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Global surface currents are usually inferred from directly observed quantities like

sea-surface height, wind stress by applying diagnostic balance relations (like geostrophy

and Ekman flow), which provide a good approximation of the dynamics of slow,

large-scale currents at large scales and low Rossby numbers. However, newer

generation satellite altimeters (like the upcoming SWOT mission) will capture more of

the high wavenumber variability associated with the unbalanced components, but the

low temporal sampling can potentially lead to aliasing. Applying these balances directly

may lead to an incorrect un-physical estimate of the surface flow. In this study we

explore Machine Learning (ML) algorithms as an alternate route to infer surface currents

from satellite observable quantities. We train our ML models with SSH, SST, and wind

stress from available primitive equation ocean GCM simulation outputs as the inputs and

make predictions of surface currents (u,v), which are then compared against the true

GCM output. As a baseline example, we demonstrate that a linear regression model is

ineffective at predicting velocities accurately beyond localized regions. In comparison, a

relatively simple neural network (NN) can predict surface currents accurately over most

of the global ocean, with lower mean squared errors than geostrophy + Ekman. Using

a local stencil of neighboring grid points as additional input features, we can train the

deep learning models to effectively “learn” spatial gradients and the physics of surface

currents. By passing the stenciled variables through convolutional filters we can help the

model learn spatial gradients much faster. Various training strategies are explored using

systematic feature hold out and multiple combinations of point and stenciled input data

fed through convolutional filters (2D/3D), to understand the effect of each input feature on

the NN’s ability to accurately represent surface flow. A model sensitivity analysis reveals

that besides SSH, geographic information in some form is an essential ingredient required

for making accurate predictions of surface currents with deep learning models.

Keywords: deep learning-artificial neural network, surface current balance, geostrophic balance, Ekman flow,

regression, predictive modeling

1. INTRODUCTION

The most reliable spatially continuous estimates of global surface currents in the ocean come
from geostrophic balance applied to the sea surface height (SSH) field observed by satellite
altimeters. For the most part, the dynamics of slow, large-scale currents (up to the mesoscale)
are well-approximated by geostrophic balance, leading to a direct relationship between gradients
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of SSH and near-surface currents. However, current meter
observations for the past few decades and some of the newer
generation ultra-high-resolution numerical model simulations
indicate the presence of an energized submesoscale as well
as high-frequency waves/tides at smaller spatial and temporal
scales (Rocha et al., 2016). In addition, the next generation
of satellite altimeters like the upcoming Surface Water and
Ocean Topography (SWOT) mission (Morrow et al., 2018) is
going to capture the ocean surface at a much higher spatial
resolution, but with a low frequency repeat cycle (21 days). This
presents unique challenges for the estimation of surface currents
from SSH using traditional balances like geostrophy or Ekman.
The high-wavenumber SSH variability is likely to be strongly
aliased in the temporally sub-sampled data and may represent
an entirely different, ageostrophic regime, where geostrophy
might not be the best route to infer velocities. Motivated by
this problem, we explore statistical models based on machine
learning (ML) algorithms for inferring surface currents from
satellite observable quantities like SSH, wind and temperature in
this study. These algorithms can offer a potential alternative to
the traditional physics-based models. We should point out that
resolving the issues pertaining to spatio-temporal sampling and
interpolation in satellite altimetry or the separation of balanced
and unbalanced flows, while being important problems, are
beyond the scope of our present study. Our goal is to examine
whether we can extract more information about the surface flow
from the spatial maps of these quantities andmakemore accurate
predictions of surface currents with ML than we can with
traditional balances.

The traditional method of calculating surface currents
from sea surface height relies on the following physical
principles. Assuming 2D flow and shallow water pressure,
the momentum equation at the ocean surface can be
written as:

∂u

∂t
+ u · ∇u+ f × u = −g∇η + F (1)

where F is the frictional term due to wind stress. For a sufficiently
low Rossby number (acceleration terms small), the leading-order
balances are geostrophy and Ekman flow. The surface flow can be
split into a geostrophic and an ageostrophic, Ekman component
(u = ug + ue), and this leading-order force balance can be
written as

f × ug = −g∇η (2)

f × ue = F (3)

Satellite altimetery products typically provide the sea surface
height relative to the geoid (SSH, η), with tidally driven SSH
signals removed (Traon and Morrow, 2001). Since geostrophic
balance does not hold at the equator (f ≈ 0), typically (Ducet
et al., 2000), a higher order “equatorial geostrophic” treatment
is used to compute velocities near the equator (Lagerloef et al.,
1999), which is matched to the geostrophic regime away from
the equator. Usually, the data-assimilative processing algorithms
used to map along-track SSH observations to gridded maps

(e.g., AVISO Ducet et al., 2000) also involve some form of
temporal smoothing. The process of combining measurements
from multiple satellites and filtering can also lead to spurious
physical signals (Arbic et al., 2012) leading to exaggerated
forward-cascades of energy.

In addition to the geostrophic velocities, some products like
OSCAR (Ocean Surface Current Analysis Real Time, Bonjean
and Lagerloef, 2002), or GEKCO (Geostrophic and Ekman
Current Observatory, Sudre and Morrow, 2008; Sudre et al.,
2013) provide an additional ageostrophic component due to
Ekman flow. The Ekman velocity is related to friction, which
in the upper layer of the ocean is provided by wind stress
(τ =

(

τx, τy
)

) and since the Coriolis parameter f changes
sign at the equator, the functional relationship between velocity
and wind stress is different between the two hemispheres.
In the Northern Hemisphere the Ekman velocities can be
derived as:

ue =
1

ρ
√

2Az|f |
(τx + τy) (4)

ve =
1

ρ
√

2Az|f |
(−τx + τy) (5)

And in the Southern Hemisphere as:

ue =
1

ρ
√

2Az|f |
(τx − τy) (6)

ve =
1

ρ
√

2Az|f |
(τx + τy) (7)

where Az is the linear drag coefficient representing vertical
eddy viscosity (τ = ρAz

∂u
∂z ). Alternatively we can write these

equations in terms of the Ekman layer depth hEk which is related
to the eddy viscosity Az as:

hEk =

√

2Az

f
(8)

Both of these quantities (Az ,hEk) are largely unknown for the
global ocean and are estimated based on empirical multiple linear
regression fromLagrangian surface drifters (Lagerloef et al., 1999;
Sudre et al., 2013). Typical values of Ekman depth hEk in the
ocean range from 10 to 40m.

So geostrophy + Ekman is the essential underlying
physical/dynamical “model” currently used for calculating
surface currents from satellite observations. This procedure,
combining observations with physical principles, represents a
top-down approach A more bottom-up approach would be a
data driven regression model that extracts information about
empirical relationships from data. Recently, machine learning
(ML) methods have grown in popularity and have been proposed
for a wide range of problems in fluid dynamics: Reynolds-
averaged turbulence models (Ling et al., 2016), detecting eddies
from altimetric SSH fields (Lguensat et al., 2017), reconstructing
subsurface flow-fields in the ocean from surface fields (Chapman
and Charantonis, 2017; Bolton and Zanna, 2019), sub-gridscale
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modeling of PDEs (Bar-Sinai et al., 2018), predicting the
evolution of large spatio-temporally chaotic dynamical systems
(Pathak et al., 2018), data-driven equation discovery (Zanna
and Bolton, 2020), parameterizing unresolved processes, like
convective systems in climate models (Gentine et al., 2018), or
eddy momentum fluxes in ocean models (Bolton and Zanna,
2019), to name just a few examples.

In this study we aim to tackle a simpler problem than those
cited above: training a ML model to “learn” the empirical
relationships between the different observable quantities (sea
surface height, wind stress, etc.) and surface currents (u, v). The
hypothesis to be tested is the following: Can we use machine
learning to provide surface current estimates more accurately
than geostrophy + Ekman balance? The motivation for doing this
exercise is 2-fold:

1. It will help us understand how machine learning can
be applied in the context of traditional physics-based
theories. ML is often criticised as a “black box.” But can
we use ML to complement our physical understanding?
This present problem serves as a good test-bed since
the corresponding physical model is straightforward and
well-understood.

2. It may be of practical value when SWOT mission launches.

While statistical models can often be difficult to explain due to
lack of simple intuitive physical interpretations, several recent
publications (Ling et al., 2016; Gentine et al., 2018; Bolton
and Zanna, 2019; Zanna and Bolton, 2020) have demonstrated
that data-driven approaches, used concurrently with physics-
based models can offer various computational advantages over
traditional methods, while still respecting physical principles.
For our problem, which is much simpler in terms of its scope,
we aim to mitigate the so called “black-box” ness of statistical
models in general with physically motivated choices about inputs
and training strategies, to ensure results that are physically
meaningful. In this study, we mainly explore two types of
regression models (multiple linear regression and artificial neural
networks) as potential alternative approaches for predicting
surface currents, using data from a primitive equation global
general circulation model, and discuss their relative strengths
and weaknesses. We see this work as a stepping stone to more
complex applications of ML to ocean remote sensing of ocean
surface currents.

This paper is organized as follows. In section 2, we introduce
the dataset that was used, the framework of the problem
and identify the key variables that are required for training a
statistical model to predict surface currents. In section 3 we
describe numerical evaluation procedure for baseline physics-
based model that we are hoping to match/beat. In sections 4 and
5 we discuss the statistical models that we used. We start with the
simplest statistical model—linear regression in section 4 before
moving on to more advanced methods like neural networks
in section 5. In section 6 we compare the results from the
different models. In section 7 we summarize the findings, discuss
some of the shortcomings of the present approach, propose
some solutions as well as outline some of the future goals for
this project.

2. DATASET AND INPUT FEATURES

To focus on the physical problem of relating currents to surface
quantities, rather than the observational problems of spatio-
temporal sampling and instrument noise, we choose to analyze a
high-resolution global general circulation model (GCM), which
provides a fully sampled, noise-free realization of the ocean state.
The dataset used for this present study is the surface fields from
the ocean component of the Community Earth System Model
(CESM), called the Parallel Ocean Program (POP) simulation
(Smith et al., 2010) which has a ≈ 0.1◦ horizontal resolution,
with daily-averaged outputs available for the surface fields. The
model employs a B-grid (scalars at cell centers, vectors at cell
corners) for the horizontal discretization and a three-time-level
second-order-accurate modified leap-frog scheme for stepping
forward in time. The model solves the primitive equations of
motion, which, for the surface flow, are essentially (1). Further
details about the model physics and simulations can be found
in Small et al. (2014) and Uchida et al. (2017). We selected this
particular model simulation because of the long time record of
available data (∼40 years), although, in retrospect, we found that
all our ML models can be trained completely with just a few days
of output!

A key choice in any ML application is the choice of features,
or inputs, to the model. In this paper, we experiment with a
range of different feature combinations; seeing which features are
most useful for estimating currents is indeed one of our aims.
The features we choose are all quantities that are observable
from satellites: SSH, surface wind stress (τx and τy), sea-surface
temperature (SST, θ) and sea-surface Salinity (SSS). Our choice of
features is also motivated by the traditional physics-based model:
the same information that goes into the physics-based model
should also prove useful to the ML model. Just like the physics-
based model, all the ML models we consider are pointwise, local
models: the goal is to predict the 2D velocity vector u, v at each
point, using data from at or around that point.

Beyond these observable physical quantities, we also need
to provide the models with geographic information about the
location and spacing between the neighboring points. In the
physics-based model, geography enters in two places: (1) in the
Coriolis parameter f , and (2) in the grid spacing dx and dx,
which varies over the model domain. Geographic information
can be provided to the statistical models in a few different ways.
The first method involves providing the same kind of spatial
information that is provided to the physical models, i.e., f and
local grid spacings—dx and dy. We can also encode geographic
information (lat, lon) in our input features, using a coordinate
transformation of the form:





X
Y
Z



 =





sin(lat)
sin(lon) · cos(lat)
−cos(lon) · cos(lat)



 (9)

to transform the spherical polar lat-lon coordinate into a
homogeneous three dimensional coordinate (Gregor et al., 2017).
This transformation gives the 3D position of each point in
Euclidean space, rather than the geometrically warped lat/lon
space (which has a singularity at the poles and a discontinuity at
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the dateline). Note that one of the coordinates—X, that comes
out of this kind of coordinate transformation, is functionally
the same as the Coriolis parameter (f ) normalized by 2�
(� = Earth’s rotation). Therefore, we will use X as proxy
for f for all the statistical models throughout this study. We
also explored another approach where the only geographic

information provided to the models is X (= f
2� ).

Since geostrophic balance involves spatial derivatives, it is
not sufficient to simply provide SSH and the local coordinates
pointwise. In order to compute derivatives, we also need the
SSH of the surrounding grid points as a local stencil around
each grid point. The approach we used for providing this local
stencil is motivated by the horizontal discretization of the POP
model. Horizontal derivatives of scalars (like SSH) on the B grid
requires four cell centers. At every timestep, each variable of
the The 1◦ POP model ouput has 3, 600 × 2, 400 data points
(minus the land mask). We can simply rearrange each variable
as a 1, 800 × 1, 200 × 2 × 2 dataset or split it into four variables
each with 1, 800 × 1, 200 data points, corresponding to the four
grid cells required for taking spatial derivatives. The variables that
require a spatial stencil for physical models, we will refer to as
the stencil inputs. For the variables for which we do not need
spatial derivatives for (like wind stress), we can simply use every
alternate grid point resulting in a dataset of size 1, 800 × 1, 200.
We will refer to these variables as point inputs. For the purpose
of the statistical models the inputs need to be flattened and have
all the land points removed. This means that each input variable
has a shape of either N × 2 × 2 or N depending on whether
or not a spatial stencil is used (where N = 1, 800 × 1, 200−
the points that fall over land). Alternatively we can think of
the stencilled variable as four features of length N. This kind
of stencil essentially coarsens the resolution of the targets, and
point variables. Similarly we can also construct a three point time
stencil, by providing the values at preceding and succeeding time
steps as additional inputs so that each variable that is stencilled in
space and time has a shape ofN×2×2×3 (or 12 features of length
N). This data preparation leads to 10 potential features (for some
of which we will use a stencil, which further expands the feature
vector space) for predicting u, v at each point : τx, τy, SSH (η),
SST (θ), SSS (S), the three transformed coordinates (X,Y ,Z) and
the local grid spacings (dx and dy).

For building any statistical/ML model, we need to split the
dataset into two main parts, i.e., training and testing. For the
purpose of training our machine learning models, the first step
involves extracting the above mentioned variables from the
GCM output as the input features and the GCM output surface
velocities u, v as targets for the ML model. The data extracted
from the GCM output for a certain date (or range of dates) is
then used to fit the model parameters. This part of the dataset is
called the training dataset. During training, the model minimizes
a chosen cost function (we used mean absolute error for our
experiments, but usingmean squared error produced very similar
results) and typically involves a few passes through this section of
dataset. The trained models are then used to make predictions of
u, v for a different date (or range of dates) where the model only
receives the input variables. The model predictions are evaluated
by comparing with the true (GCM output) velocity fields for that

particular date (date range). This part of the dataset, which the
model has not seen during training, that is used to evaluate model
predictions is called the test dataset.

3. BASELINE PHYSICS-BASED MODEL:
GEOSTROPHY + EKMAN

The two components of the physics-based model used as the
baseline for our ML models are geostrophy and Ekman flow.
In this section we describe how these two components are
numerically evaluated for our dataset. For the sake of fair
comparison, we evaluate the geostrophic and Ekman velocities
from the same features that are provided to the regression
models. With the POP model’s horizontal discretization, finite-
difference horizontal derivatives and averages are defined as
(Smith et al., 2010):

ψx =
[

ψ(x+1x/2)− ψ(x+1x/2)
]

/1x (10)

ψx =
[

ψ(x+1x/2)+ ψ(x+1x/2)
]

/2 (11)

With the data preparation and stencil approach described in
the previous section, η now has a shape of N × 2 × 2 and
the f , u, v, dx, dy are all variables of length N. Following (2) the

geostrophic velocities (u
j
g , v

j
g) are calculated on the stencil as:

v
j
g = g/f j

[

ηi(1, 1)+ ηi(0, 1)− ηj(1, 0)− ηj(0, 0)
]

/4dxj (12)

u
j
g=−g/f j

[

ηj(1, 1)+ηj(1, 0)−ηj(0, 1)−ηj(0, 0)
]

/4dyj (13)

where j ∈ [1,N]. Similarly the Ekman velocity is calculated

numerically from the τ
j
x, τ

j
y, and f j as

u
j
e =







1

ρ
√

2Az |f j|
(τ

j
x + τ

j
y), if f j > 0

1

ρ
√

2Az |f j|
(τ

j
x − τ

j
y), if f j < 0

v
j
e =







1

ρ
√

2Az |f j|
(−τ jx + τ

j
y, if f j > 0

1

ρ
√

2Az |f j|
(τ

j
x + τ

j
y), if f j < 0

(14)

For calculating the Ekman velocity, we used constant values
for vertical diffusivity (Az = 8 × 10−3m2/s) and density of
water at the surface (ρ = 1, 027kg/m3). It should be noted
that both these quantities vary both spatially and temporally in
the real ocean. For the vertical diffusivity we came up with this
estimate by solving for Az that provides the best fit between
zonal mean ((u, v)true − (u, v)g) and (u, v)e. In the CESM high
res POP simulations, the parameterized vertical diffusivity was
capped around 100 cm2/s (Smith et al., 2010). For plotting spatial
maps for both the physics based model predictions as well as
the statistical model predictions, the velocity fields are then
reshaped into 1, 800×1, 200 arrays, after inserting the appropriate
land masks.
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4. MULTIPLE LINEAR REGRESSION
MODEL

The simplest of all statistical prediction models is essentially
multiple linear regression, where an output or target is
represented as some linear combination of the inputs. The input

is characterized by a feature vector x
j
i where i ∈ [1, nf ]; j ∈ [1,N],

N being the number of samples, and nf being the number of

features. We can now write the linear regression problem asUj =
x
j
i

T
· βi+δj. where βi are the coefficients or weight vector. For our

regression problem, the input features are wind stress, sea surface
height and the three dimensional transformed coordinates. Of
those features, η,X,Y ,Z are stencil inputs (meaning four input
columns per feature) and τx, τy are the point inputs, resulting
in a total of 18 input features. The aim therefore is to find
the coefficients βi that minimize the loss (error) represented by

δj for a training set of x
j
i and Uj (x

j
itrain,Utrain) and use these

coefficients for a test set of x
j
i (x

j
itest) to make predictions for Uj

(Uj
pred). For implementing linear regression model as well as the

deep learning models discussed subsequently in this study, we
use the Python library Keras (https://keras.io) (Chollet, 2015), a
high-level wrapper around TensorFlow (http://www.tensorflow.
org).

Linear regression can be performed in one of two
different ways

• The matrix method or Normal equation method (where we
solve for the coefficients β that minimize the squared error
‖δ‖2 = ‖U− XT · β‖2 and involves computing the pseudo-
inverse of XT · X).

• A stochastic gradient descent (SGD) method (which
represents a more general procedure that can be used for
different regression algorithms with different choices for
optimizers and is more scalable for larger datasets).

The normal-equation method is less computationally tractable
for large datasets (large number of samples) since it requires
loading the full dataset into memory for calculating the

pseudoinverse of x
j
i

T
· xji, whereas the SGD method works well

even for large datasets, but requires tuning of the learning rate.
Due to the versatility offered by the gradient descent method
we used that for performing the linear regression although the
normal equation method also produced similar results. The
essential goal for any regression problem is to minimize a
predetermined cost/loss function (which for our experiments we
chose as the mean absolute error):

J = MAE =
(

|upred − utrue| + |vpred − vtrue|
)

(15)

where the overbar denotes the average over all samples.
Figure 1A shows a schematic of the linear regression model. The
number of trainable parameters for our example with 18 inputs
and two outputs is 38 (18× 2 weights + 2 biases). For the sake of
consistency, we use the same optimizer (Adam; Kingma and Ba,
2017) and loss function (Mean absolute error, MAE) for this as
well as all the subsequent models discussed here. All models are

trained on 1 day of GCM output data and we use the same date
of model output as the training data for all models.

5. DEEP LEARNING: ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks (or neural networks for short) are
machine learning algorithms that are loosely modeled after the
neuronal structure of a biological brain but on a much smaller
scale. A neural network is composed of layers of connected
units or nodes called artificial neurons (LeCun et al., 2015;
Nielsen, 2015; Goodfellow et al., 2016) that combine input from
the data with a set of weights and passes the sum through
the node’s activation function along with a bias term, to the
subsequent set of nodes, to determine to what extent that signal
progresses through the network and how it affects the ultimate
outcome. Neural nets are typically “feed-forward,” meaning that
data moves through them in only one direction. A layer is called
densely connected when each node in that layer is connected to
every node in the layers immediately above and below it. Deep
learning, or deep neural networks is the name used for “stacked
neural networks”—i.e., networks composed of several layers.

Our neural network code was written using the Python
library Keras (https://keras.io) (Chollet, 2015), a high-level
wrapper around TensorFlow (http://www.tensorflow.org). The
feed-forward NNs consist of interconnected layers, each of which
have a certain number of nodes. The first layer is the input
layer, which in our case is a stacked vector containing the input
variables just like in the linear regression example above. The
last layer is the output layer, which is a stacked vector of the two
outputs (U,V). All layers in between are called hidden layers. The
activation function, i.e., the function acting on each node – is a
weighted sum of the activations in all nodes of the previous layer
plus a bias term, passed through a non-linear activation function.
For our study, we used the Rectified Linear Unit (ReLU) as an
activation function. The output layer is purely linear without an
activation function. Training a NN means optimizing the weight
matrices and bias vectors to minimize a loss function—in our
case the MAE—between the NN predictions and the true values
of (u, v).

The model reduces the loss, by computing the gradient
of the loss function with respect to all weights and biases
using a backpropagation algorithm, followed by stepping down
the gradient—using stochastic gradient descent (SGD). In
particular we use a version of SGD called Adam (Kingma
and Ba, 2014, 2017). Although most neural network strategies
involve normalizing the input variables, we did not use any
normalization, since the normalization factors would be largely
dependent on the choice of domain/ocean basin, given that the
dynamical parameters (like SSH and wind stress) vary widely
across the different ocean basins. Instead we wanted the NN to
be generalizable across the whole ocean.

We construct a three-hidden-layer neural network to replace
the linear regression model described in the previous section. A
schematic model architecture for the neural network is presented
in Figure 1B. Using the same basic model architecture, we
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FIGURE 1 | (A–D) Schematic of the four different types of statistical models used in the study. All models shown were implemented using keras tensorflow (Chollet,

2015) and we use Mean absolute error (MAE) as the loss function and the Adam optimizer (Kingma and Ba, 2017) with default parameters and learning rates.

train three NNs on the same three subdomains (Gulf Stream,
Kuroshio, ACC) along with one which is trained on the global
ocean. Everything including batch size, the training data, the
targets, the input features and the number of epochs the model
is trained for in each region is kept exactly the same as what
we used for the linear regression examples. The only thing that
we changed is the model, where instead of one layer with no
activation we now have three hidden layers with a total of 1,812
trainable parameters.

5.1. Neural Networks With Convolutional
Filters
In section 2 we explained how we can use the local 2 × 2
stencil to expand the feature vector space by a factor of 4. We
can further expand the feature vector space by passing all the
stenciled input features through k convolutional filters of shape
2 × 2. If k > 4ns

f
where ns

f
is the number of input features with

a stencil, we end up with more input features that goes into the
NN than before. There is very little functional difference between
this kind of training approach and the one discussed previously,
except that we end up with more trainable parameters, which
we can potentially use to extract even more information from
the data. We should point out that this is technically not
the same as convolutional neural networks (CNN), where the
convolutional layers serve to reduce the feature vector space
without losing information. This is particularly important for
problems like image classification where it is needed to scale
down large image datasets without losing feature information.
Typically in a CNN, the inputs would be in the form of an
image or a set of stacked images on which multiple convolutional
filters of varying sizes could be applied (followed by max-pooling
layers) that effectively shrink the input size, before passing it
on to the hidden layers, and the size of the convolutional filters

determine the size of the stencil1. Whereas in this approach,
we use convolutional filters (without max-pooling) to achieve
the opposite effect, i.e., to expand the feature vector space from
N × 2 × 2 × ns

f
to N × k (where k is always chosen to

be > 4ns
f
). The reshaping of the input variables in the pre-

processing stage fixes the stencil size, before the data is fed into
the model.

A schematic of this subcategory of neural network is shown
in Figure 1C. After applying the convolutional filter and passing
it through a reshape layer in keras the point inputs and filtered
stencil inputs are passed through a Leaky ReLU before being fed
into a similar three-hidden layer NN framework as described
before. Using a similar procedure, we can also apply k 3D
convolutional filters of shape 2 × 2 × 3 on the time and space
stenciled inputs to effectively end up with k input features of
length N for the stencil variables (Figure 1D). The goal with the
time stenciled input being to potentially learn time derivatives
and explore how the tendencies can affect the NN projections. In
hindsight, this data set is probably not be the most suited for this
kind of approach since the variables we used as input features
are daily averaged and any fast-time scale/tendency effects that
we hoped to capture from multiple snapshots of the same
variable are probably filtered out by the time averaging. These
two approaches are virtually identical with slightly different
preprocessing of the input data.

1For an input of size 500 × 500 for example, one can apply convolutional filters

as small as 2 × 2 or as big as the entire image. However, since CNNs and other

computer vision approaches rely on the property that nearby pixels are more

strongly correlated than more distant pixels (Bishop, 2006), larger filters can be

useful for reduction of data volume, but they often result in degradation of data

quality and prediction accuracy, due to inclusion of non-local effects.
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FIGURE 2 | Snapshot of the surface speed in the CESM POP model with the three boxes in different colors indicating the training regions chosen for the different

regression models. The green box is chosen as the Gulf stream region, the red box is Kuroshio and the yellow box represents the Southern Ocean/Antarctic

circumpolar current (ACC). The Kuroshio region extends slightly south of the equator to include the equatorial jets in the domain and to test the models’ ability to

generalize to large variations in f.

6. RESULTS

We start by splitting the global ocean into three boxes to
zoom into three distinct regions of dynamical importance in
oceanography, namely the Gulf stream, Kuroshio, and Southern
ocean/Antarctic circumpolar current (ACC). The Kuroshio
region is chosen to extend south of the equator to include
the equatorial jets as well as to test whether the models can
generalize to large variations in f. The daily averaged GCM
output surface speed on a particular reference date, with the three
regions (marked by three different colored boxes) is shown in
Figure 2. We then train three different linear regression models
with training data from these three sub-domains. We also trained
a linear regression model for the whole globe using the same
model architecture. During training, the models are fed a shuffled
batch of the training data with 32 samples in each batch and the
loss (MAE) is computed for the batch. For the linear regression
model as well as for all the neural networks discussed in this
study we present here we kept the batch size constant. Changing
the batch size does not significantly alter the loss at the end of
training, but smaller batch sizes generally help the model learn
faster. The different models, the number of epochs (an epoch

is defined as one pass through the training dataset) used for

each, and losses at the end of training and during evaluation

against a test dataset are summarized in Table 1. The evolution
of model loss function during training for the 3 different models

are presented in Figure 3. Linear regression is shown in the
darker colors. The big jumps in the loss function correspond
to the end of an epoch. We plot the models’ training progress
in the Gulf Stream region for 8 epochs, and for 5 epochs on
the Kuroshio and ACC regions. The trained models are then
evaluated for a test dataset (which the model has not seen, GCM
output from a different point in time) and the evaluation loss
is plotted as the horizontal dashed lines. The linear regression
model trained on the whole globe is also evaluated for each
subdomain (gulf stream, Kuroshio, ACC) and the global model
evaluation loss is plotted as the dotted line. Comparing the model
losses in the three different sections, we find that the linear
regression model performs the most poorly for the Kuroshio
region (i.e., the subdomain with the most variation in f ). The
model does progressively better for the gulf stream and the ACC
in terms ofMAE, where the variations in f are relatively smaller in
comparison. However, the root mean squared error of predicted
velocities is still quite large in all these regions (second panels of
Figures 4–6). The linear regression model trained on the global
ocean does even worse during evaluation. Since geostrophy relies
on non-linear combination of the Coriolis parameter (f ) with
the spatial gradients, linear regression is ineffective at predicting
velocities beyond localized regions with small variation of f or
little mesoscale activity. This shows that a linear model fails to
accurately represent surface currents in any region that includes
significant variation in the Coriolis parameter f . Even in regions
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far enough from the equator such that the variation in f is not
significant (like the gulf stream or ACC), the performance of such
a linear model does not improve with more training examples
and/or starts overfitting. We also show that a lower MAE during
training does not necessarily guarantee that the model is picking
up on the small scale fluctuations in velocity, as can be seen
from the relatively large squared errors especially in and around
high surface current regions (Figures 4–6). We suspect that this
failure is largely due to the fact that the linear model is trying to
fit the velocities as a linear combination of the different features,
whereas realistic surface current predictions should be based on
non-linear combinations of features.

Neural networks on the other hand, due to the presence of
multiple dense interconnected layers can be effectively used to
extract these non-linear relationships in the data. Just like we did
with the linear regression model, we tracked the evolution of the
loss function as the model scans through batches of input data
overmultiple epochs (Figure 3, lighter colored lines in all panels).
As we can see, in comparison to the linear regression model, the
NNs perform significantly better at reducing the loss in all the
ocean regions. What is even more striking is that the NN trained
on the globe (dashed line) consistently outperforms the local
models, predicting surface currents with lower MAE/MSE than
the models trained on the local subdomains. This is especially
noticeable for the Kuroshio region (Figure 3, second panel),
where the NN trained on the globe manages to get the signature
of the equatorial currents better than the NN trained specifically
in that region (compare panels 3 and 4 of Figure 5) and gets the
absolute error down to ≈5 cm/s. This shows, that in comparison
to the linear model the neural network actually manages to learn
the physics better when it receives a more spatially diverse input
data, and is therefore more generalizable. Even though the linear
regression models all manage to get the loss down to comparable
magnitude, looking at the spatial plot of the predicted squared
error. Figures 4–6 gives us an idea how poorly it does at actually
learning the physics of surface currents. In comparison, even a
relatively shallow three-hidden-layer neural network performs
significantly better with very few localized hotspots of large
errors. This is to be expected since the largest order balance,
i.e., geostrophy relies on non-linear combination of the Coriolis
parameter (f ) with the spatial gradients.

In Figure 7 we plot the joint histogram of the zonal and
meridional velocity predictions against the true (GCM output)
values for the physical model, linear regression model (trained
on the local subdomain) and the locally and globally trained
neural networks in the ACC sector. From these joint histograms,
it is obvious that the physical model, the local and global neural
networks all predict velocities that are extremely well-correlated
with the true velocities in this region. In addition the root
mean squared (rms) errors normalized by the rms velocities
are also very well-correlated between the physical model and
neural network predictions. This provides us with reasonable
confidence that the model is indeed learning the physics of
surface geostrophy and Ekman flow.

We also plotted the squared errors in predicted velocity form
the physical model (geostrophy + Ekman) and the local Rossby
number (expressed as the ratio of the relative vorticity ζ =

vx − uy, to the planetary vorticity f ) in the three domains
(Gulf Stream—Figure 4; Kuroshio—Figure 5; and the ACC—
Figure 6). It is interesting to note that the localized regions in
large root squared errors in both the neural network and physical
models coincide with regions where the local Rossby number is
high. High Rossby numbers indicate unbalanced flow and the
specific regions where we see high Rossby numbers are typically
associated with heightened submesoscale activity. We speculate
that the prediction errors in these locations are due to the NN’s
inability to capture higher order balances (e.g., gradient wind,
cyclostrophic balance) that are necessary to fully capture the
small scale variability associated with these motions and close the
momentum budget.

The NN also generally predicts weaker velocities near the
equator where the true values of the surface currents are quite
large (due to strong equatorial jets). This can lead to large errors
for the global mean, which get magnified when the differences
are squared. However, we know that geostrophic and Ekman
balance also doesn’t hold near the equator. A fairer comparison
would therefore involve masking out the near equatorial region
(5◦N − 5◦S) for both the statistical model (i.e., NN predictions)
as well as for the physical model (geo+ ekman).

6.1. Model Dependence on Choice of Input
Features
We then trained these NNs with varying combinations of input
features to explore how the choice of input features can influence
the model training rate and loss. Feeding the NN models varying
combination of input features, either as stencilled or as point
variables and by selectively holding out specific features for each
training case allowed us to assess the relative importance of
each physical input variable for the neural network’s predictive
capability. The different models with their corresponding input
features and the number of trainable parameters for each case
are summarized in Table 2. As with all previous examples, we
chose mean absolute error as the loss function for all these
experiments. We performed a few training exercises using the
mean squared error instead and did not notice any significant
difference. For models numbered 1–13, we used a two point
space-stencil and for models 1t–10t, in addition to a stencil in
space, we provide a three point time stencil with the intention of
helping the neural network “learn” time derivatives. The different
experiments listed in Table 2, can broadly be categorized into
six groups based on their input features. In group 1, is model 1,
where the model only sees η (stencil) and wind stress, τ (point) as
input features. No spatial information is provided. In the second
category, we have models that receive η (stencil) and spatial
information X in some form, but no wind stress. This includes
models 2, 5t, and 7t. The third category describes models that
receive η, θ (stencil) and spatial information X and no wind
stress and includes models 3, 6t, and 8t. The fourth category
describes models that receive SSH (η), spatial information (X)
and wind stress (τ ) but no SST and includes models 4, 6, 7, 10,
1t, and 3t. The fifth category of models receive SSH (η), SST
(θ), spacial information (X), and wind stress and the only input
feature these models don’t receive in any form is sea surface
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TABLE 1 | Table summarizing model errors from the physics based model (geostrophy + Ekman flow) and the two types of regression models—linear regression and

neural network (Figures 1A,B).

Model (training

region)

Number of trainable

parameters

Epochs MAE (train)

(cm/s)

MAE (eval) GS

(cm/s)

MAE (eval)

Kuroshio (cm/s)

MAE (eval)

ACC (cm/s)

LR (Gulf Stream) 38 8 10.7 11.4 – –

NN (GS) 1,812 8 2.3 3.7 – –

LR (Kuroshio) 38 5 12.9 – 13.4 –

NN (Kuroshio) 1,812 5 5.8 – 7.0 –

LR (ACC) 38 5 7.5 – – 7.5

NN (ACC) 1,812 5 1.9 – – 4.5

NN (global) 1,812 4 3.0 2.4 5.1 1.8

geo+ Ek (global) – – – 6.1 29.2 3.9

FIGURE 3 | Evolution of the loss function (mean absolute error; MAE) for Neural Networks and Linear regression models during training. Horizontal lines of the

corresponding color denote the MAE for the model when evaluated at a different time snapshot. Dashed lines denote the evaluated (test data) MAE for the local model

and dotted lines denote that for the model trained on the globe.

FIGURE 4 | Snapshot of model predicted root square errors for the physics based model (left) and the three different regression models—Linear regression (second

from left), neural network, trained on this local domain (third panel) and neural network, trained on the globe (4th panel) compared side by side with the local Rossby

Number (Ro, right panel) in the Gulf Stream region indicated by the green box in Figure 2.

salinity (S). This includes models 5, 8, 9, 11, 2t, 4t. The sixth and
final category represents models tat receive all the input features
(η, θ , S,X, τ ) in some form or another and includes models 13,
9t, and 10t.

As mentioned previously, spatial information is provided
in one of three ways, (a) in the form of three dimensional
transformed coordinates (X, Y, Z), (b) just the Coriolis parameter
(X here serves as a proxy for the Coriolis parameter) and (c) with
both the Coriolis parameter and local dx and dy values. Barring a
few examples (models 10, 11) windstress is always provided as
a point variable and apart from models 6, 7, 8, 9, none of the

models receive a stencil in the spatial coordinates.We also trained
a few models without SSH as an input feature, but the loss in all
these cases was much larger than those shown here (>50 cm/s)
and the NNs fail to pick up any functional dependence on the
input features. Those cases are therefore not presented. Each of
these models are trained for 4 Epochs on the same day of data
(or 3 consecutive days centered around that date for the time
stencilled cases).

In Figure 8 we summarize the findings from these
experiments by plotting the rms error for all the model
predictions along with the rms error for the physical model
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FIGURE 5 | Snapshot of model predicted root square errors for the physics based model (left) and the three different regression models—Linear regression (second

from left), neural network, trained on this local domain (third panel) and neural network, trained on the globe (4th panel) compared side by side with the local Rossby

Number (Ro, right panel) in the Kuroshio region indicated by the red box in Figure 2. Note the large errors in all the model predictions near the equator.

FIGURE 6 | Snapshot of model predicted root square errors for the physics based model (top) and the three different regression models—Linear regression (second

panel), neural network, trained on this local domain (third panel) and neural network, trained on the globe (4th panel) compared side by side with the local Rossby

Number (Ro, bottom panel) in the Southern Ocean/Antarctic circumpolar current region indicated by the yellow box in Figure 2.
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FIGURE 7 | Scatterplot of true v predicted zonal and meridional velocities for the different physical and regression models (eight panels on the left) in the ACC region.

The right panel shows the scatterplot of the root mean squared errors (normalized by the root mean square velocities) for the physical and neural network model

predictions.

TABLE 2 | Table summarizing the different CNNs and the training strategies explored.

Model No. Stencil in space (2s) Stencil in time (3t) Stencil variables Point variables Number of trainable parameters

1 X × η τx , τy 4,772

2 X × η X (= f
2� ) 4,732

3 X × η, θ X 5,052

4 X × η X, τx , τy 4,812

5 X × η, θ X, τx , τy 5,132

6 X × η,X,Y ,Z τx , τy 5,732

7 X × η,X τx , τy 5,092

8 X × η, θ ,X,Y ,Z τx , τy 6,052

9 X × η, θ ,X τx , τy 5,412

10 X × η, τx , τy X 5,372

11 X × η, θ , τx , τy X 5,692

12 X × η, θ X,dx,dy, τx , τy 5,212

13 X × η, θ ,S X,dx,dy, τx , τy 5,532

1t X X η τx , τy ,X,dx,dy 5,532

2t X X η, θ τx , τy ,X,dx,dy 6,492

3t X X η τx , τy ,X 5,452

4t X X η, θ τx , τy ,X 6,412

5t X X η X,dx,dy 5,452

6t X X η, θ X,dx,dy 6,412

7t X X η X 5,372

8t X X η, θ X 6,332

9t X X η, θ ,S τx , τy ,X 7,372

10t X X η, θ ,S τx , τy ,X,dx,dy 7,452

predictions side by side. With the exception of five models
(model 1, 5t, 7t, 6t, and 8t) all our NN model predictions have
lower domain mean squared errors than the physics-based
models. In terms of features, model without spatial information
has the largest error, followed by models without wind stress
(The absolute largest error is for the model without SSH,
which is too big to be considered here). This signifies that to
accurately represent surface currents, apart from SSH, the most
important pieces of information required by the neural networks

to successfully learn the physics of surface currents are spatial
information and wind stress. It is striking to see how much the
model struggles without spatial information. This implies that
latitude dependence is a critical component for a NN to be able
to predict surface currents accurately. It is only expected since
the dynamics of surface currents do depend very strongly on
latitude and therefore it is impossible to construct a meaningful
predictionmodel based on just snapshots without any knowledge
of latitude.
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FIGURE 8 | Figure comparing the rms error of the different model predictions along with the rms error for the physical models as a function of features.

FIGURE 9 | Comparison of the zonal mean rms errors for the various NN

predictions shown alongside the physical model (with and without

Ekman flow).

The zonal mean rms error for the predictions from some
of the representative models from the six categories described
above are shown in Figure 9. The NNs all generally predict

weaker velocities near the equator where the true values of the
surface currents are quite large (due to strong equatorial jets).
This can lead to large errors for the global mean, which get
magnified when the differences are squared. However, we know
that geostrophic and Ekman balance also doesn’t hold near the

equator. Therefore, to allow for a fair comparison between all
the models, we mask out the rms errors in a 10◦ latitude band

surrounding the equator (5◦N − 5◦S) for both the physical and

statistical models. Out of all the models, model 1 which does not
receive any spatial information (X), has the highest mean squared

errors throughout the globe. For the models that don’t see wind

stress (τ ) as an input feature, the rms errors are comparable if
not smaller at most latitudes when compared to the physics-
based model where you only consider geostrophy (dashed black
line). Additionally, all models that receive η, τ and X in some
form perform consistently better than geostrophy + Ekman at
all latitudes (except for near the equator where the physics-based
models and the NN are all equally inadequate). We noticed that
during training, the NN’s minimize the loss function slightly
faster when a stencil is provided for the spatial coordinates, but
after a few epochs the differences in training loss between models
that receive a spatial stencil and models that dont, diminish
very rapidly. During prediction also, the models that receive
stencils in spatial coordinates perform slightly better especially
at the high latitudes than the ones where spatial information is
provided pointwise.

Therefore among the various strategies tested, for this
particular dataset, the models that perform the best in terms of
prediction rms error are the models that receive SSH, wind stress
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FIGURE 10 | Sensitivity of the neural networks to perturbations in the different input features. Each input feature is perturbed by three different Gaussian noise

perturbations with standard deviations of 0.5σ , σ , and 2σ , where σ is the standard deviation of each variable, while keeping the remaining input variables fixed. The

left panel shows the model loss (mean absolute error, MAE) evaluated for each of these perturbations. The horizontal dashed line represents the loss for the

unperturbed/control case. The right panel shows the deviation in MAE for each of these perturbation experiments normalized by the amplitude of the perturbation.

and spatial information with a space stencil. The three point time
stencil does not add anything meaningful and appears to hurt,
rather than help the model overall, which was surprising, even
though in hindsight we speculate that this might be due to the
daily averaged nature of the POP model output. Variables like
sea surface temperature and sea surface salinity have very little
impact on the model as well.

In terms of choice of features, model 13 stands out as the
most practical and physically meaningful training strategy for a
few reasons.

• It is the most complete in terms of features
• It is the most straightforward to implement, since it does

not involve calculating any transformed three dimensional
coordinates. (All the input variables would be readily available
for any gridded oceanographic dataset.)

• It is one of the models with the lowest prediction rms errors.

For these specific reasons we choose model 13 as the reference
for performing a sensitivity analysis. The purpose of this analysis
is to characterize the sensitivity of the model to perturbations
in the different input features during testing/prediction. For
the sensitivity tests we simply add a gaussian noise of varying
amplitude to each of the input variables, while keeping the rest
of the input variables fixed. For each of the input variables
(xi ∈ {η, θ ,X, dx, dy, τx, tauy}), we chose three different zero-
mean gaussian noise perturbations with the standard deviations
of 0.5σ (xi), σ (xi), and 2σ (xi), where σ (xi) is the standard
deviation of the corresponding input variable xi. The model loss
is then evaluated for each of these perturbations and normalized
by the amplitude of perturbations (right panel Figure 10). This
normalization is done to level the playing field for all the
input variables and allow for a one-to-one comparison since
the different input variables vary in orders of magnitude [e.g.,

the amplitude of perturbations in SSH is O(100), while the
amplitude of perturbations in wind stress is O(1) and therefore
a perturbation of amplitude σ (η) in η would lead to a much
larger model error than a perturbation of σ (τx) in τx would, as
can be seen from the log scaling of the y-axis in the left panel of
Figure 10].

Given what we learned about the importance of spatial
coordinates for NN training, it is not surprising to see that for
prediction also, the NN is most sensitive to perturbations in the
Coriolis parameter (or X). The input variables that the model
is most sensitive to, arranged in descending order of model
sensitivity are Coriolis parameter, SSH, and wind stress, followed
by SST. The model is not particularly sensitive to perturbations
in local grid spacing or salinity. The relative effect of the input
variables, observed in the model sensitivity test closely matches
what we saw in the different model training examples where
we selectively held out these features. This again confirms that
in order to train a deep learning model to make physically
meaningful and generalizable predictions of surface currents it
is not sufficient to simply provide it snapshots of dynamical
variables like SSH as images. We also need to provide spatial
information like latitude for the NN’s to effectively “learn” the
physics of surface currents.

7. SUMMARY AND FUTURE DIRECTIONS

The goal of this study was to use machine learning to make
predictions of ocean surface currents from satellite observable
quantities like SSHwind stress, SST etc. Our central question was:
Can we train deep learning basedmodels to learn physical models
of estimating surface currents like geostrophy, Ekman flow and
perhaps do better than the physical models themselves?
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We used the output from the CESM POP model surface fields
as our “truth” data for this study. As a first order example, we
tested a linear regression model for a few of local subdomains
extracted from the global GCM output. Linear regression works
well only when the domains are small and far removed from
the equator and gets progressively worse as the domain gets
bigger and the variation in local Coriolis parameter gets large
especially when f changes sign in the domain. This showed that
unsurprisingly it is not possible to train a simple linear model to
accurately predict surface currents. In addition, providing more
data does not necessarily improve the predictive ability of a linear
model and only made it worse as it starts overfitting.Whereas, for
the same kind of domain, a neural network we can minimize the
loss (MAE) with fewer data-points and still remain generalizable,
since neural networks can learn functional relationships between
regressors (input features) with only a small amount of data. The
model’s ability to make predictions is also shown to improve
with more data. Furthermore, compared to a linear regression
model, a NN even with a relatively small network of densely
connected nodes, with a suitable non-linear activation function
(like ReLU), allows us to have a large number of trainable
parameters (weights, biases) that can be optimized to minimize
the loss. The activation function is what allows the different
non-linear combinations between the different regressors (input
features). Somewhat surprisingly, a neural network trained on the
entire globe is shown to predict surface currents more accurately
in the sub-domains than neural networks trained in those specific
sub domains. We suspect that is due to the fact that when trained
locally with fewer data points, the neural network only sees part
of the distribution of the input variables, as a result of which
the stochastic gradient descent settles on a local minima and
the model starts overfitting. Whereas, when trained globally, the
neural network sees the full distribution of the input variables
(not just a section) and SGD settles on a more realistic global
minima. This can be observed in Figure 3, in all the local training
examples, where model loss at the end of training is consistently
lower than the model evaluation loss, when evaluated at a
different date. In comparison, a similar approach with a linear
regression model produces the opposite result, i.e., a globally
trained linear regressionmodel produces higher prediction errors
than the one that’s trained on each specific sub-domain. However,
for linear regression, the evaluation losses are always consistently
higher than the training losses, regardless of whether we consider
a locally or a globally trained model. The fact that spatially
diverse data actually makes the neural network perform better
indicates that a neural network can actually “learn” the functional
relationships needed for calculating surface currents, i.e., be more
generalizable, instead of simply memorizing some target values
for different combination of input features. By examining the
dependence of the NNs on the choice of input features and
by looking at the sensitivity of a NN model to perturbations
in the input features, we established that apart from SSH, the
physical location of the input features is one of the most crucial
elements for the NN to “learn” the physics of surface currents. It
is further demonstrated that with a careful and deliberate choice
of input features the neural network can even beat the physics-
based models at predicting surface currents accurately in most

regions of the global ocean. A key ingredient for calculating the
Ekman part of the flow using current physics based models is
the vertical diffusivity, which is largely unknown for most of the
global ocean. Most observational ocean current estimates that
include the Ekman part of the flow relies on inferring the vertical
diffusivity based on empirical multiple linear regressions with
Lagrangian surface drifter data, The neural network approach,
by comparison does not suffer from the same kind of limitation,
since in this framework, we do not need to provide Az as an input
feature, which is one more added advantage for this method.

In this study, we wanted to see whether we can train a
statistical model like a NN with data to essentially match or
perhaps beat the baseline physics based models we currently use
to estimate surface currents. By examining the errors in surface
current predictions from our NN predictions and comparing
them with predictions from physically motivated models (like
geostrophy and Ekman dynamics), we showed that a relatively
simple NN captures most of the large scale flow features equally
well if not better than the physical models, with only 1 day of
training data for the globe.

However, some key aspects of the flow, associated with
mesoscale and sub-mesoscale turbulence are not reproduced. We
speculate that this is possibly caused by the fact that the neural
network framework can not capture the higher order balances
(gradient wind) that are likely at play in these regions since these
hotspots of high errors are collocated with regions of High Ro
where balance breaks down (see Figures 4–6).

One of the biggest hurdles associated with these studies
is figuring out efficient strategies to stream large volumes of
earth system model data into a NN framework. So before
diving headfirst into the highest resolution global ocean model
(currently available), we wanted to test the feasibility of using
a regression model based on deep learning as a framework
for estimating surface currents with a lower resolution model
data (smaller/more manageable dataset), while still being eddy
resolving. Hence we chose the CESM POP model data for this
present study. In the future, we propose to train a NN with data
from a higher spatio-temporal resolution global ocean model like
theMITgcm llc4320 model (Menemenlis et al., 2008; Rocha et al.,
2016). As a further step, we could coarse-grain such a model to
SWOT-like resolutions, or use the SWOT simulator, train NNs
on that, and make predictions for global surface currents.

As for the weak surface currents predicted by our NN at
the equator, we need to keep in mind that geostrophic balance
(defined by the first order derivatives of SSH) only holds away
from the equator and satellite altimetry datasets (e.g., AVISO,
Ducet et al., 2000) typically employ a higher order balance
(Lagerloef et al., 1999) at the equator, to match the flow regime
with the geostrophic regime away from the equator. One possible
way to train the NN to learn these higher order balances
would be by increasing the stencil size around each point. Since
our primary goal was for the model to learn geostrophy, we
started with a spatial stencil in SSH. We also explored training
approaches where we provided stencils in SST, wind and SSS,
with the intention of helping the model learn about wind-stress
curl and thermal wind balance. In practice, however these didn’t
payoff as much and these additional stencils did not significantly
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improve model performance. In future approaches we can try
to provide separate stencils of varying size to each of these
input variables, to test whether we can further improve the
model accuracy.

As another future step, we also aim to incorporate recursive
neural networks (RNNs) in conjunction with convolutional filters
of varying kernel sizes, to train the models on cyclostrophic or
gradient wind balance. This recursive neural network approach
would be analogous to iteratively solving the gradient wind
equation (Knox and Ohmann, 2006), a technique which was
originally developed for numerical weather prediction before
advances in computing allowed for integrating the full non-
linear equations.

The present work demonstrates that to a large extent, a simple
neural network can be trained to extract functional relationships
between SSH, wind stress, etc. and surface currents with quite
limited data. The field of deep learning as of now is rapidly
evolving. It remains to be seen, if with some clever choices
of training strategies and by using some of the other more
recently developed deep learning techniques, we can improve
upon this. In this study, we propose a few approaches that can be
implemented to improve upon our current results and would like
to investigate this in further detail in future studies. In addition,
we believe that data driven approaches, like the one shown in
this present study, have strong potential applications for various
practical problems in physical oceanography, and require further
exploration. Insights gained from this type of analysis could be of

great potential significance, especially for future satellite altimetry
missions like SWOT.
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