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The states of Michigan and Ohio issued shutdown orders in mid-March 2020 in an
attempt to slow the spread of the coronavirus (COVID-19), resulting in widespread
disruption to economic and human activity. This study, which was commissioned by
NASA headquarters, utilized satellite remote sensing data from the Visible Infrared
Imaging Radiometer Suite sensor onboard the Suomi National Polar-orbiting Partnership
satellite to investigate whether these changes in activity led to any short-term changes
in water quality in the Great Lakes region by comparing 2020 data to a historic
baseline. The water quality parameters examined included chlorophyll-a (CHL) and
total suspended solids (TSS) concentrations, water clarity, and harmful algal bloom
(HAB) extent. These parameters were investigated in two Great Lakes basins which
experience significant anthropogenic pressure: the western basin of Lake Erie (WBLE)
and Saginaw Bay in Lake Huron (SBLH). TSS concentrations in April 2020 were below
the historic baseline in both basins, and largely remained low until September. SBLH also
experienced elevated CHL concentrations in April which persisted through the summer.
Additionally, the WBLE HAB extent was down in 2020 after an early end to the growing
season. However, this investigation found that the COVID-19 shutdowns were likely not
a direct driver of these short-term anomalies. Instead, recent trends in the indicators
and co-occurring anomalies in hydrological and meteorological conditions (e.g., lake
temperature, river discharge, and wind speed) appeared to be more responsible for the
detected water quality changes. Future work will investigate whether the shutdowns
have a long-term or delayed impact on Great Lakes water quality.

Keywords: coronavirus – COVID-19, water quality, Great Lakes, anomaly, remote sensing

INTRODUCTION

The coronavirus disease (COVID-19) was initially identified in January 2020 (Zhu et al., 2020).
It spread slowly at first but the number of infections began to grow rapidly: from 44 confirmed
cases on January 3, 2020 to 282 on January 20 (World Health Organization [WHO], 2020a) and
over 9,826 confirmed cases in 20 countries by the end of January, prompting the World Health
Organization (WHO) to issue a public health emergency of international concern (World Health
Organization [WHO], 2020b).

The United States reported its first confirmed case of COVID-19 on January 20, 2020 (Holshue
et al., 2020), and by February 7, 2021, had confirmed over 26 million infections and over 450,000
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deaths due to the disease according to the WHO COVID-19
dashboard.1 The states of Michigan and Ohio reported their
first positive cases in the initial weeks of March 2020 (Pelzer
and Hancock, 2020; State of Michigan, 2020a). Despite efforts
to slow its spread, both states experienced a rapid increase
in infections and deaths in the ensuing weeks, leading the
governors of both states to issue temporary shutdown orders
beginning on March 23rd in Ohio (Ohio Department of Health,
2020) and 24th in Michigan (State of Michigan, 2020b). During
these shutdowns, most economic activity was shut down and
people were encouraged to stay at home. Surveys conducted in
two subsequent weeks surrounding the start of the Michigan
shutdown (March 21–22, 2020 and March 28–29, 2020) revealed
the immediate impact of the shutdowns on resident’s activities.
The percentage of respondents that reported staying at home
all day for each of the prior 5 days increased from 19 to
47% and the percentage of respondents who went into work
or a volunteer site at least once in the prior 5 days decreased
from 46 to 30% (Cassidy-Bushrow et al., 2021). An analysis of
mobile device data revealed that mobility decreased during the
social distancing periods throughout both Michigan and Ohio
(Garnier et al., 2021).

Initially intended to last just a few weeks, the shutdowns were
extended several times as the disease continued to spread. Even
as the shutdowns began to be lifted in the summer of 2020,
many industries remained closed or opened at limited capacities
(Bischoff, 2020; Hutchinson, 2020). According to US Bureau of
Labor Statistics (BLS) data,2 the shutdowns resulted in massive
employment losses in the Michigan and Ohio manufacturing
industries, with 28 and 14% declines from March 2020 to
April, respectively. These numbers had somewhat recovered by
June, but were still below the pre-pandemic levels (11 and 6%,
respectively) (Supplementary Figure 1). Daily testing data from
the Centers for Disease Control and Prevention3 (CDC) reveal
that the shutdowns helped to reduce the spread of COVID-
19 until both states experienced resurgences in mid-summer
(Supplementary Figure 2).

Shutdowns were a common approach used throughout the
United States and in other nations. In addition to slowing
the spread of COVID-19, there have been numerous reports
of these shutdowns having a significant environmental impact.
Several studies found that the declines in activity, including
reduced vehicular traffic and industrial emissions, resulted in
air quality improvements in parts of India, Italy, and Southeast
Asia (Collivignarelli et al., 2020; Kanniah et al., 2020; Soni,
2021). Other studies identified improvements in marine and
inland water quality coinciding with the periods of reduced
activity. Many of these studies utilized remote sensing data in
their analyses due to its ability to collect data at broad spatial
and temporal scales and because it can be acquired without
the potential health risks of in situ sampling. Multiple studies
used Landsat 8 imagery to identify significant decreases in

1https://covid19.who.int/region/amro/country/us
2https://data.bls.gov/
3https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-
Deaths-by-State-o/9mfq-cb36

suspended particulate matter (SPM, used as an indicator of water
pollution) in Indian inland waters (Aman et al., 2020; Yunus et al.,
2020). These decreases were speculated to be due to reductions
in industrial and tourism-related pollution as a result of the
COVID-19 shutdowns. Another study utilized a selection of
Sentinel-3 Ocean and Land Colour Imagery (OLCI) images and
identified a reduction in chlorophyll-a (CHL) concentrations in
the coastal waters off of India (extending over 100 km off shore
in places) which was attributed to shutdown-related changes
in urban and atmospheric nutrient deposition (Mishra et al.,
2020). An analysis of Sentinel-2 imagery revealed improvements
in water clarity in the Venice Lagoon due to the reduction in
public transit and tourism-related boat traffic and a decline in
wastewater discharge due to the lack of tourists (Braga et al.,
2020). Finally, Cherif et al. (2020) utilized Sentinel-3-derived
water temperature data to identify improved coastal water
quality in Morocco as a result of COVID-19 related industrial
discharge reductions. Each of these studies compared satellite-
derived water quality metrics from imagery collected during
the shutdown period to “normal” water quality as defined by a
collection of historic images. However, these studies either used a
single image from multiple years or multiple images from a single
year (2019) to define the historic normal, potentially biasing their
results if the images selected did not adequately represent the true
normal state of the study areas.

As in the regions described above, human activity has been
shown to have a large impact on water quality in the Great
Lakes region, especially in regard to nutrient inputs. In response
to widespread eutrophication in the lakes, the bi-national Great
Lakes Water Quality Agreement (GLWQA) was signed in 1972
which resulted in significant reductions in point source nutrient
inputs, largely due to improvements in wastewater treatment
plants (Watson et al., 2016). These improvements in municipal
wastewater treatment likely limit the impact of reductions in
urban runoff which were hypothesized to cause some of the
water quality improvements in India and Morocco. However,
since the passage of the GLWQA, non-point source contributions
of nutrients, including from agricultural runoff and residential
septic systems, have become a major driver of water quality in
several parts of the Great Lakes including the western basin
of Lake Erie (WBLE) and Saginaw Bay in Lake Huron (SBLH)
(He et al., 2014; Selzer et al., 2014; Stow et al., 2015). It has
been estimated that 10–25% of Michigan’s million-plus on-site
wastewater treatment (or septic) systems are in some level of
failure (Michigan Office of the Great Lakes [OGL], 2016; Public
Sector Consultants [PSC], 2018). In the five counties surrounding
SBLH, this results in annual discharges of untreated or partially
treated wastewater between 0.5 and 1.26 billion gallons (Public
Sector Consultants [PSC], 2018). Rao and Schwab also note
the occurrence of storm sewers draining directly into the Great
Lakes which can impact the nearshore nutrient levels (2007).
Additionally, changes in agricultural practices in response to
the GLWQA have led to increased loadings of bioavailable
phosphorus in WBLE (Scavia et al., 2014), which along with
climate change and the introduction of zebra and quagga mussels,
has led to the resurgence of the WBLE harmful algal bloom
(HAB) in recent years (Watson et al., 2016).
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Remote sensing has been a widely used tool for studying
water quality in the Great Lakes due to their vast size and
regional importance (the Laurentian Great Lakes make up over
20% of the freshwater on Earth and provide drinking water to
over 35 million people; Herdendorf, 1982; Bootsma, 2018). The
enhanced spatial and temporal sampling capabilities provided
by remote sensing have helped further develop the link between
anthropogenic forcing and water quality in the region (Michalak
et al., 2013; Shuchman et al., 2017). Because of the greater optical
complexity of these waters relative to the open ocean (Bukata,
2005; Sayers et al., 2019a), researchers have developed a range of
empirical and semi-analytical water quality algorithms that are
specifically tuned to the waters of the Great Lakes. Algorithms
have been developed to study a range of parameters, including the
concentrations of color producing agents (i.e., CHL, suspended
sediments, and CDOM) (Binding et al., 2012; Shuchman et al.,
2013), primary production (Warner and Lesht, 2015; Fahnenstiel
et al., 2016), and the intensity and extent of HABs (Stumpf et al.,
2012; Sayers et al., 2016).

The goal of this study is to use satellite imagery to understand
whether the widespread disruptions caused by the COVID-19
pandemic had an observable impact on Great Lakes water quality.
Due to the GLWQA-driven improvements to the municipal
water treatment systems, it is unlikely that the shutdown-driven
decrease in industrial activity would have a notable impact
on the nutrient loads to the study areas. However, there are
other ways in which nutrient loading could be impacted by the
shutdowns. The transition to working at home and ceasing of
most urban activity will shift some of the wastewater treatment
loads from the highly effective municipal treatment plants to at-
home septic systems which are more likely to release un-treated
wastewater into the environment. Additionally, potential changes
to the agricultural calendar, including the timing of plantings or
fertilizer applications, could impact the nutrient loads. Because
in situ sampling was heavily restricted due to the pandemic, this
study used remote sensing to investigate the presence of any
short-term water quality anomalies in the Great Lakes region that
may be due to the COVID-19 shutdowns. For this analysis, short-
term anomalies are defined as anomalies that become apparent
in the weeks to months following the shutdowns. The analysis
focused on water quality parameters which had been observed
to be impacted elsewhere, including the concentrations of CHL
and total suspended solids (TSS) and photic zone depth (PZD)
was used as an indicator of water clarity. These parameters were
investigated in WBLE and SBLH, two basins with an extensive
history of anthropogenic impact. The HAB extent in WBLE was
also investigated due to its regional importance and dependence
on nutrient loading during the spring (Stumpf et al., 2012; Sayers
et al., 2016, 2019b).

MATERIALS AND METHODS

Study Areas
Two basins within the Laurentian Great Lakes region (WBLE and
SBLH) were analyzed for impacts related to activity changes due
to the COVID-19 pandemic (Figure 1).

The western basin of Lake Erie and SBLH were selected as they
are two of the more eutrophic basins within the Great Lakes, Both
have extended histories of anthropogenic impacts (Makarewicz
and Bertram, 1991; Dolan, 1993; Stow et al., 2014) and HABs
(Fahnenstiel et al., 2008; Bridgeman et al., 2013; Sayers et al.,
2016, 2019b; Wynne et al., 2021). Much of the anthropogenic
impact is driven by nutrient-rich runoff from heavily farmed
watersheds and the nearby population centers (Michalak et al.,
2013; Selzer et al., 2014). There are notable differences between
the two regions as well, with the SBLH watershed having 60%
lower population density than the WBLE watershed (Table 1).
The land use within the watersheds differs as well, with SBLH
having less agriculture and urban area (27 and 62% less than
WBLE, respectively) and 3.6 times the forested area (Table 1).
The SBLH coastline also consists of an extensive wetlands system
which serves as a highly effective nutrient sink (Wynne et al.,
2021). Due to the greater agricultural area and less forested area
and wetlands within the watershed, WBLE experiences greater
nutrient loads than SBLH (Wynne et al., 2021).

Satellite Data Acquisition and
Pre-processing
The water quality metrics used for this study were derived from
remote sensing imagery. The National Oceanic and Atmospheric
Administration’s (NOAA) Visible Infrared Imaging Radiometer
Suite (VIIRS) sensor onboard the Suomi National Polar-orbiting
Partnership (SNPP) satellite was the source of imagery for this
analysis, providing daily revisits at a 750-m resolution dating
back to January 2012. Despite its coarse resolution, the VIIRS
sensor has been used to study water quality in the Great Lakes
due to its high temporal resolution (Binding et al., 2020; Son
and Wang, 2020) which is necessary due to the frequent cloud
cover in the region (Ackerman et al., 2013) and highly variable
nature of the water conditions in the more eutrophic basins
(Sayers et al., 2019a).

For each region, all intersecting imagery from March through
December was acquired through the National Aeronautics and
Space Administration (NASA) Ocean Biology Processing Group
(OBPG) OceanColor Web data portal.4 In total, over 4,300
images were processed for each of the two study regions. Data
was acquired at Level 1, with no atmospheric corrections having
been applied, along with the corresponding geo-location files.
Using the Level 1 and geo-location data, the VIIRS images were
subset to the regions of interest and processed to Level 2 using
OBPG’s L2gen module, applying a fixed model pair atmospheric
correction. Atmospheric correction has been a key concern in
freshwater remote sensing (Binding et al., 2020), particularly in
the blue spectral bands (Budd and Warrington, 2004; Shuchman
et al., 2013; Binding et al., 2019). Shuchman et al. evaluated
eight different atmospheric correction techniques by comparing
satellite-retrieved reflectance to in situ reflectance collected in a
range of Great Lakes water types including sediment-dominant
and chlorophyll-dominant waters (2013). The fixed model pair
approach tested in their analysis performed well in each setting
and produced the most accurate reflectance in intense HAB

4https://oceancolor.gsfc.nasa.gov/
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FIGURE 1 | Regions studied for impacts related to the coronavirus (COVID-19) pandemic. The western basin of Lake Erie (WBLE) and Saginaw Bay in Lake Huron
(SBLH) are heavily impacted by anthropogenic factors. The major population centers around each basin are also shown, including Toledo, Ohio and Detroit,
Michigan (WBLE); and Bay City, Michigan and Saginaw, Michigan (SBLH).

scenarios, where other correction techniques interpreted the
elevated near infrared reflectance associated with near-surface
HABs as atmospheric contamination (Shuchman et al., 2013;
Sayers et al., 2016).

Derivation and Validation of Water
Quality Metrics
The Color Producing Agents Algorithm (CPA-A; Shuchman
et al., 2013) was used to estimate concentrations of CHL and TSS
as well as CDOM absorption at 443 nm from the satellite-derived
remote sensing reflectance at the following bands: 443, 486, 551,
and 671 nm. This algorithm uses lake-specific parameterizations
based on the range of observed inherent optical properties (IOPs)

TABLE 1 | Average population density and landcover within the two basin’s
watersheds.

Basin Average Population
Density (people/km2)

Percent Landcover (%)

Agriculture Forest Urban

WBLE 169.4 79.9 6.8 8.2

SBLH 66.7 58.7 31.3 3.1

Population data comes from the United States American Community Survey
(US Census Bureau, 2016) and the Canadian Census (Statistics Canada, 2019).
Population density was calculated as the total population within each watershed
divided by the watershed area. Landcover data came from the Climate Change
Initiative (European Space Agency [ESA], 2018), with landcover groupings based
on the International Panel on Climate Change (IPCC) classes (European Space
Agency [ESA], 2017.

and has been shown to produce reliable results (Shuchman et al.,
2013; Fahnenstiel et al., 2016), including root mean square error
(RMSE) values ranging from 0.13 mg/m3 in Lake Huron to
2.18 mg/m3 in Lake Erie (Shuchman et al., 2013). PZD, defined
as the depth where 1% of surface light remains, was used as
an indicator of water clarity and was calculated from the CPA-
A results as described in Fahnenstiel et al. (2016). Briefly, bulk
absorption and backscatter are derived from the CPA-A retrievals
and used to estimate the light attenuation coefficient at 490 nm
(Kd490) using methods proposed by Lee et al. (2005). KdPAR
was derived empirically from Kd490 following methods from
Saulquin et al. (2013). The inverse of KdPAR is defined as one
optical depth, and the PZD is calculated as 4.605 optical depths
(Lee et al., 2007).

Harmful algal bloom extents in WBLE were derived from
the CHL measurements. Using surface water measurements of
CHL and phycocyanin pigment (PC, which can be used as an
indicator of HAB presence), Sayers et al., found that minimal PC
was observed at CHL concentrations below 18 mg/m3 (2016).
Above that threshold, the PC increased linearly with the CHL
concentration, indicating that increased CHL is associated with
HAB presence (Sayers et al., 2016). This threshold has been used
to map WBLE HAB extents in multiple studies (Sayers et al., 2016,
2019b; Manning et al., 2019) with results comparing well to in situ
surveys (87% mapping accuracy, Sayers et al., 2016). During
the HABs growing season, defined as lasting from July through
October (Bridgeman et al., 2013; Wynne and Stumpf, 2015), HAB
extents were calculated by first converting CHL concentration
maps to binary maps using the 18 mg/m3 threshold, with each
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pixel indicating HAB presence or absence. The HAB extent
was then calculated as the count of pixels classified as a HAB
multiplied by the pixel size.

While the water quality algorithms used in this analysis were
specifically calibrated for the Great Lakes, significant changes
in water quality due to the COVID-19 shutdowns could render
these prior calibrations obsolete and add uncertainty to the
2020 retrievals. Due to COVID-19 restrictions, there is limited
in situ data available from early 2020 in order to validate
the derived water quality metrics. However, near-weekly water
quality sampling in WBLE and SBLH started in June and July
2020, respectively, and continued through the start of October.
Sampling was conducted by scientists from the Cooperative
Institute for Great Lakes Research (CIGLR) and NOAA’s Great
Lakes Ecological Research Laboratory (GLERL). This data, which
included extracted CHL concentrations and Secchi disk depths,
were acquired from the NOAA-GLERL website5 and used to
assess the performance of the remote sensing algorithms in light
of the potential water quality changes. Summary statistics for
these observations are reported in Table 2. These in situ metrics
were compared to same-day derived products, averaged over a
3 × 3 grid surrounding the sampling location. Because both
the in situ and remotely sensed CHL retrievals have associated
uncertainty, the relationship between the two variables was
assessed using type II linear regression with the lmodel2 package
in R (Legendre, 2018). While Secchi disk depth and PZD are
fundamentally different metrics, both are indicators of water
clarity and have been shown to be related (Lee et al., 2018).
For this analysis, the correlation between remote sensing-derived
PZD and in situ Secchi disk depth was used to assess the general
accuracy of the remote sensing product and its ability to track
changes in water clarity.

Assessment of Water Quality Change
For each of the remote sensing-derived metrics, data from
2020 was compared to a historical baseline in order to assess
change. The immediate impacts of the shutdowns were evaluated
by comparing data from April 2020 to April data from prior
years. April was chosen because both the Michigan and Ohio
shutdowns were in place for the duration of the month and
this also coincided with when the social distancing mobility
decreases were peaking (Garnier et al., 2021). The metrics were
also evaluated in 10-day windows from March 1 through the end
of the year to assess whether any water quality changes identified

5https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/habsMon.html

TABLE 2 | Summary statistics for the in situ chlorophyll-a (CHL) and Secchi disk
depth measurements collected in western basin of Lake Erie (WBLE) and Saginaw
Bay in Lake Huron (SBLH) during the 2020 field season.

WBLE (N = 113) SBLH (N = 20)

Mean Range Mean Range

CHL (mg/m3) 20.7 0.8–96.4 9.9 2.6–22.0

Secchi disk depth (m) 1.3 0.2–4 1.5 1–2

during April were present prior to the shutdowns or continued as
the shutdowns began to be lifted.

Two filters were applied to the remote sensing-derived data
before generating the 10-day and monthly composites. First, any
pixels where the CPA-A optimization failed to retrieve a valid
CHL or TSS value were eliminated. Second, any CHL value
where the corresponding TSS concentration was greater than
5 mg/L was removed since the heavy sediment signature can
overwhelm any impact of varying CHL concentrations on the
spectral signature. The 5 mg/L threshold was determined through
a validation using in situ CHL and TSS concentrations from the
CIGLR routine water quality monitoring dataset (Cooperative
Institute for Great Lakes Research et al., 2019). CPA-A derived
CHL estimates were compared to in situ CHL measurements
and grouped by the corresponding TSS concentrations in 1 mg/L
bins. The RMSE was then calculated within each bin, revealing a
distinct shift at the 5 mg/L TSS level. The mean RMSE for TSS
bins below the threshold was 6.1 mg/L compared to an RMSE of
29.8 mg/L when TSS exceeded the threshold.

Composite maps were generated in the same way for both 10-
day windows and monthly data. For each year in the study period
(2012–2020), composite maps were generated by calculating the
mean of all images from that year within the given date range. To
assess the historical significance of the observed post-shutdown
water quality, the basin-wide median values from 2012 to 2019
were compared to those from April 2020 using a Wilcoxon
signed-rank test (Wilcoxon, 1945) with an alpha value of 0.05
used to determine significance. Historic baseline composite maps
were generated by calculating the mean of all 2012–2019 images
within the given date range. Anomaly maps were then calculated
for each analysis period by comparing the 2020 composite to the
historic baseline composite. For each pixel in the study region,
the anomaly was derived as the percent change from the baseline
to the 2020 metric value (calculated as the difference between
the 2020 and baseline values divided by the baseline value, and
multiplied by 100). A positive anomaly indicated that the 2020
metric value was elevated relative to the historic baseline. For
CHL and TSS, this represented increased concentrations, and a
positive PZD anomaly indicated clearer water. In order for a 10-
day window to be included in the time series, the 2020 composite
map needed to have valid data in at least 50% of the pixels for
that region. This requirement was put in place in order to avoid
seemingly anomalous data points caused by sparse data coverage.

Harmful algal bloom extents in WBLE were generated from
each of the 10-day CHL composite maps during the HABs
growing season. For each 10-day window, the mean and standard
deviation of HAB extent from past years were calculated to
determine the historic baseline. The HAB extent anomaly was
then calculated as the percent difference between the 2020 HAB
extent and the baseline HAB extent.

Ancillary Indicators
In addition to the primary water quality indicators (CHL, TSS,
PZD, and WBLE HAB extent), other metrics were investigated
as potential drivers of water quality change. These included
lake surface temperature (LST), which is known to impact CHL
production and HAB growth (Behrenfeld and Falkowski, 1997;
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Paerl and Huisman, 2008; Fahnenstiel et al., 2016). 2012–2020
LST data from the VIIRS sensor onboard the SNPP satellite
was downloaded from the OBPG OceanColor Web at Level 2.
The SST_triple product, using the default atmospheric correction
(Minnett et al., 2014), was used to generate the composites and
anomalies. Non-remote sensing-derived explanatory indicators
included river discharge and wind speed which have been
shown to impact sediment loading and HAB growth (Rao and
Schwab, 2007; Stumpf et al., 2012; Sayers et al., 2016; Niu
et al., 2018). Mean daily discharge data was acquired from
the United States Geological Survey (USGS) National Water
Information System (NWIS) using gages on the Maumee River
(WBLE, gage 04193500), Detroit River (WBLE, gage 04165710),
and Saginaw River (SBLH, gage 04157005). Hourly wind speeds
were downloaded from buoys in NOAA’s National Data Buoy
Center (NDBC) network (WBLE: THL01; SBLH: SBLM4).
Baseline (2012–2019) and 2020 metrics, as well as anomalies
(10-day and April) were calculated for each of the explanatory
indicators using the same methods as for the water quality
indicators. Finally, agricultural planting data were acquired from
the United States Department of Agriculture (USDA) National
Agricultural Statistics Service (NASS) 2015–2020 Historical Crop
Progress reports.6 From this data, 2020 planting progress was
evaluated against the prior 5-year average for three different
crops (oats, corn, and soybeans) to determine if the shutdowns
impacted agricultural activity.

RESULTS

Of the 134 surface water measurements collected in WBLE and
SBLH in 2020, there were only 20 with valid same-day remote
sensing estimates (15 in WBLE, 5 in SBLH) (Figure 2). The in situ
CHL concentrations within these 20 matchups ranged from 1.7
to 31.3 mg/m3. The Type II linear regression revealed strong
agreement between the measured and estimated concentrations
(R2 = 0.66, p < 0.01). Similarly, there was a strong positive
correlation between the in situ Secchi disk depth and the remotely
sensed PZD (Spearman’s rho = 0.69, p < 0.01) indicating that
the PZD metric used in this analysis was adequately capturing
changes in water clarity.

The annual time series of basin-wide median April indicator
values (calculated from the annual April composite maps) were
used to assess how water quality immediately after the shutdown
began compared to prior years and whether the 2020 values were
a continuation of a trend that preceded the COVID-19 pandemic
(Figure 3). Using these plotted values, a statistical comparison
was made between the 2020 observations and those from prior
years in the study record. The basin-wide 2020 metric value was
found to be significantly different from the historic record for all
three metrics in SBLH and CHL in WBLE (Wilcoxon signed-rank
test statistics and corresponding p-values reported in Table 3).
Of all the metrics investigated, only SBLH CHL (Figure 3B) had
a 2020 value falling more than two standard deviations away

6https://www.nass.usda.gov/Statistics_by_State/Ohio/Publications/Crop_
Progress_&_Condition/index.php

from the 2012–2019 mean, though this metric also appears to be
in the midst of a multi-year increasing trend that pre-dates the
pandemic. The 2020 TSS indicators for both basins fell within the
two standard deviation window but were also at the low-end of
the recent historic range after experiencing a steady decline in
the past 3–4 years (Figures 3C,D), with the inverse being true for
PZD (Figures 3E,F).

Mapping the anomaly data revealed spatial variability across
each study basin (Figure 4). The majority of WBLE CHL
concentrations (Figure 4A) were near or below the historic
baseline except near the mouth of the Maumee River where
the anomalies were largely positive. The SBLH CHL anomaly
map (Figure 4D) showed widespread positive anomalies, with no
clear spatial trend relative to the Saginaw River. Rather, positive
anomalies were observed in most pixels except for the center
of the bay, which rarely experiences significant phytoplankton
accumulation due to the bay’s circulation patterns (Wynne et al.,
2021). TSS anomalies in both WBLE and SBLH were widely
negative with a few exceptions, including near the mouths of the
Maumee and Saginaw Rivers (Figures 4B,E). The PZD anomalies
in both regions were mostly positive, indicating increased water
clarity in April 2020 (Figures 4C,F). Median basin-wide April
anomaly values for each primary indicator are displayed in
Table 4.

Much of the spatial variability observed in Figure 4 appeared
to be related to proximity to the major river mouths. Plotting the
April 2020 water quality anomalies against this distance reveals
several distinct relationships (Figure 5). As seen in Figure 4, the
SBLH TSS anomaly is highest within 5 km of the Saginaw River
mouth where it is approximately equal to the historic baseline,
but is highly negative outside of this area (Figure 5F). This trend
is reversed for the SBLH PZD anomalies (Figure 5I). The trends
in WBLE are slightly more complex due to the presence of two
major rivers flowing into the basin. The CHL and TSS anomalies
are most positive within 5–10 km of the Maumee River mouth
(Figures 5A,D). However, both indicators experience a strong
negative anomaly just outside of that range, with concentrations
moving toward the historic baseline as distance increases. The
trends relative to the Detroit River are more clear, with the
strongest negative anomalies occurring near the river mouth and
gradually increasing with distance (Figures 5B,E).

The water quality trends observed in April were generally
also present throughout the year, as seen in the 10-day anomaly
time series (Figure 6). These plots begin with the 10-day
window starting on day 61 (March 1 in leap years; March 2
otherwise). The boxplots (Figures 6C,F,I) show the range of
median anomaly values across the valid windows (a window
was considered valid if the percent of pixels with data exceeded
50%). WBLE and SBLH had similar seasonal anomaly trends for
both TSS and PZD. The TSS anomalies (Figures 6D,E) were
consistently negative in both basins until early September aside
from two outlier events in late-May and early-June. Conversely,
the PZD time series (Figures 6G,H) revealed consistently positive
anomalies aside from a few isolated events. Slight differences
between the two regions were revealed in the CHL anomaly
time series (Figures 6A,B). While the CHL anomaly in SBLH
was almost uniformly positive from March through August,

Frontiers in Marine Science | www.frontiersin.org 6 August 2021 | Volume 8 | Article 673989

https://www.nass.usda.gov/Statistics_by_State/Ohio/Publications/Crop_Progress_&_Condition/index.php
https://www.nass.usda.gov/Statistics_by_State/Ohio/Publications/Crop_Progress_&_Condition/index.php
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-673989 August 18, 2021 Time: 15:47 # 7

Bosse et al. COVID-19 and Great Lakes Water Quality

FIGURE 2 | Comparisons between remote sensing estimates and in situ measurements in 2020. Panel (A) shows a comparison between remotely sensed and
in situ chlorophyll-a (CHL), with the type II regression best fit line displayed in red (y = 3.67 + 1.03 × x; R2 = 0.66; p < 0.01). Panel (B) shows the comparison
between remotely sensed photic zone depth (PZD) and in situ Secchi disk depth.

FIGURE 3 | Median April indicator values plotted over the sensor data record (2012–2020). Years in which less than 50% of the regional data pixels have data are
excluded. The 2012–2019 mean is shown as the dashed red line, with the dashed blue lines representing the 2012–2019 mean plus/minus two times the
2012–2019 standard deviation. (A,C,E) The CHL, TSS, and PZD indicator time series for WBLE. (B,D,F) The CHL, TSS, and PZD indicator time series for SBLH.
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TABLE 3 | Wilcoxon signed-rank test statistics (W) and p-values (in parentheses)
for the analyses comparing basin-wide median metric values from April
2012–2019 to 2020 values.

Basin CHL TSS PZD

WBLE 3 (0.036) 5 (0.069) 9 (0.208)

SBLH 0 (0.028) 0 (0.012) 3 (0.036)

Significant results, assessed against an alpha value of 0.05, are marked in bold.

the CHL anomaly in WBLE fluctuated around zero until mid-
August, before experiencing a brief extreme positive anomaly in
late-August (+79%). Both basins experienced prolonged periods
of lower anomalies in September and October, though WBLE
anomalies were up to 62% below the historic baseline and near
zero in SBLH. As seen in the CHL anomaly boxplots (Figure 6C),
SBLH had higher anomalies on average than WBLE (14.7 and
−6.3%, respectively), and also experienced a much tighter range
of anomalies (from −6% in June to +56% in November) while
WBLE experienced anomalies ranging from−62 to+86%.

The seasonal progression of the WBLE HAB extent anomaly
(Figure 7) was nearly identical to that of the WBLE CHL
anomaly. Through July and the first few weeks of August, the
2020 HAB was slightly below the baseline extent, but within the
normal range of variability. However, by mid-August, the extent
began increasing rapidly, peaking in the first week of September
122% above the historic mean and several weeks earlier than the
typical peak. The following week saw a rapid decline in extent,
with a near total absence (mean anomaly of −86%) through the
rest of the HAB season.

Seasonal and April anomalies were also assessed for three of
the explanatory indicators. River discharge observed the most
drastic anomalies, with the Maumee and Saginaw Rivers having
April 2020 flow rates 46 and 52% below the 2012–2019 baseline,
respectively, and the Detroit River with an above-average flow
rate (+21%) (Table 5). Less extreme negative anomalies were
also observed for the LST (−8 and −6% in WBLE and SBLH,
respectively) and wind speed (−10 and−2%) metrics.

The seasonal anomaly trends for the explanatory indicators
revealed similar results between WBLE and SBLH (Figure 8).
LST in both basins (Figures 8A,B) was above average through
most of March followed by negative anomalies from mid-April
into June and again from September through mid-October. Each
basin also experienced prolonged positive anomalies from mid-
June through August. These anomalies were relatively small
compared to those from the primary water quality indicators,
with both regions showing a mean absolute anomaly across all
valid windows of less than 10%.

The Detroit River (Figure 8C) had a consistently positive
discharge anomaly (ranging from 15 to 30% above the historic
baseline), but both the Maumee River (Figure 8C) and Saginaw
River (Figure 8D) generally observed negative or near-zero
discharge anomalies from April through September aside from
a few extreme positive anomalies in mid-May. The wind speed
time series (Figures 8E,F) showed no consistent anomalies
throughout the season, fluctuating back and forth around the
baseline. The largest observed anomaly was in WBLE at the

start of September, when 2020 wind speeds were more than 40%
higher than the historic baseline. This extreme wind event, along
with the negative LST anomaly that started in September, likely
contributed to the rapid decline in WBLE HAB extent.

The agricultural planting progress data was also analyzed to
determine if the pandemic shutdowns had any impact on when
oats, corn, or soybeans were planted. Some discrepancies were
observed between the 2020 and 2015–2019 baseline, though these
depended on the crop (Supplementary Figure 3). Throughout
the data record, oats were the earliest crops to be planted. In 2020,
despite the pandemic-driven shutdowns, planting progress for
the oats was generally at least 25% ahead of the historic average
through the first week of May. Corn and soybean plantings began
at the end of April. The planting progress for corn was behind the
baseline for several weeks but caught up by mid-May. Meanwhile
2020 soybean planting progress was ahead of the historic schedule
throughout the season.

DISCUSSION

This study highlights the importance of remote sensing for
environmental monitoring. In a typical year in the Great Lakes,
NOAA-GLERL and CIGLR conduct routine vessel and buoy-
based water quality sampling in WBLE and SBLH (see text
footnote 5). Due to the health and safety concerns surrounding
the COVID-19 pandemic, both vessel-based sampling and buoy
deployment were delayed and limited in capacity. Satellite-based
remote sensing makes it possible to investigate water quality
without the health concerns of in situ sampling, and it provides
data at a broader spatial and temporal scale than is possible
with boat- and buoy-based measurements. The extensive remote
sensing historical data record also allows for the assessment of
anomalies over broad spatial regions. Without this data, we would
not have been able to assess how the COVID-19 shutdowns
impacted Great Lakes water quality.

Extending beyond the Great Lakes region, polar-orbiting
satellites like the one used in this analysis collect data on a global
scale, allowing for coordinated analyses across the United States
and internationally. NASA, in collaboration with the European
Space Agency (ESA) and Japan Aerospace Exploration Agency
(JAXA), assembled research teams from across the world to assess
how the pandemic has impacted a range of environmental and
societal indicators. Results of this collaboration, including the
data presented in this article, are available on NASA’s COVID-19
dashboard.7

This investigation identified statistically significant short-
term anomalies in several Great Lakes water quality metrics
in the weeks and months following the start of the COVID-
19 shutdowns, yet these anomalies cannot be directly attributed
to the shutdowns as an examination of meteorological and
hydrological variables has provided other plausible explanations
for the observed changes Both WBLE and SBLH experienced
large declines in TSS levels relative to the historic baseline in
April 2020 as peak social distancing was occurring. However,

7https://earthdata.nasa.gov/covid19/
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FIGURE 4 | April anomaly maps for CHL, total suspended solids (TSS), and PZD in the two study basins. All maps are scaled from blue (large negative anomaly) to
red (large positive anomaly). The locations of each basin’s major rivers (Maumee and Detroit Rivers in WBLE; Saginaw River in SBLH) and where they enter the
basins are displayed in black. (A–C) The WBLE April anomaly maps for CHL, TSS, and PZD, respectively. (D–F) The SBLH April anomaly maps for CHL, TSS, and
PZD, respectively.

co-occurring anomalies in the ancillary indicators could help
explain this observation more than the changes in human activity.
Both regions also experienced below average wind speed and
river discharge rates in April 2020. The Detroit River was the
exception, with above average discharge rates in April 2020.
However, the Detroit River contributes very little sediment to
WBLE, providing over 90% of the discharge but less than 6%
of the sediment input, while the Maumee River provides 3% of
the discharge and 45% of the sediment load (Niu et al., 2018).
Because river discharge has a key role in nearshore sediment
loading (Rao and Schwab, 2007) and high turbidity events in the
offshore waters in WBLE are driven primarily by wind-driven
resuspension (Niu et al., 2018) it is likely that natural factors
(i.e., reduced wind speed and discharge) were driving the TSS
reductions more than any COVID-19 impacts.

Investigating the TSS anomalies spatially revealed that despite
the decreased discharge, increased TSS levels were observed in
the 5–10 km nearest to the urban-adjacent Maumee and Saginaw
River mouths and more negative anomalies were observed with
increased distance. It is these nearshore areas that are most
likely to be impacted by anthropogenic impacts such as urban
or agricultural runoff (Rao and Schwab, 2007; Niu et al., 2018).
However, there are plausible natural explanations for these trends
as well. The reduced river discharge likely resulted in a greater

TABLE 4 | Median basin-wide April anomaly values for each region and indicator.

Median anomaly (%) CHL TSS PZD

WBLE −18.9 −42.3 25.3

SBLH 40.4 −54.3 23.9

concentration of the sediment nearer to the river mouths, unable
to propel it further outward into the basins. This is particularly
likely in WBLE, where the elevated sediment-poor Detroit River
flow would further limit the extent of the diminished sediment-
rich Maumee River plume (Jiang et al., 2015).

Saginaw Bay in Lake Huron also experienced a statistically
significant CHL anomaly in April, with an increase of over
40% relative to the historic baseline. If this CHL increase were
related to the pandemic, it would likely be due to an anomalously
large influx of non-urban nutrients. It is unlikely that an
increase in agricultural nutrient inputs would lead to positive
anomalies basin-wide, particularly due to the greatly diminished
Saginaw River discharge rates. And although the increased usage
of residential septic systems during the shutdowns may have
resulted in increased nutrient inputs along the SBLH coastline,
this impact would most likely be observed in the very nearshore
waters which are not visible with the coarse resolution satellite
used in this analysis. As with TSS, there are several potential
explanations for the CHL anomaly aside from the COVID-19
shutdowns. The time series of April CHL concentrations in SBLH
(Figure 3B) indicated that the basin-wide median was stable from
2012 to 2018, but the last 2 years have seen a large increase,
perhaps indicating an ongoing trend un-related to COVID-19.
The decreased TSS concentrations may also be contributing to
the increased CHL. Suspended sediment concentrations have
been shown to be highly correlated with KdPAR (Millie et al.,
2003), which is likely driving the significantly increased water
clarity throughout the basin (Figure 4H). Other research in
the Great Lakes has shown that increases in water clarity can
cause increased phytoplankton production (Bierman and Dolan,
1981; Lohrenz et al., 2004; Jiang et al., 2015). WBLE also had
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FIGURE 5 | Median April anomaly value is plotted based on distance from the nearest major river mouth (Maumee and Detroit Rivers for WBLE; Saginaw River for
SBLH). The distances are binned in 5-km increments. (A,D,G) The average CHL, TSS, and PZD anomalies in WBLE based on distance from the Maumee River.
(B,E,H) The average CHL, TSS, and PZD anomalies in WBLE based on distance from the Detroit River. (C,F,I) The average CHL, TSS, and PZD anomalies in SBLH
based on distance from the Saginaw River.

a statistically significant CHL anomaly in April 2020. However,
unlike SBLH, WBLE had a negative basin-wide CHL anomaly,
but this varied considerably with distance from the Maumee
River mouth. The 5 km nearest to the river mouth experienced
a positive anomaly, while negative anomalies were observed
from 5 to 45 km. Despite the increased water clarity similar
to SBLH (Figure 4C), the decreased CHL is likely due to
a nutrient limitation caused by the combination of increased
nutrient-poor Detroit River discharge and decreased Maumee
River discharge (Jiang et al., 2015). The stronger Detroit River
plume would force the nutrient-rich Maumee River waters along
the coastlines, consistent with the observed locations of increased
CHL concentrations.

If the anomalies observed in April 2020 were caused by the
pandemic-driven shift in activity, then it would be expected that
they would dissipate in the weeks prior to and after the peak social
distancing period. Instead, the trends that were observed in April
tended to also be true in March and persisted further into the year.
This was also generally true for the ancillary indicators which
provided alternative explanations for the anomalies. WBLE and
SBLH each observed negative TSS anomalies in over 80% of
all qualifying 10-day windows from March 1 until the start of
September. Deviations from this trend were also well explained
by the ancillary indicators. Both basins observed an elevated TSS
event in late May and early June, coinciding with large discharge
anomalies due to an extreme storm event in late May which

led to a 500-year flood event in mid-Michigan (French, 2020).
Another positive TSS anomaly occurred in the first week of
September, coinciding with the largest positive wind anomaly in
each basin which we would expect to cause significant sediment
resuspension (Niu et al., 2018).

2020 also resulted in an anomalously low HAB extent in
WBLE, with a reduced severity relative to what was forecasted
based on the observed levels of springtime discharge (National
Oceanic and Atmospheric Administration [NOAA], 2020).
While a negative anomaly was observed in a majority of windows,
there was an extreme positive anomaly in late August before the
bloom suddenly dissipated. Like the other observed anomalies,
this trend seems to be well explained by variables not directly
related to the COVID-19 shutdown. The upward trend in HAB
extent coincided with a prolonged positive LST anomaly from
June 29 through August 27, and the rapid bloom decline occurred
simultaneously to the start of a negative LST anomaly which
lasted from September 7 through the end of the typical HAB
season. This decline also coincided with the aforementioned
positive wind anomaly during the first weeks of September.
Heavy winds force vertical mixing of the blooms which can
reduce the amount of bloom visible to the satellite sensors
and also limits the formation of highly concentrated surface
scums until the winds calm (Wynne et al., 2010; Bosse et al.,
2019; Sayers et al., 2019b). Elevated September winds also
resulted in early ends to the HAB season in 2018 and 2019
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FIGURE 6 | Median basin-wide anomalies for the 10-day windows starting from March 1 to December 26. Windows in which less than 50% of the regional data
pixels have data are excluded. (A,D,G) The CHL, TSS, and PZD anomaly time series for WBLE. (B,E,H) The CHL, TSS, and PZD anomaly time series for SBLH.
(C,F,I) The distribution of CHL, TSS, and PZD anomalies in both basins from March through December.

FIGURE 7 | Panel (A) shows median WBLE harmful algal bloom (HAB) extent for the 10-day windows starting from June 30 to October 17. The red squares
represent the 2020 extents and the black dots represent the mean of prior years’ (2012–2019) extents. The vertical black lines represent the standard deviations of
the prior years’ extents. Panel (B) shows the anomaly time series for the HAB extent.

Frontiers in Marine Science | www.frontiersin.org 11 August 2021 | Volume 8 | Article 673989

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-673989 August 18, 2021 Time: 15:47 # 12

Bosse et al. COVID-19 and Great Lakes Water Quality

TABLE 5 | Median April anomaly values for the explanatory indicators.

Median anomaly (%) LST River Discharge Wind Speed

WBLE -8.4 -46.3 (21.2) –10.2

SBLH -5.5 -51.5 –1.8

For WBLE discharge, Maumee River discharge is listed first and Detroit River
discharge is in parentheses.

(National Oceanic and Atmospheric Administration [NOAA],
2020). Prior years had seen HABs continue through October,
often peaking in September (Bridgeman et al., 2013; Wynne and
Stumpf, 2015; Sayers et al., 2019b).

Several other studies in Europe and the United States also
found that observed environmental changes during the shutdown
periods were just as well explained by long-term trends,
meteorological factors, or other confounding factors (Ordóñez
et al., 2020; Tobías et al., 2020; Zangari et al., 2020). In complex
ecosystems like the Great Lakes, the water quality indicators that
we examined are driven by a combination of natural factors (e.g.,
river discharge, LST, and wind speed, etc.) in addition to the
anthropogenic drivers. This can result in significant spatial and
temporal variability on yearly and even weekly time scales (Sayers
et al., 2019a). Because of the observed variability in each of the
ancillary factors studied, it is difficult to assign responsibility for
any of the anomalies to changes in human behavior.

In addition to these ancillary variables, there are several other
reasons why the shutdowns may not have resulted in observable
water quality changes. For one, the regions being studied in this
analysis are much larger than some of the other areas where
changes were observed. Three studies looked at waters within
approximately 3 km of shore (Aman et al., 2020; Braga et al.,
2020; Yunus et al., 2020) and another went out to approximately
10 km (Cherif et al., 2020). These more targeted areas were also
directly in the vicinity of key anthropogenic influences, including
large cities and wastewater treatment plants. In contrast, the
WBLE and SBLH study regions were an order of magnitude larger
(approximately 3,200 and 2,700 km2, respectively). The waters
studied in this analysis only extended to approximately 20 km
offshore, but pixels on the eastern edges of SBLH and WBLE
were up to 60–70 km away from what we would expect to be the
primary drivers of change (major metropolitan areas and large
river mouths). Additionally, the coarse resolution satellite used
in this analysis limited the retrievals in nearshore waters where
the anthropogenic influence would be magnified. VIIRS was used
rather than higher resolution sensors such as the Landsat sensors
or Sentinel-2 because the higher temporal resolution (1 day as
compared to 5–16 days) is needed in the Great Lakes due to
the frequent cloud cover, particularly in spring (Ackerman et al.,
2013; Wynne et al., 2013). Sentinel-3 provides improved spatial
resolution over VIIRS (300 vs 750 m) with a near-daily revisit,
but this sensor has a limited historical record (launched in 2016)
and the CPA-A has not yet been adequately calibrated or validated
for this sensor.

Finally, the anthropogenic influence in WBLE and SBLH
differs from that seen in some of the other regions where
anomalies were identified. Several studies identified reduced

industrial pollution and wastewater discharge as the drivers of
water quality improvement (Aman et al., 2020; Cherif et al.,
2020; Yunus et al., 2020) and boat traffic reductions in the
normally busy Venetian Lagoon were cited as a primary cause
of the observed water clarity increases (Braga et al., 2020).
While motorized boat traffic was suspended in April as part
of Michigan’s COVID-19 response (State of Michigan, 2020c),
their impact on basin-wide water quality is likely negligible
due to their reduced density relative to the Venice case. The
changes in industrial pollution and wastewater discharge are
also less relevant in the Great Lakes region due to the stringent
controls placed on these systems as part of the GLWQA. This
study hypothesized that the major drivers of change would
be a transition from the highly effective municipal wastewater
treatment systems to on-site septic systems and changes in the
agricultural calendar. The heavier usage of septic systems may
have resulted in increased nutrient loads to the basin, but this
impact would likely be spread out across the basins (as opposed
to the larger wastewater treatment plants which would have a
single outflow point) and concentrated in the nearshore waters
that were not resolvable in this analysis. And even though slight
changes were observed in the agricultural planting calendar, the
declaration of farmers as essential workers limited the impact of
the shutdowns on this source of nutrient loading.

This analysis did not identify any water quality changes clearly
attributable to the COVID-19 shutdowns, but it is possible that
there were changes that were subtler than could be picked up by
our algorithm. The CPA-A is parameterized on a per-lake basis
using a generalized set of IOPs meant to capture the observed
range of optical conditions in each lake. Sayers et al. (2019a)
found issues with this approach in WBLE, as large shifts in the
phytoplankton community can result in changes to the specific
IOPs. The CPA-A should be able to effectively capture shutdown-
driven changes in the magnitude of the color producing agents.
However, if the changes in human activity resulted in significant
shifts in the phytoplankton community, the optical properties
could shift outside the range of our historical observations,
introducing additional uncertainty into our results. While we
do not have any in situ data from spring 2020 to validate our
retrievals, comparisons against in situ data from mid-summer
through early-fall 2020 generate confidence in the late-season
CHL and PZD estimates.

Additionally, by focusing on short-term, immediate impacts
of the shutdowns, this analysis ignores the contribution of legacy
drivers of water quality. Prior research has shown that legacy
nutrients in the soil within the watershed can contribute up
to 49% of the annual total phosphorus load from the Maumee
River (Kast et al., 2021) and phosphorus loadings from prior
years also play a significant role in determining the size of
phytoplankton blooms in WBLE (Ho and Michalak, 2017). This
implies that the impacts of behavior changes due to the COVID-
19 shutdowns may be muted by past activity and also that they
could have impacts on water quality in the coming years. These
water quality indicators, in particular the HAB extent in WBLE,
should continue to be studied in subsequent years to assess
whether there are any potential long-term or delayed impacts
of the shutdowns.
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FIGURE 8 | Median 10-day anomalies for the explanatory indicators, including lake surface temperature (A,B), river discharge (C,D), and wind speed (E,F).

CONCLUSION

The Visible Infrared Imaging Radiometer Suite satellite imagery
from 2020 was compared to imagery from 2012 to 2019 to
assess whether water quality in the Great Lakes’ eutrophic
basins was impacted by the COVID-19 pandemic shutdowns.
Indicator values in April 2020, when social distancing was at
its peak, revealed significant changes in both SBLH (increased
CHL, decreased TSS, increased PZD) and WBLE (decreased
CHL). However, these shifts continued through the year even
as shutdown restrictions eased. Comparisons to trends in
other indicators (e.g., wind speed and river discharge) led to
the conclusion that the observed water quality changes were
more likely related to natural variability rather than being a
result of the shutdowns. Future research will address some
of the limitations of this analysis that may have masked
some potential impacts related to the change in human
activity. These include the addition of higher resolution sensors

to assess nearshore water quality where significant impacts
may be expected and the inclusion of data past 2020 to
determine if the behavioral changes had any delayed or long-
term impacts.

While this study found that there was likely no relationship
between the COVID-19-induced shutdowns and short-term
Great Lakes water quality, it has shown the utility of using
the lengthy remote sensing data record to identify water
quality anomalies. This approach has been used extensively
in marine systems for identifying anomalies in sea surface
temperature (Stock et al., 2015), phytoplankton blooms (Wang
et al., 2021), sediment/turbidity (Dogliotti et al., 2016), and
HAB presence (Stumpf et al., 2003; Tomlinson et al., 2009).
However, there has been limited application of the method
for water quality monitoring in the Great Lakes. Going
forward, utilizing this approach as imagery becomes available
will allow for the identification of water quality anomalies
in near real time. This can provide a better understanding
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of the historical significance of any given sediment plume or
phytoplankton bloom and guide in situ sampling efforts. It can
also be expanded to the broader Great Lakes region, generating
a more complete understanding of the current regional water
quality conditions.
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