clustering patterns
and did influence the presence of a few particular species
(e.g., slope, roughness, backscatter intensity). (2) Terrain
descriptors that did not strongly explain clustering results may
be more important in driving assemblage composition, for
example by influencing current exposure through orientation
or by positioning the species at keystone structures (e.g.,
overhangs revealed by BPI (Robert et al., 2017, 2020). Other
environmental factors which were not measured may have
been at play but remained excluded from the K-means
clustering (e.g., hydrodynamics, physical and chemical properties

of the water column). Furthermore, at such a fine scale,
biological factors act on assemblage structure, such as biotic
interactions or the presence of structuring species (Buhl-
Mortensen et al., 2010). In ecology, spatial autocorrelation
in species distribution is a natural reality triggered not only
by the presence of the correct ecological niche, but also by
migration of mobile species and dispersion of sessile organisms
(Legendre and Legendre, 1998). Therefore, observations may
not always reflect the ecological niche a species can occupy.
(3) Habitat clusters are discrete categories that may not reflect
transitional patterns between communities; especially abiotic
clusters were locally patchy and discontinuous. Considering
only the majority cluster located within an image area may
overlook fine-scale habitat heterogeneity. Local diversity of
habitats may influence the presence of a more diverse panel
of species than if the seabed habitat were more homogeneous.
So-called ‘fuzzy classification’ approaches that reflect point
membership in the point cloud to several clusters may allow
a more realistic mapping of transitional habitats or ‘ecotones’
(Lucieer and Lamarche, 2011).

Application of Unsupervised Vertical
Habitat Mapping in Future Surveys
This study presents an application of high-resolution habitat
mapping of vertical cliffs in the deep sea. Pre-existing information
about deep-water vertical walls in most cases is sparse or
non-existent because of their inaccessibility and the difficulties
in mapping such terrains with conventional methods. In
such cases, an initial unsupervised habitat mapping approach
is appropriate to obtain a first-level interpretation of the
habitat structure (Hogg et al., 2018). The spatial distribution
of clusters will then be useful to objectively and rapidly
inform the user regarding the heterogeneity/similarity of the
habitat. This initial information can help the definition of a
robust sampling design that optimizes habitat representativeness
of the area of interest (LaFrance et al., 2014), which is
especially useful during exploration activities or in poorly
characterized environments such as in deep waters, where
sampling time is limited and costly. Defined on that objective
information, groundtruth sampling will help to build a refined
habitat map by validating the level of (dis)similarity and
ecological relevance between habitats delineated by the first
seafloor classification.

CONCLUSION

This study demonstrated our ability to capture fine-
scale seabed characteristics of vertical habitats in the
deep sea using forward-looking acoustic survey methods
(bathymetry and backscatter) on underwater platforms.
Unsupervised habitat mapping based on K-means
clustering was applied to delineate similarities across the
vertical seabed and to summarize the multidimensionality
of the benthic substrate variables. The latter revealed
terrain differences linked with geomorphological

Frontiers in Marine Science | www.frontiersin.org 14 June 2021 | Volume 8 | Article 669372

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-669372 June 16, 2021 Time: 16:8 # 15

Van Audenhaege et al. Deep-Sea Vertical Habitat Mapping

features >200 and >25 m in size, and meter-scale heterogeneity
(e.g., roughness). Groundtruthing photographs partitioned
among the abiotic clusters indicated dissimilarities of benthic
community composition. However, these differences remained
attenuated therefore calling for a more representative sampling
and characterization of the faunal assemblages based on a better
sampling scheme. Simultaneously, this study stresses the need for
an investigation into alternative clustering approaches that may
describe the environmental conditions in a more adequate way.
Furthermore, the extraction of the backscatter intensity at vertical
underwater terrain remaining at its infancy, it demonstrates the
need for further development to ensure accurate acquisition of
this proxy of the substrate properties.

Nevertheless, this investigation demonstrates the need and
possibilities of this method for multidisciplinary investigations
of vertical features at fine scales in geology, ecology and habitat
prediction, especially when adding the backscatter information.
Meter-scale unsupervised terrain mapping remains a cost-
effective and objective tool to inform relevant and representative
field sampling strategies in remote environments where no
a priori knowledge is available, such as at deep underwater cliffs.
However, acquisition of robust groundtruthing data remains
necessary to fully characterize the faunal communities, especially
in the undersampled deep-sea benthic habitat of Greenland
waters. In practice, uncertainties in ROV positioning and attitude
recording are still some of the major challenges when working
in this type of environment and with high-resolution terrain
characterization. While we proposed post-processing methods
that help to limit error propagation, positional errors can still
affect the habitat mapping outcomes and possibly constrain the
spatial accuracy when linking abiotic and biotic datasets. Further
investigations and development in vehicle navigation are needed
to improve high-resolution habitat mapping in complex deep-
sea environments.
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