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Ocean gliders are increasingly a platform of choice to close the gap between traditional

ship-based observations and remote sensing from floats (e.g., Argo) and satellites.

However, gliders move slowly and are strongly influenced by currents, reducing useful

battery life, challenging mission planning, and increasing pilot workload. We describe a

new cloud-based interactive tool to plan glider navigation called OceanGNS© (Ocean

Glider Navigation System). OceanGNS integrates current forecasts and historical data

to enable glider route–planning at varying scales. OceanGNS utilizes optimal route–

planning by minimizing low current velocity constraints by applying a Dijkstra algorithm.

The complexity of the resultant path is reduced using a Ramer-Douglas Pueckler model.

Users can choose the weighting for historical and forecast data as well as bathymetry and

time constraints. Bathymetry is considered using a cost function approach when shallow

water is not desirable to find an optimal path that also lies in deeper water. Initial field

tests with OceanGNS in the Gulf of St. Lawrence and the Labrador Sea show promising

results, improving the glider speed to the destination 10–30%. We use these early tests

to demonstrate the utility of OceanGNS to extend glider endurance. This paper provides

an overview of the tool, the results from field trials, and a future outlook.

Keywords: AUV navigation, ocean glider navigation, glider path-planning, coordinated ocean observing, mission

planning tools

1. INTRODUCTION

The use of autonomous systems for ocean data collection is growing, especially underwater gliders
(Testor et al., 2010, 2019), with various applications ranging from coastal to open ocean missions
(Liblik et al., 2016). Owing to their design (Davis et al., 2002), gliders are strongly influenced by
water motions such as currents, eddies, fronts (Rudnick et al., 2004; Rudnick, 2016). This can be
a strength and a limitation when overcoming these to reach a target region. Better information
on ocean currents could be used to improve the mission’s efficiency, reduce head-on currents,
and extend battery life. Application of such information would require a tool to reduce the stress
and workload of pilots controlling the vehicles, especially in high-density coastal ship traffic areas
(Merckelbach, 2013).

Most glider platforms can compute the depth-averaged currents based on the deviation between
the location and the target waypoint (Claus and Bachmayer, 2015). The determination of this
deviation typically requires an explicit model of the glider’s underwater performance and behavior.
The depth-averaged currents can be used to correct the variation in the path for the next yoyo-
cycle. This approach’s benefit diminishes when the distance between surfacings is considerable,
such as when a glider is doing long, energy-efficient dives. Mission planning remains especially
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challenging when operating in unknown ocean areas and
conditions. The lack of an overarching glider navigation strategy
leads to gaps in glider control and hence observations. A
route-planning approach based on ocean forecast currents can
help overcome these challenges and benefit glider operations.
Advances in computational resources, software architecture and
increased ocean observations such as from the international Argo
program (Roemmich et al., 2009) have led to significant strides in
operational model improvements (Fujii et al., 2019; Capet et al.,
2020).

There are many theoretical approaches to finding the optimal
path for a gliders subject to constraints from the ocean
environment (see section 1.1). One issue with route–planning
strategies is that only a handful have undergone tests with
AUVs in real ocean deployments. A recent test with a Slocum
glider deployed in the North-Atlantic successfully utilized route–
planning to maximize the glider speed during an ocean crossing
(Ramos et al., 2018). Their approach was based on Lagrangian
coherent structures to find the optimal path in a dynamic flow
field. Ramos et al. (2018) utilized the forecast model from
the Copernicus Environmental Monitoring Service (CMEMS)
(Lellouche et al., 2018) and found good agreement between the
model and the flight patterns of the deployed Slocum glider. The
route–planning strategy yielded astonishing results with glider
speeds exceeding 3 km/h and distances traveled on the order
of 100 km per day. Clearly, glider deployments and pilots can
benefit immensely from a route-planning strategy. We argue that
a route–planning tool should serve several primary objectives:

• Smart: objective route–planning should respect data from
models, observations, and the glider characteristics

• Reliable: route–planning should appropriately consider
ambient ocean conditions and should be timely

• Helpful: easy to use and implement in current and future
missions, reducing pilot stress.

Ideally, one would be able to access all available information
inside a navigation system and have an algorithm make an
objective route plan. This would then be available to the operator
to improve the navigational decision making.

This paper presents a mission planning tool for ocean
gliders—the Ocean Glider Navigation System (OceanGNS)—a
streamlined cloud-based glider navigation service to improve
glider piloting experience and increase mission endurance. We
describe a fully operational service, utilizing a route optimization
approach to meet the needs of the growing ocean glider
community. We present an overview of the capabilities, the
route–planning algorithm considerations and results from field
tests on Slocum gliders in the Gulf of St. Lawrence and in the
Labrador Sea. The approach will work for other gliders, and we
have done tests with SeaExplorer gliders, but we only report on
test results for Slocum gliders here. From these tests, we evaluate
the tool against the objectives described above. We also discuss
limitations and provide a future outlook for OceanGNS.

1.1. Ocean Glider Navigation Strategies
In general, there are many different lessons to be learned about
how to optimize underwater ocean glider operations (Davis et al.,

2019) and many studies have focused on AUV navigation in
particular (Fiorelli et al., 2006; Leonard et al., 2010). Thompson
et al. (2010) describe a human-in-the-loop, decision-making
system underwater gliders in coastal water studies. However,
the vehicles only adapted their paths to maintain a specific
formation with little consideration of ocean currents’ influence.
Zamuda and Sosa (2019) applied a differential evolution analysis
to improve trajectories. Petillo et al. (2015) presented a way of
adjusting the vehicle depth to track the ocean’s thermocline.
Lucas et al. (2019) took a different approach applying a sorting
genetic algorithm. This technique has been expanded for tracking
ocean fronts (Petillo et al., 2015). The route–planning for
these missions used the in-situ glider measurements processed
onboard the vehicle. The implementation required a software
modification to the vehicle’s control system and additional
computational resources, limiting scalability and adaptation to
other platforms. Smith et al. (2010) proposed an advanced
planning system for underwater gliders to track ocean processes.
The waypoint is generated based on the targeted oceanographic
feature derived from a regional ocean model assimilated with
high-frequency radars. They omitted ocean currents on the
vehicle movement, assuming that the vehicle controller could
guide it to the desired waypoint deterministically. Of course, the
glider may not proceed to the desired location when facing a
current exceeding the glider speed, which is typically 0.3m/s (Rao
and Williams, 2009).

Some research has since been done in developing optimal
route–planning algorithms that account for the current effect.
Zeng et al. (2015) presented a survey on various path planning
approaches for Autonomous Underwater Vehicles. In their
follow-up paper Zeng et al. (2016), compare the path planning
performance from graphic search approach (A∗), sampling-based
approach (RRT/RRT∗), and evolutionary algorithm (genetic
algorithm and particle swarming optimization). For graphic-
search approaches (Eichhorn et al., 2010; Huynh et al., 2015;
Kularatne et al., 2016), the workspace is gridded, rendering
discrete state transition. In contrast, sampling-based approaches
Rao and Williams (2009) provide a fast solution and scalable
to high-dimensional planning space. However, it may provide
a sub-optimal solution. Evolutionary algorithms (Alvarez et al.,
2004; Zeng et al., 2016) may also provide a sub-optimal solution
due to the probabilistic completeness. Recently, level-set methods
using fast marching was adopted for glider path planning (Lolla
et al., 2014; Subramani et al., 2017). The algorithm is efficient
when using linear velocity function. Non-linearity will induce
significant computation when solving the partial differential
equation. Readers are referred to Zeng et al. (2015, 2016) for a
detailed review of these methods.

Our study considers a discrete path-searching approach based
on a predicted ocean environment. The ability to include
multiple cost nonlinear heuristic functions into the graph search
algorithm makes this approach attractive for OceanGNS. Besides
that, OceanGNS has two unique route–planning features. On one
hand we designed a distance weighted cost function to adjust
the attribution from historical mean current and the model
forecast. When expanding the graphic search fronts, the cost of
an edge that is further away from the glider’s current location

Frontiers in Marine Science | www.frontiersin.org 2 November 2021 | Volume 8 | Article 671103

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


von Oppeln-Bronikowski et al. OceanGNS

will be more relevant to historical data as forecast uncertainty
will grow with respect to time. Therefore, our algorithm do not
solely rely on the forecast model outputs. On the other hand, we
included glider efficiency due to the bathymetry (section 2.2.2).
When a glider is doing full-depth profiling on continental shelves,
the seafloor depth will affect the overall power consumption
in each dive that a deeper dive will result in a lower averaged
power consumption (Claus et al., 2010). Therefore, to obtain
a energy-optimal solution planning such influence has to
be included.

2. OCEANGNS

2.1. Overview
OceanGNS is a cloud-based service to ease the piloting of
ocean gliders and improve endurance by reducing the impact of
currents and bathymetry. We do this in two ways:

1. Our custom route-planning algorithm integrates up-to-date
ocean forecast models, historical data, and glider information
to compute the best path for a glider AUV to reach the mission
target

2. We streamline ocean data into a single portal to augment the
pilot’s information.

The algorithm is flexible with regard to model choice and the
number of constraints used in predicting the best path, for
example waypoints, heading, or bathymetry.

OceanGNS’s route-planning algorithm is simple, yet flexible
allowing multiple constraints to satisfy the needs of a particular
glider deployment. The glider operator is not constrained
to using a particular model, and to date OceanGNS offers
a variety of implemented ocean models for different ocean
regions. We have worked with several different operational
ocean models from Mercator Ocean (Lellouche et al., 2018),
the Hybrid Coordinate Ocean Model (HYCOM) (Chassignet
et al., 2007), and CONCEPTS models (Smith et al., 2013) from
Environment Canada. There is no particular limitation as to
which types of models can be used. New models are added
through our dedicated staff who work on requests, by passing
the model fields into our cloud service. The model data are
processed to produce aggregate data for the local climatology
as well as the forecast fields for the route–planner. Beyond
minimizing head-on currents, the route–planning algorithm can
optionally consider bathymetry. This can be important in shallow
coastal zones where diving in deeper depths can improve the
glider endurance. For further refinement glider depth-averaged
currents can be either used directly in the route–planning
module or visually by the pilot when deciding whether to go
with the route-plan suggestion or not. We recognize that ocean
route–planning is limited by available observation data and
the model’s forecast skill. A discussion about the constraints
provided by the model forecast skill uncertainty is discussed
later on.

In addition to providing route–planning information,
OceanGNS reduces the pilot workload by streamlining necessary
piloting data (glider, satellite, model, past observations) into
a single environment. Overlaid in a map service, these data

provide a more comprehensive overview of the ambient ocean
environment. Custom code developed retains map browsing
and layer switching responsiveness while running full resolution
animations of 3D currents. The seamless integration of the
data streams offers useful guidance to pilots whose job often is
taken up by comparing data from different display services (e.g.,
piloting tool, bathymetry charts, satellite, models) and merging
them to make an informed decision. OceanGNS provides this
information at the click of a button. Figure 1 shows examples
of the OceanGNS interface visualizing sea surface temperature
(SST) and ocean current forecasts layers. Some of the features of
the OceanGNS service are:

• Cloud-based interface
• Ocean current based route–planning based on models,

observations, and glider data
• Variable model resolution and route–planning distance
• Group organization controls for data separation to restrict

sensitive mission data across users
• Comprehensive decision making allowing expert pilot

knowledge to dominate route–planning when desired
• Integration of bathymetry into the route–planning
• Fast output allowing planning for tens to hundreds of

kilometers in seconds to minutes
• Capable of performing updated waypoint or heading direction

calculations upon every glider surfacing
• Possible to integrate glider dead-reckoning into route–

planning decision making
• API access to include route-planning tools in other piloting

software
• Anonymous API access to hide glider identity for naval

operations
• Not restricted to a particular glider manufacturer.

Besides OceanGNS, there are few services available to help glider
operators with piloting needs. Of the public products presently
available, the closest to an operational service as envisioned by
OceanGNS is GANDALF (https://gandalf.gcoos.org/) which can
provide visualization to a glider pilot of a range of environmental
data and display nearby Argo profiles. This feature is particularly
helpful when deciding on how to allocate glider sampling to
fill observing gaps and validate glider–Argo data. In addition,
deployments can be registered on the portal and avail of data
processing, but to the best knowledge of the study’s authors,
GANDALF does not provide explicit route–planning suggestions
to pilots. A comprehensive vehicle routing strategy can, in
turn, improve the vehicle’s speed and yield other benefits for
deployed vehicles, such as increased endurance and a lowered
CO2 footprint of the operation. GANDALF is also restricted
to US glider users operating in the Gulf of Mexico. Other
glider groups such as the UK’s Autonomous Robotic Systems
(MARS) Laboratory have developed their own piloting and
data processing portal. However, these tools are not services
available to the general glider community and usually do not
provide automated route–planning. Clearly a gap and need
exists for an operational service like OceanGNS, available to
all glider users not restricted to a particular vendor, group,
or region.
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FIGURE 1 | (A) SST layer overlaid by the map distance tool. The left panel shows the user options to change layers, date and time, and depth (if applicable).

(B) Screenshot of the cloud-based service v.2.1 showing bathymetry overlaid by the HYCOM model layer. The route–planning panel is shown to the right with user

choices such as bathymetry integration.

2.2. Route–Planning Implementation
2.2.1. Ocean Currents
The OceanGNS route–planning module employs a graph search
algorithm (Dijkstra, 1959; Wang et al., 2011) to find the optimal
path between an AUVs location to a target adapted for ocean
current data from a forecasting system such as the HYCOM
model. Any other current model or consistent current field
data set will work, such as the glider dead reckoned currents
themselves populated onto a grid. The route–planning module
reduces the current field to within 1.5 the maximum distance to
the target that the glider could reach in every direction to arrive
at a smaller subset of the full dataset to improve computational
speed. The current fields are interpolated onto a local grid points
appropriate to the model. Suppose the model resolution is larger
than 20% of the distance to the target. In that case, the current
field is interpolated using half the native model grid resolution
to increase the grid points for the graph searching algorithm to
function correctly in situations where higher resolution current
data are not available. A model-specific climatology is compiled
from previous forecast fields or hindcast results to compute a 7-
day running average historical data set for each local grid point to
reduce uncertainty in the model forecasts past the daily forecast’s
24 h time limit window.

The glider AUV user can represent prior historic and forecast
information using a weighted current that represents both sets
of data. For each grid point i, the forecast current data Cf (i)
and historic data Ch(i) are combined into an effective current—
a combination of historical data and the forecast currents
(Equation 1). The historic and forecast weights,Wh(i) andWf (i),
are adaptively determined based on the Euclidean distance, L(i),
between the grid point and the current position of the glider. The

FIGURE 2 | Weight changes over the Euclidean distance at different values of

a. When a = 0.2 is tuned for 24-h forecast, as Wf (i) will approach a = 0 at 24

km (equivalent to the 24-h traveling distance of a glider). Likewise, a = 0.1 is

tuned for a 72-h forecast.

summation of these weights is one. The decaying parameter, a
is a constant value that is determined from the forecast period
to tune the influence of historical current and the forecast on the
effective current and is user-controlled based on prior bias against
the forecast data. Figure 2 shows the weight,Wh(i) increases with
respect to L(i), whileWf (i) declines.

C(i) = Wh(i)Ch(i)+Wf (i)Cf (i)

Wh(i) = (e(aL(i)) − 1)/(1+ e(aL(i)))

Wf (i) = 2/(1+ eaL(i))

(1)
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The different decay parameters will produce different
convergence distances. In Figure 2, we show two cases for
a = 0.2 and a = 0.1 that represent forecast weightings
equivalent to 24–72 h forecast, respectively, resulting in W(i)

decaying toward 0 at 24 and 72 km given an ideal speed of 1
km/h. Therefore, the glider’s route–planning beyond the forecast
period–depends on the historical averaged current data, Ch(i).
The user retains full control of this choice and can set the forecast
weight to 1 or 0 depending on the specific navigation situation
and the character and quality of available input data

To determine the optimal path, we compute the moving cost
from each grid point to its four adjacent grid points in the north,
east, south, and west. Formoving from grid point i to j, the time is
computed in Equation (2), where α is the apparent angle between
the current and the vehicle’s moving direction, d is the grid cell
size, vg is the glider speed in still water,∼0.27 m/s (Rudnick et al.,
2004). If the apparent current is stronger than vg , the path is not
viable so T(i, j) is set to a large value e.g., 1,000 h.

T(i, j) = d/(vg + 0.5(C(i)+ C(j)) · cos(α)) (2)

Once OceanGNS has constructed the complete graph that
includes all the moving costs from each cell to its neighbor
cells, we apply a modified Dijkstra graph search algorithm. Other
graphic search algorithms such as A∗ (Rao and Williams, 2009)
could also be incorporated. However, the heuristic function, an
estimation of the cost from a grid point to the goal location, is
hard to predict due to ocean currents’ time-varying nature.

The resultant path determined from the graph search
algorithm is further reduced in complexity using a modified
3D Ramer-Douglas-Peucker (RDP) algorithm (Ramer, 1972;
Douglas and Peucker, 1973; Zhou et al., 2014). The optimal
path computed in the local grid is then translated back to a
waypoint list used by the glider for direct navigation or reduced
to a heading, depending on the user’s needs. Figure 3a shows
an example of the OceanGNS path output for a hypothetical
trajectory along the Gulf Stream and Figure 3b, back to the start
location plotted in python for illustration.

The forecast’s accuracy varies spatially and temporally. We
used the averaged current (24 or 72 h) from the forecast model
to smooth out noise between timesteps. The glider’s path to
the target destination is regenerated when the glider surfaces
using the up-to-date forecast information as a guide. The daily
averaging works in the open ocean, but would probably not
be as effective on the continental shelf where tidal currents
might dominate. Using such an averaged current ignores high-
frequency variability from effects such as inertial or tidal currents.
We used the forecast file closest to the dive cycle for one of our
experiments in the continental shelf, manually stepping through
the available forecast files (see section 3.1) with the algorithm.
We are working on integrating a time-varying algorithm into
OceanGNS to improve the performance of the route–planning
algorithm on the continental shelf. This will be part of the next
step in our development and testing of OceanGNS.

2.2.2. Bathymetry Consideration
Frequently, gliders are operated in coastal waters where
topography is quote variable and at times very steep. Typically

the glider will use the buoyancy pump more frequently in
shallow water than when operating in deeper water. While the
buoyancy pump will be powered less frequently in deeper water,
the instantaneous current draw will increase due to the increased
water pressure. Therefore, OceanGNS considers bathymetric
data (GEBCO, 2020) during route–planning as an optional
constraint to account for the increased power consumption
operating in shallow vs. deep water to provide an optimal path
considering both time and energy. This feature is particularly
useful when piloting a glider from the continental shelf to the
deep sea or vice versa.

We found a linear relationship between the current draw
and the glider’s inflection depth to estimate the current drain
when the vehicle is gliding. We applied a linear regression
to approximate the current usage during glider inflections.
From published glider data (von Oppeln-Bronikowski et al.,
2021) we estimate the current draw during gliding (for the
Slocum 1000 M G2 glider) is ∼0.1 amp. For a diving/climbing
cycle, the total battery discharge (in amp-hour) can be
calculated (Equation 3), where z is the dive depth, vz is
the vertical speed of the vehicle, Ig is the averaged glider
current drain without buoyancy pump activated, Ic,d and Id,c
are the current draws that can be replaced by the equation
estimated from the turnaround time from climbing to diving
and vice versa. Similar calculations could be done for other
glider types.

D(z) = 2Igz/vz + Ic,d(z)tc,d + Id,c(z) · td,c (3)

The time intervals tc,d and td,c are the time when the buoyancy
pump is active, which is ∼150 s for a deep Slocum underwater
glider. Different efficiency curves could be implemented and
stored depending on the AUV model. During each dive, the
forward-moving distance also varies with respect to the diving
depth. Assuming the vehicle has an average horizontal speed,
vh of 0.27 m/s. The horizontal traveling distance is L(z)
(4) and vz is the glider vertical speed which is ∼0.1 m/s.
Using Equations (3) and (4), we compute the ratio of battery
discharge and the travel distance (Equation 4). We denote
this ratio as the vehicle inefficiency IE(z) (Figure 4), for which
z is the depth of the water column at the route–planning
grid point.

L(z) = 2vhz/vz (4)

IE(z) = D(z)/L(z) (5)

T′(i, j) = IE′(z)T(i, j) (6)

A glider is more efficient when it dives to the maximum depth
possible as part of the mission and requiring less inflections per
same travel distance. We modify IE(z) from 4 by setting the
minimum inefficiency to 1 at 1,000 m (the maximum diving
depth of the glider). We use this modified inefficiency curve
IE′(z) in 4 to calculate the final moving cost T′(i, j) for each
grid cell with the corrected vehicle inefficiency. The red line
in Figure 4 shows the original inefficiency curve calculated
from 4. The blue one is the corrected inefficiency IE′(z) curve
(Equation 4).
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FIGURE 3 | OceanGNS route–planning example for a hypothetical loop mission (a) following along a strong current front and (b) return taking advantage of a

return-flowing current to the South-West of the original path.

FIGURE 4 | Inefficiency curve before (IE(z): red) and after the correction (IE ′(z):

blue).

If desired by the glider operator, this moving cost function can
be included in the graph constraint for the Dijkstra algorithm
inside the main navigation routine. The AUV operators could
disable the inefficiency factor in OceanGNS when the glider
is flying further offshore with seafloor depths greater than the
dive depth. An example of OceanGNS bathymetry considerations
is given in Figure 5. The example shows the slightly altered
path to take advantage of the deeper water depth while not
deviating too much from the most direct path with the most
advantageous currents.

3. FIELD TESTS

To test the reliability of OceanGNS for piloting and glider
mission control, we conducted early field experiments in
the Northern Gulf of St. Lawrence (8–15 August 2019) and
the Labrador Sea (4 December 2019–27 June 2020). These
deployments were not explicitly designed to test OceanGNS in

its current state but were used as opportunities for early trials to
collect mostly qualitative data. We only tested OceanGNS for a
short period in each deployment because we were still actively
developing the interface and collecting baseline data to compare
results. These tests used the same Slocum G2 Glider “Pearldiver.”
The only difference between the deployments was that the glider
had an extended bay battery pack during the longer Labrador Sea
deployment. Figure 6 shows a summary track map of the two
deployments discussed.

The field deployment tested the algorithm by comparing the
waypoints list from OceanGNS to alternate waypoints chosen
by the pilot. We evaluate the outcomes of the field trials by
calculating the glider speed toward waypoints. From the speed
toward waypoints, we compare the speed when using OceanGNS
and when not. As a baseline we calculate the ideal speed assuming
a constant speed of a glider of 0.27 m/s (at zero current) and
add the measured along-track component of the depth-averaged
current facing the glider in each dive segment.

VI = 0.27+ Ucos(θ) (7)

Equation 7, shows the definition of ideal speed VI that we used
in the context of the field tests to evaluate the vehicle speed
improvements. Here, U is the along-track component of the
depth-averaged current (actual ocean conditions) estimated from
the glider data; and θ is the angle between the glider track and
the direction of the calculated current U. The dead averaged
current from the glider data is estimated based on the difference
in intended heading and actual GPS surfacing locations in a full
surface to surface cycle (Claus and Bachmayer, 2015). The field
tests and chosen methodology is mostly a qualitative analysis and
not an ideal evaluation of the merit of the presented tool, and a
more careful experiment design can be conducted in the future
along a repeat glider observing line.

3.1. Gulf of St. Lawrence Deployment
As part of a project to collect data on the oxygen saturation in
the Northern Gulf of St. Lawrence, we deployed a Slocum glider
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FIGURE 5 | OceanGNS route–planning example for a hypothetical mission passing over a ridge (a) with bathymetry consideration turned off [no IE ′(z) considered],

and (b) with bathymetry consideration turned on showing the difference in navigation routes under both scenarios.

FIGURE 6 | Field Test Cases for OceanGNS. (a) One-week deployment of a glider in the Northern Gulf of St. Lawrence (August 8–15, 2019) from Daniels Harbor to

Bonne Bay. (b) Seven-month glider deployment in the Labrador Sea (December 4, 2019 - June 27, 2020). GEBCO bathymetry is shown in the background.

from Daniels Harbor, Newfoundland, with the goal of recovery
inside Bonne Bay—a fjord on the West Coast of Newfoundland
(see Figure 6). The total distance of the glider track is ∼160 km,
with large topography changes varying from the deepest of 260–
30 m when crossing the shallow sill that divides the mouth of
Bonne Bay and Esquiman Channel in the Gulf of St. Lawrence.
The glider passed through a strong tidal region, which made
navigation from Daniels Harbor to Norris Point difficult. The
mission plan was the same throughout the entire deployment
which was to pilot the vehicle from the deployment site to Norris
Point, Newfoundland.

Active route–planning was used for 2 days (10–12 August
2019) when the glider was in periodic strong head-on currents,
which considerably slowed the glider progress. When not using
OceanGNS, the pilot choose waypoints in the direction of the
target and also based on their perception of the currents from
the glider and current maps. We operated the glider in the

deep channel across from Bonne Bay’s mouth (shallow sill)
as the navigation target. The time between glider dive cycles
was 4 h.

For this deployment, we used the well established St. Lawrence
Global Observatory (SLGO) forecasting system. The SLGO
model has a resolution of 0.02◦ by 0.03◦ latitude and longitude
(Smith et al., 2013). Only surface-level data is available from this
model. The model was chosen as it was developed for and tested
in the Gulf. The model is run for 48 h allowing forward model
time step integration into the route–planning output. We used
the SLGO model forecast file closest in time to planned glider
dive cycles for which the route planning test were done (e.g., 10–
12 August). We picked the individual forecast files and ran the
algorithm for 24 h ahead (∼25 mission km). To deal with the
tidal amplitudes, we did route–planning a couple times a day
coinciding with the surfacing of the glider. We kept the glider
at the surface (∼10 min) while we calculated the next 24 h route
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plan using the latest available SLGO forecast file for that glider
dive cycle. After transmitting the waypoints, the glider dove and
we repeated this upon the next surfacing.

We applied the method discussed earlier to evaluate the
impact of OceanGNS current-based route–planning on the
mission. We calculated the glider speed as the speed toward
destination (commanded waypoint). That is the distance traveled
between GPS fixes divided by time projected on to the
straight line path toward the destination from the previous
GPS fix. While using route–planning the pilot experienced a
noticeable improvement in the vehicle’s performance, making
steady progress. In the days before, the glider experienced
reduced speeds (0.5 km/h) during parts of the day, significantly
increasing the deployment duration. From evaluating the glider
data (Figure 7), we see a noticeable difference in glider residual
speeds (actual-ideal) while using the route–planning module.
Compared with the ideal speed (Equation 7), we find that the
glider was 27% faster over that period compared to when the
glider was not using OceanGNS.

3.2. Labrador Sea Deployment
We also applied OceanGNS during a long-duration glider
deployment in the Labrador Sea from December 4, 2019 to
June 27, 2020, a mission to measure heat and gas exchange
in the winter. The glider was launched in the Orphan Basin
(Figure 6) from the UK research vessel “James Cook” and
transited 1,000 km to the central Labrador Sea (de Young et al.,
2020). After completing the mission, the glider returned back
to Newfoundland following the Labrador Current to speed up
the homeward journey. Recovery of the glider was made in
Trinity Bay, NL, on June 27, completing the journey after almost
7 months.

For these OceanGNS tests, we used the 1/12◦ longitude-
latitudeHybrid Coordinate OceanModel—HYCOM (Chassignet

et al., 2007) for the route–planning. HYCOM is an assimilative
forecast system that produces forecasts for 72 h updated every 24
h with 3 h timesteps. We only included the updated next 24 h
forecasts (∼50 km) for these tests, and we averaged over 8-time
steps to produce a daily averaged ocean current state. We also
had the HYCOM hindcast files for the past week with a dynamic
weighting (Equation 1) to compensate for the uncertainty in
forecasted currents. Depth averaging current was done from 50
to 1,000 m as where the glider spent most of its dive time. The
time between surfacings was nearly 11 h on average and covered
a distance of 10 km with pitch set to 20◦. We did not consider
bathymetry during the route–planning periods since the seafloor
depth during the experiment is over 1,000 m.

While the glider was sampling in the central Labrador Sea,
glider navigation using OceanGNS was not utilized as the vehicle
stayed in a small 100 km sampling area and currents were
weak. Occasionally sub-mesoscale features (10 km) or larger
eddies (30–50 km) would trap the glider and carry it off course.
OceanGNS navigation was attempted, but the HYCOM model
did not show many of these smaller-scale features the glider
experienced. Therefore, navigation during those events was done
based on the glider’s dead-reckoned currents, steering the glider
90 degrees to get back to themain sampling line. Overall the error
between glider dead reckoned currents increased throughout the
winter period, starting in January until the return journey in
May, which is also the period when the Labrador Sea offers
the least data to support the HYCOM assimilation scheme. The
disagreement between the actual current circulation and the
model output is a limiting factor of OceanGNS (see further
discussion in section 4).

From the ideal speed definition (Equation 7) we can compare
the glider speed to the waypoint vs the assumed ideal speed
and compare the period while using OceanGNS and when not
(Figure 8). We quantify the improvement by comparing the

FIGURE 7 | Results of OceanGNS tests for the Gulf of St. Lawrence deployment. (A) Shows the glider speed (dots) toward its intended waypoint (destination) for

every dive segment calculated from GPS positions. The green shaded period is the time when OceanGNS was used. The blue line is the calculated ideal speed the

glider could achieve based on the constant value of 0.27 m/s and the dead reckoned currents estimated by the glider (Equation 7). (B) Histogram of ideal vs. achieved

glider speed toward the target. The residuals of the ideal speed vs. the actual speed toward the waypoint shows that during the OceanGNS test period, the glider

speed exceeded the ideal value by an average of 27%.

Frontiers in Marine Science | www.frontiersin.org 8 November 2021 | Volume 8 | Article 671103

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


von Oppeln-Bronikowski et al. OceanGNS

FIGURE 8 | Results of OceanGNS tests for the Labrador Sea mission. (A) Shows the glider speed (dots) toward its intended waypoint (destination) for every dive

segment calculated from GPS positions. The shaded period is the time when OceanGNS was used. The blue line is the calculated ideal speed the glider could

achieve based on the constant value of 0.27 m/s and the dead reckoned currents estimated by the glider (Equation 7). (B) Histogram of ideal vs. achieved glider

speed toward the target. The residuals of the ideal speed vs. the actual speed toward the waypoint shows that during the OceanGNS test period, the glider speed

exceeded the ideal value by an average of almost 10%.

residual means during those periods. During the glider track
segments that used OceanGNS, we were able to speed up the
glider by around 10% (Figure 8B). There are some negative
speeds in Figure 8A. These correspond to times when the
glider was not making progress toward the target waypoints, for
example because of an eddy or a strong adversal current. During
the first month of the deployment, the glider covered 1,000 km
from the Orphan Basin to the central Labrador Sea. Figure 9
shows good agreement between HYCOM and the glider currents
in the first phase of the glider deployment while OceanGNS was
used. It also shows an example of route–planning during one of
several path-planned segments.

4. DISCUSSION

We presented an overview of the tool to support glider mission
planning and piloting called OceanGNS. We also presented
results from early first field tests of the mission planning software
to improve glider control to reach their intended target. We
have laid out three criteria that the navigation tool should meet:
smartness, reliability and utility. We address these criteria to
discuss howOceanGNSmeets these requirements and what work
is still to be done.

4.1. Performance of OceanGNS
OceanGNS is a tool to improve the whole experience of operating
and collecting data with ocean gliders. The focus of the tool is
on improving control of the vehicles by predicting the best path
to reach a target from various data, including model currents,
observations, and the information from the glider itself. The
challenge for a navigation system is to supplement or compensate
for the uncertainties in ocean model forecasts. OceanGNS does
so by respecting a variety of data sources in making a path
prediction. It is also flexible and lets the user choose additional
constraints such as bathymetry and multiple forecast time

segments to make a prediction different than what the default
settings would produce. These characteristics point to a tool
that is glider–user oriented, adaptable to a wider range of AUV
platforms and can reduce the overhead required to currently
operate ocean vehicles. What still is missing is the integration of
a machine learning algorithm that takes the adjustments from
a pilot in route–planning to improve its predictions over time
when model performance is low. This would certainly improve
the tool, making it smarter with wider user.

The second criteria is the reliability of the system. This
has two main components: (1) the tool has to produce route–
planning quickly to be useful, and (2) the route–planning
has to be at least as good or better than the prediction
by the pilot. It should not cause the glider to perform
worse - this first point OceanGNS archives with run times
of <20 s for most route–planning situations. To achieve
the second point in every case is challenging. Still, because
the route–planning software is compensated by historical
information and the glider information, the risk of a poor
route choice is diminished. We evaluated the reliability of the
system through field tests within ocean glider deployments
moving beyond simulation studies. From these tests, we found
a net-benefit to using OceanGNS compared to when not
improving the glider speed to the target between 10 and 27%
between the deployments. However, these tests are only a
first step to evaluate the route–planning module’s reliability
thoroughly, and dedicated experiments to corroborate results
will be required. The system’s reliability is also dependent
on the availability of reliable input data. In the absence of
any information from the glider or from forecast models,
climatological datasets, especially in coastal zones, can still
dramatically improve the glider utility and progress to reach a
target point.

The criteria of utility speaks to the ease with which the tool
can help an operator achieve their mission goals. An algorithm
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FIGURE 9 | Results of OceanGNS tests for the Labrador Sea. (a,b) Shows the close agreement between glider dead-reckoned currents (u,v component) and the

HYCOM model used in these navigation tests. (c) Shows an example from the route–planning done for the mission with the glider track (red) and the planned track

(blue) transmitted to the glider from OceanGNS.

can be very good, but hard to use, making it hard to adopt in day-
to-day glider activities. The cloud-based interface of OceanGNS
with easy access to existing glider software, maps, visualizations,
and easy layer integration offers significant support to the
pilot. It helps pilots by improving access to information and
means less time is spent piecing together information on the
ocean environment. All essential ocean information can be
presented graphically, quickly, and easily, which also makes
OceanGNS a potential tool for education purposes. OceanGNS
also allows both interactive and automated piloting with access to
manufacturer piloting software. Such is the case for the Slocum
glider, allowing them to use autopiloting whereby new route
information is given to the glider as frequently as at every
surfacing. This could lead to adaptive data-driven sampling (Ferri
et al., 2013), whereby glider-OceanGNS automatically adjusts
the path to meet the sampling objective and OceanGNS takes
over the role of managing multiple vehicles together at the same
time. Another direction is goal-driven route–planning (Smedstad
et al., 2017) focussing on sampling an ocean region with multiple
gliders with specific criteria such as high temporal variability
of key ocean variables (e.g., T and S) while minimizing head
on currents.

4.2. Implications for Future Missions
The Field trials showed increased glider speed toward the
destination of between 9.5 and 27% for the two deployments
(Figures 7, 8). We can use the results from the field trials to work
out the benefit for two hypothetical scenarios. In the first, a glider
is deployed with a single battery pack that can last 30 days and
in the second the glider is deployed with a larger battery pack
that can last for 180 days on a long mission. An average speed
of 0.27 m/s which works out to 22 km a day for a glider that is
moving at speed 95% of the time (excludes times spent at the

surface). Over 30 days that is 665 km or for 180 days, roughly
4,000 km. Using OceanGNS the glider speed toward the target is
improved on average by 18.5%. This translates into increasing the
mean glider speed from 0.27 to 0.32 m/s or 26 km per day. This
speed improvement increases the range of the glider by 123 km
for a 30 day deployment or 728 km for a 180 day deployment.

On the other hand, the goal of route–planning might not be to
increase the range of the deployment but to increase the number
of observations along a fixed track length. For a hypothetical
track of 250 km a glider going 0.27 m/s, 95% of the day can
manage to complete the track in <11.3 days on average. Using
this number a 30 day deployment of a glider could yield 2.7 passes
of this track. With OceanGNS the glider completes the track in
9.5 days and can complete 3.2 passes in 30 days. Over 180 days
that would be an advantage of an extra 3 completed passes of the
250 km track. Care must be taken to ensure that the route plan
does not cause the glider to deviate from the track. A corridor
mode could be implemented into the algorithm by setting the
cost of grid points prohibitively high past a certain distance from
the intended track. This would cause the algorithm to find the
best path within a defined corridor of a certain width and ensure
that tracks are comparable between transects. This work is in
development and should be ready in the near future.

Another consideration is that if other factors are fixed
(deployment duration, number of glider passes) we can work out
the battery savings. This analysis becomes more applicable if the
goal of a glider deployment is not to just sample one mission,
but to be redeployed multiple times in a given year. The need
for this could arise for example from the expense associated with
battery replacements. Using OceanGNS the glider can complete
the full pass to and back in 19 days with 11 days of sampling left
to spare vs. 7.4 days without OceanGNS. This means a battery
cost efficiency increase of 32%. For a large lithium battery pack
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this might be very attractive given that the glider can now be
redeployed more times on a single battery, accomplishing more
missions. This analysis is based on idealized scenarios. However,
the mean glider speed values are on average in agreement with
the real glider performance reported in the literature. More
tests are required to further capture the result we have shown,
but so far the benefits of OceanGNS look very promising for
glider operators.

4.3. Limitations and Solutions
OceanGNS performed remarkably well in the field tests
discussed. The tool can simplify decision-making around glider
navigation and coordinate deployments from multiple glider
platforms. Indeed, this tool meets the smart, reliable and utility
requirements to a large degree. Improvements will further
enhance the tool. However, some limitations of the current
technology require more work. The largest limiting factor is the
input current model. The slow speed of gliders (typically 0.2–0.3
m/s) requires high-resolution ocean forecast models initialized
with sufficient observations to represent the small scale current
features important to glider operations. This limitation is not
unique to our approach. Improvements in temporal and spatial
coverage of observations are needed to define ocean features
at the required scales to improve model forecasts (Fox-Kemper
et al., 2019). For each deployment, it will be necessary to
determine which model is most valuable and the limitations,
perhaps seasonal, or perhaps location, of the model. In general
the model will improve as more real-time data is incorporated
into the model, perhaps from satellites, Argo floats, or gliders.
Ensemble models can help to reduce some of the uncertainty
inherent with a single model prediction, but this is not universally
true (Weigel et al., 2008). For example, some of the operational
models used for iceberg forecasting use small ensemble of models
for operational use, although there are some studies that have
suggested ensemble forecasting did not yield improvements
in forecast skill (Allison et al., 2014) or only under certain
conditions (Kielley, 2020). Thus, it remains true that under
certain circumstances the input of the pilot will be required. The
direct current measurements offered by the gliders, permit real-
time assessment of the utility of the model data and thus the
performance of OceanGNS.

To overcome some of these challenges we also need to
consider other techniques. One idea briefly mentioned earlier in
the introductory sections would be supervised machine learning
algorithms to take advantage of pilot expert knowledge when
paths are modified. The objective of such an algorithm would
be to compute a range of possible paths based on different
inputs to the route–planner. The algorithm would learn from the
pilot’s choices regarding model selection, route constraints and
the time when route planning was most requested. An initial
step into automating route–planning criteria could be to use
the glider velocities to determine the model forecast skill over
the past few glider segments. OceanGNS could use the results
to decide if it should give more weight to climatological data
or the forecast system. However, glider dead-reckoned currents
are not perfect themselves being an average over sometimes
a large distance (typically several kilometers). They are also

delayed for the previous dive cycle and may not be valid for
the next segment. Over time, a more advanced algorithm using
multiple datasets based on assembled information from ocean
models, glider data, in-situ glider measurements, and pilot inputs
could help minimize the negative impact of a single approach
against another. Neural networks could capture such nuances
in the data but require massive training data to avoid over or
underfitting the data. More conversations on this level have
to happen to identify a robust methodology to capture pilot
skills in route–planning to overcome the limitations of ocean
forecast models.

Another solution to themodeling problem could be to develop
regional best practices around using different regional models
(e.g., NCOM, WMOP, NGOFS etc). Our test results so far only
apply to a small geographic area and a small number of ocean
forecast models (SLGO, HYCOM, RIOPS, CMEMS, and WMOP
model). We are working on implementing more models so that
several different models could be tested during a deployment.
Over time glider groups could explore models suitable for their
operations and inform the glider community of their experience.
For example, we note that HYCOM showed good agreement
during the initial phase of the Labrador Sea deployment, but
over time the error increased. Such knowledge could help decide
how and which data sets to use in decision making around
flying gliders. The Mediterranean glider group at SOCIB (www.
www.socib.es) have also looked at model and glider comparisons
(Juza et al., 2016; Mendiondo et al., 2020). Published literature
and studies would inform the strategy and experimental setup
behind new navigation tests. More formally, we are working
on implementing a path-planning confidence score based on
calculating the routes from all implemented model time steps
using different averaging of forecast steps and algorithm settings
(e.g., bathymetry on or off, different glider speeds etc). The
runs would produce different paths. If convergence of paths is
achieved the pilot could be given visual feedback. In contrast, if
the spread in predictions is high, then the pilot can be warned
by the system that confidence is low. In addition as the mission
progresses the data from the glider can be used to back-calculate
which models are performing best and give the pilot feedback on
the overall performance of OceanGNS.

An increase in the number of users applying tools such as
OceanGNSwould help us understand the benefits and limitations
of different approaches to planning glider missions. We are just
one of many groups that operate gliders (see Testor et al., 2019).
By making this tool cloud-based, easy to access and providing
integration possibilities into existing systems through an API, we
have paved the start for a new way to do ocean glider mission
planning. However, we need the input from the wider glider
community to improve the capabilities of OceanGNS.

5. SUMMARY AND FUTURE
DEVELOPMENT

Ocean gliders are frequently used to close observing gaps by
traditional remote sensing platforms. They have increased in
numbers and are becoming a mature technology (Testor et al.,
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2010, 2019). Differences across glider platforms are minimal and
three dominant manufacturers exist whose platforms are utilized
to varying degrees around the world. It is time to improve the
synthesis of different platforms to coordinate these platforms
better. This new glider navigation tool—OceanGNS—offers a
significant improvement for glider navigation and coordination
of different glider platforms. OceanGNS can improve the speed
of gliders and can do so operationally for many vehicles at a
time. We provided an overview of the tool, its many capabilities
and demonstrated the utility through initial field deployments
using Slocum gliders. These tests show that OceanGNS did
demonstrably improve glider navigation toward its target,
speeding up the journey and extending battery range. We
also further discussed the importance of these results through
common operational scenarios. Through these exercises we
further demonstrate the usefulness of OceanGNS to operational
glider sampling.

We evaluated the tool against three criteria: intelligence,
reliability, and utility and demonstrated that it meets each of
these criteria to varying degrees. This technology is at an early
stage of development and significant improvements and more
testing are needed. Particularly the time–varying algorithm is
something we are developing and need to test. The algorithm
used could be improved in several ways. The graph search could
be refined to include more discrete quadrants. At the moment,
the algorithm only chooses between four directions (N, S, E, W).
In addition machine learning algorithms could be included to
learn from pilot input and correct for gaps in model forecasting
skills. We are working to add features to use the glider data
to assess model performance and compare the effectiveness of
different models. The other issue around user adoption could
resolve gaps in models by yielding best practices on how to gain
the most from models to improve gliders’ navigation. These best
practices could be as direct as specifying which model is best
for a particular region or could provide at least more insight
into the model accuracy for particular missions. There is also
the opportunity to learn and the strengths and weaknesses of
different models.

Another advantage of this tool is that it is not restricted to a
particular glider platform. There are now many different types
of gliders being used by a growing glider community. Indeed any

glider manufacturer or user could use this tool. The benefit would

be the possibility for a swarm concept implementation across
different platforms, whereby the glider mission is coordinated
between the different gliders using OceanGNS. The navigation
strategy could be used to keep the gliders from diverging too
much from each other and sampling coordinated across a
common strategy.
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