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Concerns over cetacean mortality events coincident with maritime warfare exercises
have motivated efforts to characterize the effects of anthropogenic noise on free-
ranging whales and dolphins. By monitoring the movement, diving, and acoustic
behaviors of individual whales before, during, and after sound exposure, behavioral
response studies (BRSs) have supported significant progress in our understanding of the
sensitivity of various cetacean species to high-powered naval sonar signals. However,
differences in the designs and sampling capabilities of animal-borne tags typically
used in BRS experiments prompt questions about the influence of data resolution
in quantitative assessments of noise impacts. We conducted simulations to examine
how uncertainty in the acoustic dose either measured on high-resolution multi-sensor
biologging tags or modeled from position-transmitting satellite telemetry tags may affect
predictions of behavioral responses in Cuvier’s beaked whales (Ziphius cavirostris)
exposed to low- and mid-frequency active sonar. We considered an array of scenarios
representative of real-world BRSs and used posterior estimates of dose-response
functions obtained under an established Bayesian hierarchical modeling framework to
explore the consequences of different tag choices for management decision-making.
Our results indicate that (1) the zone of impact from a sonar source is under-estimated
in most test conditions, (2) substantial reductions in the uncertainty surrounding dose-
response relationships are possible at higher sample sizes, and (3) this largely holds true
irrespective of tag choice under the scenarios considered, unless positional fixes from
satellite tags are consistently poor. Strategic monitoring approaches that combine both
archival biologging and satellite biotelemetry are essential for characterizing complex
patterns of behavioral change in cetaceans exposed to increasing levels of acoustic
disturbance. We suggest ways in which BRS protocols can be optimized to curtail the
effects of uncertainty.

Keywords: acoustics, dose-response, underwater noise, military sonar, beaked whales, Bayesian modelling and
inference, sampling uncertainty

Frontiers in Marine Science | www.frontiersin.org 1 October 2021 | Volume 8 | Article 674554

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.674554
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.674554
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.674554&domain=pdf&date_stamp=2021-10-04
https://www.frontiersin.org/articles/10.3389/fmars.2021.674554/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-674554 September 28, 2021 Time: 16:8 # 2

Bouchet et al. Sampling Uncertainty in Cetacean-Sonar Studies

INTRODUCTION

Sound plays a critical role in the lives of cetaceans, with many
species of whales, dolphins, and porpoises shown to be sensitive
to the adverse effects of both chronic and acute exposure
to anthropogenic underwater noise (Duarte et al., 2021). For
instance, elevated noise levels (e.g., in areas of dense vessel traffic)
can mask animal communication signals, elicit physiological
stress, and/or cause displacements from preferred habitats,
ultimately interfering with key life functions such as foraging,
mating, nursing, or resting, with knock-on repercussions on
individual fitness, energy expenditure, and survival (Erbe et al.,
2018). In recognition of acoustic pollution as an emerging
threat to wildlife globally, calls have been made to strengthen
management and mitigation frameworks for sound-producing
activities in the ocean (Chou et al., 2021). In the United States,
the Marine Mammal Protection Act of 1972 (MMPA, 16 U.S.C.
1361 et seq.) regulates the take (defined as the “harassment,
hunting, capture, or killing”) of marine mammals by U.S.-
based organizations worldwide, including areas beyond national
jurisdiction (i.e., on the high seas). The U.S. Navy is legally
bound to assess the potential impacts of military readiness
training activities on cetaceans to meet compliance requirements
under the MMPA as well as other U.S. Federal laws pertaining
to protected marine taxa (e.g., the Endangered Species Act
ESA 16 U.S.C.1531 et seq.) (Zirbel et al., 2011). Of particular
concern are activities involving the deployment of explosives
and munitions, and the use of tactical, high-powered sonar
technology operating in the lower (LFAS, ∼0.1–2 kHz) and mid-
frequency bands (MFAS, 3–8 kHz) (Sivle et al., 2012; Goldbogen
et al., 2013; Falcone et al., 2017). LFAS and MFAS systems were
developed in the 1950s for anti-submarine warfare (D’Amico and
Pittenger, 2009; Bernaldo de Quirós et al., 2019), and have been
implicated in a number of atypical lethal mass strandings largely
involving deep-diving toothed whales from the Ziphiidae family
(D’Amico et al., 2009; Filadelfo et al., 2009; Fernández et al., 2012;
Parsons, 2017).

These events prompted a series of coordinated, collaborative,
behavioral response studies (BRSs) aimed at better understanding
the short-term responses of cetaceans to both simulated and real
sonar sources (Southall et al., 2012, 2016; Harris et al., 2016).
In many cases, BRSs entail rigorously designed Before-After
Control-Impact (BACI) experimental field protocols (referred
to as controlled exposure experiments, or CEEs), which allow
focal animals to be monitored before, during, and after sonar
transmissions using animal-mounted tags, visual follows, passive
acoustics, or any combinations thereof (Southall et al., 2016;
Harris et al., 2018). In some cases, silent controls (i.e., vessel
approaches with sonar deployed but turned off) can provide a
benchmark of baseline behavioral patterns and a test of responses
to ship presence alone, in the absence of sonar activity. Additional
exposure treatments are sometimes also used to contextualize
the nature and magnitude of detected responses relative to other
acoustic stimuli, including conspecific vocalizations, playback
recordings of potential predators such as mammal-eating killer
whales, or artificial tones (e.g., pseudo-random noise in the
same frequency bands) (Tyack et al., 2011; Dunlop et al., 2012).

The data from CEEs are complemented by other sources of
information from captive settings (e.g., Houser et al., 2013) or
observational studies (Falcone et al., 2017; Harris et al., 2019b;
Durbach et al., 2021).

The first U.S. Navy-funded CEE was undertaken in 2007–2008
in the vicinity of the Atlantic Undersea Testing and Evaluation
Center (AUTEC)’s Bahamas testing and training range (Tyack
et al., 2011). Since then, numerous other studies have taken
place in the Atlantic, Arctic, and Pacific oceans, as well as in
the Mediterranean Sea, with a focus on a range of odontocetes
and mysticetes (Supplementary Table 1; Southall et al., 2016).
CEEs have allowed a wide spectrum of behavioral metrics to be
captured under a variety of protocols and configurations (e.g.,
dose escalations or “ramp-ups,” single vs. repeated exposures
of one or multiple signal types, silent vs. full-power vessel
approaches, etc.) (Southall et al., 2016; Wensveen et al., 2017),
including data on animal position, body orientation, social
dynamics, diving patterns, vocal activity, and swimming speeds
(Harris et al., 2016). An important focus of efforts to date has
been to translate these metrics into estimates of probabilities of
sublethal behavioral responses, which may lead to biologically
significant changes in survival or fecundity rates if elicited
repeatedly (Harris et al., 2018). Detecting and characterizing
such responses is difficult, however, not least because: (i) many
reactions are idiosyncratic and context-dependent (DeRuiter
et al., 2013; Goldbogen et al., 2013; Friedlaender et al., 2016;
Gomez et al., 2016; Southall et al., 2016, 2019), making it
challenging to extrapolate patterns of responsiveness across
individuals, populations, and/or species (Harris et al., 2019a); (ii)
success in identifying response events is a function of the amount
and quality of available tag data, the duration and characteristics
of the baseline period with which exposures are being compared,
as well as the response detection method used; and (iii) the
logistical complexities of monitoring cryptic animals that can
only be approached within brief surfacing intervals limit the
number of replicates available, particularly for elusive species
like beaked whales (Harris et al., 2016; Hooker et al., 2019;
Curtis et al., 2020).

Success in overcoming these obstacles requires the strategic
integration of remote tracking technologies to maximize data
collection opportunities over a range of complementary spatio-
temporal scales (Tyack et al., 2011). As such, a rising number
of CEEs now integrate near real-time telemetry and archival
biologging (Tyack et al., 2011) by simultaneously deploying
multiple types of tags on different individuals in the vicinity
of planned sonar activity (e.g., Wensveen et al., 2019). Most
commonly, these include multi-sensor, high-resolution, acoustic
and movement tags such as Acousondes, CATS tags, or DTAGs
(Johnson and Tyack, 2003) and coarser-resolution, position-
transmitting satellite tags (hereafter “S-TAGs”) such as those
operating over the Argos system1 (Tyack et al., 2011; Schick
et al., 2019; Wensveen et al., 2019). The former combine a
microprocessor with a suite of depth, temperature, hydrostatic
pressure, and triaxial acceleration sensors to record fine-scale
motion in three dimensions while synchronously acquiring

1https://www.argos-system.org/
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broadband audio data with one or more built-in hydrophones.
DTAGs, in particular, have revolutionized the study of cetacean
behavior by offering detailed insights into activity states that
could not previously be readily observed (Johnson et al.,
2009). However, DTAGs were originally designed for playback
experiments of short duration (<24 h), and most models are
attached using non-invasive suction cups with a maximum
longevity spanning a few hours to at best a couple of days
(Andrews et al., 2019). Additional limitations imposed by
memory capacity, battery life, and the high sampling rates
required to capture sound further constrain deployment times,
precluding the use of DTAGs (or other acoustic tags) for
assessments of long-term baselines prior to and following noise
disturbance (Schick et al., 2019). By contrast, implantable S-TAGs
allow animals to be tracked over far wider spatial domains
(several hundreds of km; e.g., Schorr et al., 2009) and much
longer timeframes (several months; e.g., Falcone et al., 2017),
though this often comes at the cost of lower resolution with
respect to surface locations and individual behaviors (Nowacek
et al., 2016). Importantly, most S-TAGs lack on-board acoustic
recorders and sacrifice the ability to take in situ measurements
of received sound levels, which must then be inferred indirectly
from knowledge of both the acoustic transmission properties
of the area of interest and the animals’ position relative to the
noise source at the time of exposure (von Benda-Beckmann et al.,
2019). Tags transmitting via Service Argos can also suffer from
substantial geo-localisation errors, which may range anywhere
between 150 m and > 10 km (Nicholls et al., 2007; Irvine
et al., 2020) and are likely to compromise estimates of the
sound dose experienced by exposed individuals (Schick et al.,
2019; von Benda-Beckmann et al., 2019). Such differences in
data quality and resolution between monitoring technologies
raise important questions regarding the optimisation of their
use in BRSs (Harris et al., 2018). Another key challenge lies in
reconciling the onerous costs and logistical demands of BRSs
with the need to ensure that sonar impacts can be detected
reliably (Dunlop et al., 2012), particularly as not all responses are
equally identifiable on all tags. For instance, DTAGs are often
used to identify cessation of foraging, interrupted dive cycles,
and variations in swim kinematics, whereas S-TAGs offer better
insights into patterns of horizontal avoidance, or changes in
relative source-whale positions and low-resolution travel speeds.
Furthermore, the number of tags available tends to be limited, as
DTAGs are usually rented (ca. US $3,500 per month per device)
(S. Isojunno, personal communication) and can be repeatedly
used but necessitate significant labor input for deployment and
recovery, whereas S-TAG prices can exceed US$ 5,000 per unit,
with extra operational costs for data processing and satellite time
(Thomas et al., 2012). Ethical concerns related to tag attachment
may also dictate the tagging methodology used, and the ability to
re-tag the same individuals or monitor different ones in the future
(Hazen et al., 2012). Despite the above caveats, power analyses
are seldom considered to determine the minimum sample size
needed to yield conclusive results in BRSs (but see Dunlop et al.,
2012; Wensveen et al., 2017).

To address this, we explored the effects of sample size and tag
choice on our ability to quantify dose-response (“risk”) functions

from multi-tag BRS data. In the past, managers have relied
on “all-or-none” step functions to estimate the proportion of a
population impacted by a sound source, but this approach can
grossly underestimate risk, and reduces management criteria to
a single threshold that is unlikely to be adequate for meeting
different regulatory needs (Tyack and Thomas, 2019). Instead,
novel statistical methods have recently emerged to quantify
dose-response relationships in the form of flexible probabilistic
curves (Miller et al., 2014; Moretti et al., 2014). These allow
(i) predictions of responses to be made for an array of doses,
including at low levels of exposure, (ii) responsiveness to be
contextualized, by testing hypotheses about the factors driving
the type and severity of responses (e.g., auditory sensitivity,
prey density, behavioral mode), and (iii) resulting insights to be
translated into mitigation guidelines for specific policy scenarios,
on a case-by-case basis (Moretti et al., 2014). Here, we relied on a
previously published Bayesian hierarchical dose-response model
(Miller et al., 2014) to simulate cetacean responses to low- and
mid-frequency active sonar, and we investigated how uncertainty
in our knowledge of the dose experienced by a group of animals
(each carrying a DTAG or a S-TAG in different combinations)
affected metrics of sonar impact, as used in management
decision-making. Simulation exercises are useful tools for guiding
effort allocation in tagging studies, particularly when they are
designed based on real-world datasets (Sequeira et al., 2019; New
et al., 2020). We drew upon existing data from the Atlantic BRS
project2 (see Schick et al., 2019) to tailor simulation inputs for
scenarios involving Cuvier’s beaked whales (Ziphius cavirostris),
a species notoriously vulnerable to sonar (D’Amico et al., 2009;
Filadelfo et al., 2009; Bernaldo de Quirós et al., 2019) and reported
to be site-faithful, even to sonar-rich areas such as Navy training
ranges (Curtis et al., 2020). Our model is not spatially explicit
and does not simulate individuals traversing a landscape of
disturbance. Rather, it provides a conceptual structure for linking
measurements of behavioral change made at the individual level
to intrinsic response thresholds for each species (Figure 1). We
place no restrictions on the nature or magnitude of responses
per se, as the focus of dose-response modeling will vary with
research objectives and data availability. The small sample sizes
typical of BRSs mean that data are often pooled before analysis
(Harris et al., 2015), and numerous BRSs also rely on expert
scoring to quantify the severity of behavioral responses. This is
usually done based on the severity scale described in Southall
et al. (2007) and modified by Miller et al. (2012), which ranges
from no effect (0) to effects not likely to influence vital rates
(severity of 1–3), effects that could affect vital rates (severity
of 4–6), and effects that are thought likely to influence vital
rates (severity of 7–9) (Curé et al., 2021). Our only assumption,
therefore, is that responses are strong enough to be detected on
both tags and broadly comparable, for example by being of the
same type (e.g., all avoidance responses) or of similar intensity
(e.g., all with a severity score> 4). Importantly, Bayesian analysis
offers a natural framework for parameter estimation in complex
hierarchical models that is robust to the limitations of small
datasets and can provide assessments of uncertainty that are fully

2https://sea-inc.net/science/atlantic-brs/
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FIGURE 1 | Bayesian hierarchical dose-response model used for simulating Cuvier’s beaked whale (Ziphius cavirostris) responses to naval sonar. (A) Summary of
features for the observation and process model components. The treatment of sampling uncertainty (δ2) defines variants of the original framework proposed by Miller
et al. (2014). In the reduced model, all animals carry the same type of tag and uncertainty is treated as a constant. In the full model, different tags are fitted on
different individuals, and the uncertainty associated with S-TAGs varies stochastically (see main text for details). (B) Directed acyclic graph of the model structure.
The expected response threshold µij for the ith whale in the jth exposure session is conditional on the additive effects of two contextual covariates: the animals’
previous history of exposure (“exposure” with coefficient α), and the frequency band of the sonar signal (i.e., low- or mid-frequency; “signal” with coefficient β).
Random variables are denoted by circles, and those monitored for posterior inference are additionally shaded in gray. Constants are represented by square boxes.
Filled (black) and open (light gray) arrows indicate stochastic and deterministic relationships, respectively. Prior distributions are shown in orange, with their relevant
parameters (i.e., bounds and/or mean and standard deviation) appearing in bold font. Dotted arrows indicate the parameters to which priors relate. (C) Example
dose-response curve obtained from posterior estimates of model parameters. The curve maps the probability of behavioral response (y-axis) to the received sound
level (i.e., acoustic dose, x-axis). The solid orange line denotes the posterior median, followed by the 5, 10, 15 . . . and 95% credible intervals in darker to lighter
shades of blue. Dashed and dotted lines mark the 95 and 99% credible intervals, respectively.

interpretable in probabilistic terms (Antunes et al., 2014). In
BRSs, this is advantageous for making appropriate predictions
of responsiveness that can inform mitigation measures for naval
training activities (Parsons, 2017; Harris et al., 2018).

MATERIALS AND METHODS

Dose-Response Model
Our work builds on the Bayesian hierarchical dose-response
model proposed by Miller et al. (2014), which assumes that
each individual whale has an inherent sensitivity threshold
at which it will respond to an acoustic stimulus. This
threshold is a function of: (1) the typical sensitivity of the
population/species, and (2) the influence of both internal and
external factors (e.g., behavioral mode, sonar frequency, distance
from sonar source, etc.). Random effect terms are used to

accommodate individual-level differences (i.e., between-whale
variance) as well as repeated measurements of the same
individuals during consecutive exposure sessions (i.e., within-
whale, between-exposure variance). The full model consists
of (1) a process component, which describes the underlying
mechanisms conditioning the sensitivity of animals during
exposure, and (2) an observation component, which links these to
the observed values, measured with some degree of error (Miller
et al., 2014). The former is interpreted as follows: Let tij be the
true (but unknown) threshold of exposure that elicits a behavioral
response (from a user-defined category, e.g., avoidance response,
or response with severity score > 4) for the ith whale during the
jth sonar transmission. We assume that this threshold is given by:

tij ∼ TN
(
µij, σ

2, L,U
)

(1)

with TN denoting a truncated normal distribution where µ

is the location parameter (i.e., the mean of the corresponding
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untruncated distribution), σ2 the scale (i.e., the variance of the
corresponding untruncated distribution), L the lower bound, and
U the upper bound. Here, µij relates to the expected response
threshold of the ith whale during the jth exposure, and σ2

relates to the within-animal, between-session variability in this
threshold. Using truncation is advantageous for constraining
variables within biologically sensible bounds, making sure that
values align with expectations of what constitutes a plausible
range of sensitivity to sound (Miller et al., 2014). We further
assume that µij hinges on the expected threshold for that
individual, µi, and any changes arising from the animal’s previous
history of exposure to sonar and the frequency band of the sonar
signal used, such that:

µij = µi +α×I
(
exposed

)
ij +β×I (MFAS)ij (2)

where α is a parameter capturing the change in sensitivity from
repeat exposures, and I

(
exposed

)
ij is an indicator to which a

value of 0 is assigned during the first exposure session, and a value
of 1 thereafter. Likewise, β governs the effect of MFAS relative to
LFAS, with I (MFAS)ij taking the value 1 if MFAS is used, and 0
otherwise. Lastly, we assume that the expected threshold for each
whale, µi, also follows a truncated normal distribution:

µi ∼TN
(
µ, φ2, L,U

)
(3)

where µ indexes the mean threshold for all whales, φ2 relates
to the between-whale variability, and L and U are as above.
The model also includes an observation component to capture
sampling variability, which stipulates that dose measurements
obtained from tags follow a truncated normal distribution
centered on tij, with scale δ2:

yij ∼TN
(
tij, δ

2, L,U
)

(4)

Dose-response curves are then computed as the cumulative
distribution functions associated with the location and scale
parameters of the truncated normal distribution defined in Eq. 3.

Simulation Scenarios
We adapted the above framework to formulate two
complementary simulation scenarios (Figure 1). The first
was a baseline scenario identical to Miller et al. (2014) whereby
all whales carried the same type of tag and δ was treated as a
constant (henceforth, “reduced model”). We tested incremental
values of δ within 2.5–35 dB to emulate tag data of increasingly
coarse resolution (Table 1). The lower bound of this range reflects
the typical calibration error of DTAG hydrophones (Antunes
et al., 2014), while the upper limit is consistent with maximum
uncertainty estimates obtained in recent CEEs in which satellite
tags were deployed (Schick et al., 2019; von Benda-Beckmann
et al., 2019; Joyce et al., 2020). In a second augmented scenario,
we implemented a more complex observation component that
allowed for concurrent deployments of both DTAGs and S-TAGs
on different individuals (henceforth, “full model”). Tags were
assigned randomly to animals according to a pre-determined
ratio (PS−TAG), which varied from 0 to 100% (DTAG vs. S-TAG)
in 20% increments. δ was kept at 2.5 dB for all DTAGs but varied

for S-TAGs in order to mimic the heterogeneous quality which is
characteristic of location fixes derived from conventional Argos
tracking systems (Irvine et al., 2020) (see section “Accounting
for Positional Uncertainty on S-TAGs” for details). We tested
an array of realistic sample sizes, from a minimum of N = 5
to a maximum of N = 30 (Supplementary Table 1; Southall
et al., 2016). Small sample sizes remain the norm in marine
mammal science, as successful data collection across remote
ocean habitats must comply with the many constraints imposed
by logistics, safety requirements, weather conditions, and
expense. Clearly, the ecological insights gleaned from single
exposures on multiple tags will differ from those produced by
single tags recording a sequence of multiple exposures. The
latter are valuable for painting a picture of within-individual
heterogeneity in behavior (e.g., Tyack et al., 2011; Sivle et al.,
2015), and for learning more broadly about species’ ecological
requirements, patterns of habitat use, and spatial movements
(Sequeira et al., 2019). However, samples of N = 1 do not convey
information about the between-individual variance and were
thus not considered here. We focused on Cuvier’s beaked whales
given their preponderance in sonar-associated atypical mass
strandings (Bernaldo de Quirós et al., 2019), and we relied on
existing datasets, published literature, and expert input to inform
the selection of relevant parameter values (Table 1). For example,
we set the location parameter indexing the mean threshold for
all whales to µ = 120 dB re 1µPa, as an average of the received
sound levels associated with previously reported avoidance
responses for this species (136 dB re 1 µPa, Aguilar Soto et al.,
2006; 98 and 127 dB re 1 µPa, DeRuiter et al., 2013). When
no information was available, we turned to similar taxa such
as beaked whales from the same or closely related families, or
other deep-diving odontocetes. This was the case for both φ and
σ , as we were not aware of any quantitative estimates of these
parameters for Z. cavirostris, despite evidence of population- and
individual-level differences in patterns of behavior coincident
with sonar activity (e.g., Falcone et al., 2017). Here, we set
φ = 20 dB and σ = 25 dB, respectively, based on a study of
long-finned pilot whales (Globicephala melas) (Antunes et al.,
2014). We considered that any noise stimulus below L = 60 dB
re 1 µ Pa would be barely audible above ambient and therefore
would not provoke a response (Schick et al., 2019), and we
expected that all animals would react at or above U = 215 dB
re 1 µPa. This upper bound aligns with the maximum source
levels employed in BRSs to date (211–212 dB re 1 µPa, Tyack
et al., 2011; 210 dB re 1µPa, DeRuiter et al., 2013; 199–214 dB
re 1 µPa, Antunes et al., 2014; 210 dB re 1 µPa, Stimpert
et al., 2014), though it remains markedly lower than most
high-powered sonar systems in operation globally (Southall et al.,
2016; Falcone et al., 2017). It also mirrors current understanding
of the potential for injury at sound levels over 180 dB re 1
µPa, which underpins existing regulations surrounding sonar
mitigation in areas of importance to marine mammals (U.S.
Navy, 2019).

Re-sampling the same wild animals multiple times is difficult
and poses numerous challenges related to interpreting order
effects where sequential noise stimuli are presented over relatively
short durations (Southall et al., 2016). To date, CEEs on beaked
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TABLE 1 | Parameters used in simulations of Cuvier’s beaked whale (Ziphius cavirostris) behavioral responses following exposure to mid-frequency and low-frequency
active sonar.

ParameterDefinition Values Unit Prior Sources

Ns Number of simulations 100 − − New et al., 2020

N Sample size 5, 10, 20, 30 − − Harris et al., 2016; Southall et al., 2016;
Supplementary Table 1

Nt Number of consecutive exposures 2 − − Miller et al., 2014

δ Sampling uncertainty (SD) in measurements or
estimates of received sound levels (i.e.,
acoustic dose)

2.5, 5, 10, 20, 35 dB − Schick et al., 2019; von Benda-Beckmann
et al., 2019; Joyce et al., 2020

PS−TAG Proportion of whales carrying S-TAGs 20, 40, 60, 80, 100 % − −

δDTAG Sampling uncertainty (SD) in measurements of
received sound levels made on DTAGs

2.5 dB − Antunes et al., 2014

SL Source level of the sonar 215 dB re 1 µPa − Tyack et al., 2011; DeRuiter et al., 2013;
Antunes et al., 2014; Stimpert et al., 2014

µ Mean response threshold for all whales 120 dB re 1 µPa U (60, 215) Aguilar Soto et al., 2006; DeRuiter et al.,
2013

φ Between-whale variation (SD) in response
threshold

20 dB U (0, 30) Miller et al., 2014

σ2 Within-whale, between-exposure variation (SD)
in response threshold

25 dB U (0, 30) Miller et al., 2014

α Effect of exposure history on the expected
response threshold for each whale

+10 (second exposure) dB N (0, 10) Sivle et al., 2015

β Effect of sonar frequency (MFAS vs. LFAS) on
the expected response threshold of each whale

−10 (LFAS) and
+10 (MFAS)

dB N (0, 10) Sivle et al., 2012, 2015, 2016; Houser
et al., 2013; Miller et al., 2014

Rij Maximum realized dose for individual i in
exposure session j

150–165 dB re 1µPa − Aguilar Soto et al., 2006; Tyack et al., 2011;
Falcone et al., 2017

D Animal density 1 Ind./km2
− Tyack and Thomas, 2019

Nb Number of bins used in the calculation of the
ERR

500 − − Tyack and Thomas, 2019

Values were chosen to reflect the range of conditions encountered in past and present BRSs and were informed by expert consultation, in keeping with the published
literature (as indicated in the Sources column). Virtual animals were tagged with either digital acoustic recording tags (DTAGs) or Argos-linked satellite tags (S-TAGs), and
response data were analyzed using a Bayesian hierarchical model adapted from the framework presented in Miller et al. (2014). Prior distributions are reported where
relevant, including lower and upper limits for Uniform priors (U) and means and standard deviations for Normal priors (N). SD, Standard deviation.

whales have largely been limited to single exposures, and only
a few BRSs overall have attempted to assess the potential for
sensitisation or habituation. Despite limited statistical support
for an effect of exposure history, available evidence from better-
studied cetacean species points to potentially lower probabilities
of response subsequent to the initial sonar transmission (Sivle
et al., 2012; Houser et al., 2013; Miller et al., 2014; Sivle et al.,
2015, 2016). Here, we considered two consecutive exposure
sessions (the maximum reported for beaked whales, to our
knowledge), and we set α = 10 dB to simulate a higher
tolerance to sound on the second exposure. In their systematic
review of 370 published papers, Gomez et al. (2016) found
that the type of sound source (continuous noise, pulsed sonar,
seismic/explosion) was “an important variable for describing the
severity of behavioral response of wild cetaceans.” In addition,
more recent studies indicate that some species exhibit sonar
signal-specific responses (LFAS vs. MFAS) (Isojunno et al.,
2018). We therefore also tested the influence of sonar signal
frequency in the model. To keep the average expected threshold
µij centered with respect to this covariate, we treated it as a
relative effect between individuals exposed to LFAS vs. MFAS
and encoded the β parameter as an effect size, such that for
β = 20 dB the corresponding coefficient values for LFAS and

MFAS were set to −10 and +10 dB, respectively. LFAS has
been shown to exacerbate sensitivity to sonar in a number of
species (Sivle et al., 2012; Isojunno et al., 2016), yet we note that
responses to low-frequency signals can be variable across taxa
and strongly mediated by behavioral state (Harris et al., 2015).
Lastly, BRS data often entail some degree of right-censoring,
which arises when a subset of animals display no signs of
behavioral disturbance across the array of doses received in
any given experiment (Antunes et al., 2014). The resulting data
entries are assigned missing values and must be accounted for as
they hold critical information about the nature of dose-response
relationships (i.e., they indicate that a response may still occur
at some unknown point above the maximum realized dose,
Rij) (Harris et al., 2015), conditional on the definition of what
constitutes a response within the context of each study. For
instance, if interest lies in predicting changes in population vital
rates, then responses with a severity score< 4 may be considered
as “non-responses” and treated as right-censored (Southall et al.,
2007; Miller et al., 2012). Similarly, models focused on avoidance
responses only would include any exposures resulting in another
response type (e.g., social, vocal, respiration) as right-censored
data. By including right-censoring in our simulations, we can
therefore accommodate for both animals that genuinely do not
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respond (i.e., because their sensitivity threshold is higher than the
maximum dose received), as well as animals that do not respond
in a way that aligns with the focus of the dose-response modeling.
To obtain right-censored observations, we generated random
values of Rij with equal probability within [150–165] dB re 1 µPa
for each exposure. This interval is consistent with the range of
minimum approach (source-whale) distances logged in previous
studies (e.g., 700 m, Aguilar Soto et al., 2006; 1 km, Tyack et al.,
2011; 1.9 km, Falcone et al., 2017), assuming simple spherical
spreading of the acoustic signals (i.e., uniform propagation away
from the source in all directions). Right-censored data points
were labeled as NA and imputed using the dinterval distribution
in software JAGS (Plummer, 2003), which ensures that the lower
bound in Eq. (4) is changed to Rij.

Accounting for Positional Uncertainty on
Argos-Linked Satellite Tags
Most of what we know about the population ranges, diving
abilities, and habitat use patterns of beaked whales comes from
Argos-linked satellite tags (Schorr et al., 2009; Joyce et al., 2017;
Hooker et al., 2019). The Argos system relays radio signals
emitted by animal-borne transmitters to a network of remote
stations on the ground for processing and distribution to users
(Irvine et al., 2020). The geo-localisation of tags is achieved
by determining the Doppler shift in the frequency of uplinks
received by one or more polar-orbiting satellites during the
course of an overhead pass, which usually lasts no more than
ca. 10 min (McConnell et al., 2010). While set-up latency is
negligible, the short time window available for data transfers
means that Argos messages are often incomplete, corrupted,
and/or subject to errors, the magnitude of which depends on
latitude, animal behavior, environmental conditions, time of
day, transmitter stability, and the placement of the tag on the
animal’s body, among other factors (Quick et al., 2019). These
issues are compounded in deep-diving taxa such as Z. cavirostris,
which engage in exceptionally long foraging dives and stay at
the surface for periods of variable duration (i.e., from 2 min to
over 1 h, Shearer et al., 2019; Quick et al., 2020). In practice,
Argos data are therefore recorded with varying quality, even
when uplinks are successful (Schick et al., 2019). Accounting
for this uncertainty is critical to making fair assessments of
variance in received sound levels, and thus to quantifying dose-
response relationships (Schick et al., 2019). Prior to 2008, Argos
position estimates were assigned one of seven location classes
(LC: 3, 2, 1, 0, A, B, and Z in descending order of quality), with
nominal error radii ranging from < 250 m for LC 3 to < 1,500
m for LC 0, > 10 km for the lettered classes (Nicholls et al.,
2007; Irvine et al., 2020). However, these estimates are subject to
substantially greater bias in the longitudinal than the latitudinal
direction, such that true errors around calculated positions are
better represented by 2-dimensional anisotropic ellipses rather
than by 1-dimensional circles (McClintock et al., 2015). Service
Argos has been supplying these ellipses with each location in
recent years. Each ellipse has three components, namely its (1)
semi-major axis, M, (2) semi-minor axis m, and (3) orientation,
c. Taken together, these define a bivariate normal distribution

of geolocation error centered on the animal’s location, with
larger ellipses being associated with higher positional uncertainty
(McClintock et al., 2015). Published estimates of Argos error
ellipses are only currently available for a small number of
cetacean species, including blue (Balaenoptera musculus), fin
(B. physalus), and sperm whales (Physeter macrocephalus) (Irvine
et al., 2020). Empirical data on tagged Cuvier’s beaked whales
have also recently been collected as part of the Atlantic BRS
(Schick et al., 2019), and we used this latter dataset as a basis for
simulating appropriate levels of sampling uncertainty in S-TAGs.
Specifically, we jittered the (x, y) coordinates of each simulated
animal within plausible error ellipses selected at random from the
BRS dataset in every exposure (Figure 2). This was achieved in
seven steps, as follows.

• Step 1: Simulate response thresholds, tij, for each animal i
in exposure session j.
• Step 2: Determine the corresponding range between

whale and sonar source, under the assumption that
sound spreads equally in all directions (i.e., inverse-square
spherical spreading) (Tyack and Thomas, 2019). For these
calculations, the absorption coefficient was set to 0.185 dB
re 1µPa per km, which corresponds to the rate of absorption
of an acoustic signal emitted at a nominal frequency of
3 kHz under normal sea conditions (Miller et al., 2014).
• Step 3: Position an animal at this range, and calculate its

coordinates on the (x, y) plane relative to the source using
simple trigonometry. Whale-source angles are drawn from
a Uniform distribution U∼(0, 360).
• Step 4: Create an Argos error ellipse by randomly sampling

a vector of ellipse parameters θij =
(
Mij, mij, cij

)
from

the Atlantic BRS dataset (Schick et al., 2019), and generate
n = 10,000 candidate locations within this ellipse by
sampling from the bivariate Normal distribution centered
on the animal and with variance–covariance matrix defined
by the values in θij.
• Step 5: Compute the source-whale range for all

candidate locations.
• Step 6: Estimate received sound levels at candidate

locations using the same spherical spreading
loss model as above.
• Step 7: Extract the standard deviation of received levels

as an estimate of the sampling uncertainty associated with
each S-TAG.

Model Fitting and Posterior Inference
Model fitting was performed using Markov Chain Monte
Carlo (MCMC) in JAGS, interfaced via the rjags library in R
v4.0.3 (R Core Team, 2020). Model parameters were estimated
based on 10,000 posterior samples from each of three MCMC
chains, taken after variable burn-in periods (Supplementary
Table 2). Chains were assessed for convergence both visually
(i.e., inspection of trace plots) and numerically (Brooks–Gelman–
Rubin statistic, R̂ < 1.1) using functions from the coda and
bayesplot packages. Each parameter was initialized using arbitrary
starting values. Prior distributions were required on all top-
level random variables in the hierarchical model (shown as
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FIGURE 2 | Schematic of the approach taken to estimate sampling uncertainty on Argos-linked satellite tags (S-TAGs). Step 4 is informed by a real-world dataset on
Cuvier’s beaked whales (Ziphius cavirostris) tagged as part of the Atlantic BRS project (https://sea-inc.net/science/atlantic-brs/) (Schick et al., 2019).

gray circles in Figure 1), and we largely followed Miller et al.
(2014) in choosing diffuse uniform priors for these. The only
exceptions were the two parameters governing the respective
effects of exposure history (α) and sonar frequency (β), for
which normal distributions centered on zero were assumed
(Figure 1 and Table 1). These decisions were subjective, and
it could be argued that the use of more informative priors
(e.g., a low a priori response threshold with small variance)
may have been more beneficial in the analysis of a sonar-
sensitive species like Z. cavirostris. That said, misspecified priors
have the potential to undermine inference and mislead model
interpretation (McCarthy and Masters, 2005). Given the strong
within- and between-individual heterogeneity in responsiveness
described in previous BRSs (Harris et al., 2018), uniform priors
were deemed an adequate and more precautionary alternative,
and were specified so as to constrain model parameters within
biologically plausible bounds (McCarthy and Masters, 2005;
Table 1). Within each scenario, we fitted models to 100 simulated
datasets for each combination of N and δ / PS−TAG, running
the code in parallel on multiple cores to increase execution
speed. In contrast to Miller et al. (2014), we did not implement
Gibbs Variable Selection (GVS), but instead assessed the ability
of the models to discriminate covariate effects by examining the
posterior distributions of the relevant coefficients, α and β . If the
corresponding 95% credible intervals included zero, we deemed
the model unable to detect an effect.

Regulatory agencies in many jurisdictions now require noise
impact assessments to authorize at-sea activities involving loud
sound sources which may adversely affect marine mammals
(Farcas et al., 2016). The assessment process often entails the
estimation of “potential zones of effect” (or alternatively, the
number of animals predicted to be affected) using noise exposure

criteria which define thresholds of sound at which individual-
or population-level impacts can be expected (e.g., mortality,
temporary or permanent hearing impairment, habitat exclusion,
behavioral change) (Faulkner et al., 2018). Historically, these
estimates have often been obtained from simple step functions
which consider that individuals are impacted only if/when
exposed above a discrete level of sound (i.e., the risk of impact
increases instantaneously from 0 to 100% once that level is
attained—typically, 160 dB re 1 µPa). However, this approach
ignores the fact that responses do not necessarily scale with dose
(Gomez et al., 2016), and overlooks the complexities of wildlife
responsiveness to sound, including the large suite of contextual
factors that drive the onset and intensity of behavioral responses
observed to date both within and across taxonomic groups
(Ellison et al., 2012). Tyack and Thomas (2019) recently proposed
the effective response radius (or effective response range, ERR) as
an alternative and unbiased diagnostic of impact for management
applications. The ERR is derived from probabilistic dose-
response curves and can be combined with information on
animal density to determine the number of individuals expected
to respond under given exposure conditions, making it a key
metric in environmental impact assessments. Specifically, the
ERR represents an “effect zone” (sensu Faulkner et al., 2018)
which quantifies the distance beyond which as many animals
respond as do not respond within it; it follows that the total
number of animals (both those that respond and those that
do not) within this range is identical to the overall number of
animals responding at all distances, assuming that individuals are
distributed evenly throughout the region of interest (although
other spatial distributions can be readily incorporated; see Tyack
and Thomas, 2019 for details). Using acoustic propagation
models, the ERR can additionally be translated into an effective

Frontiers in Marine Science | www.frontiersin.org 8 October 2021 | Volume 8 | Article 674554

https://sea-inc.net/science/atlantic-brs/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-674554 September 28, 2021 Time: 16:8 # 9

Bouchet et al. Sampling Uncertainty in Cetacean-Sonar Studies

received level (ERL), which yields an identical estimate of impact
when used as a threshold in a step function as would be
obtained from a full dose-response function (Tyack and Thomas,
2019). To explore the consequences of sampling uncertainty
on decision-making, we used posterior estimates of model
parameters to compute the ERR in each simulation, assuming
spherical spreading loss of the acoustic signals.

To evaluate model performance, we compared the posterior
distributions of parameters and derived quantity (i.e., ERR) with
their “true” values, concentrating on three key diagnostics: (1)
precision, expressed as the average width of posterior credible
intervals; (2) accuracy, measured as the average absolute percent
relative bias, defined as 100 ×

(
posterior mean−true value

true value

)
; and

(3) identifiability, defined as the average prior posterior overlap
(PPO). The latter is useful for identifying parameter-redundant
models, i.e., in which priors simply dictate posteriors and the
data have little bearing on the results, if any. A guideline of
35% or greater overlap has been suggested as an indicator of
weak identifiability (Gimenez et al., 2009). Lastly, we computed
dose-response curves from each model in the same way
as Miller et al. (2014), and created plots of the associated
posterior median and credible interval lines for a range of
chosen quantiles. The code used to run the analyses is publicly
available at https://github.com/pjbouchet/brs_uncertainty and
fully described in Bouchet et al. (2020).

RESULTS

Reduced Model
An interaction between sample size (N) and sampling error
(δ) was apparent in the reduced model, with the variance
surrounding dose-response curves increasing as both N declined
and δ increased (Figure 3A and Supplementary Figure 1).
Posterior estimates of the location parameter for the response
threshold (µ) were closely aligned with their true original value
under most test conditions but were subject to strong positive
bias (average± SD: 15.7± 1.0 dB) at the largest level of sampling
error (δ = 35 dB), irrespective of sample size (Supplementary
Figure 2). Furthermore, degrading data quality from consistently
good (high N, low δ) to consistently poor (low N, high δ) incurred
a ca. threefold loss in precision (average ± SD: 2.99 ± 0.46 dB)
around µ. Together, these trends translated into highly uncertain
assessments of responsiveness and underestimates of impact
when sampling errors were magnified (Figure 3B). Similar
patterns were observed for the scale parameter related to the
within-exposure variance (σ), indicating that even as few as two
repeated exposures can be useful for quantifying intra-individual
variability. By contrast, the scale parameter related to between-
whale variance (φ) was consistently more difficult to estimate,
with wide credible intervals and a high prior posterior overlap
under all sampling regimes (Figure 3C and Supplementary
Figure 2). The model was rarely able to detect an effect of
exposure history (α) (overall average ± SD: 5.7 ± 7.9% of
simulation runs) but was more successful at disentangling the
effect of sonar frequency (β), with credible intervals excluding

zero in up to 66% of simulations runs at N = 30 and δ = 2.5 dB
(overall average ± SD: 27.9 ± 20.0%). Of all model parameters,
only µ was fully identifiable (PPO < 35%) in all simulations,
highlighting the relevance of the information contained in
simulated behavioral data for predicting the population-level
thresholds of response (Figure 3C).

Full Model
The dose-response curves obtained from the full model were
sensitive to variation in N but not PS−TAG, such that sample size
became the dominant driver of posterior inference when multiple
tag types were used (Figure 4A and Supplementary Figure 3).
Bias in estimates of µ remained low in all scenarios, even when
every simulated individual carried a S-TAG (PS−TAG = 100%;
average ± SD: 3.67 ± 0.84 dB) (Supplementary Figure 4).
Likewise, tag choice had a negligible influence on the precision
of µ for a given sample size. By contrast, posterior credible
intervals were halved when sampling effort increased from N = 5
to N = 30 whales (average ratio ± SD: 0.44 ± 0.075 dB), as was
the range of plausible predictions of the ERR, which decreased
from 32–114 km to 58–99 km, respectively (Figure 4B). On
average, the model only detected an effect of exposure history
in 5.5 ± 5.3% of simulations. At N = 30, the effect of sonar
frequency (beta) was correctly detected in more than 50% of
runs (overall average± SD: 29.6± 20.0%). Patterns in parameter
identifiability largely mirrored those observed in the reduced
model (Figure 4C).

DISCUSSION

Over two decades of BRSs on the effects of military sonar
have now been funded by the world’s navies, allowing major
strides in our understanding of the impacts of man-made noise
on free-ranging cetaceans (Harris et al., 2016, 2018; Southall
et al., 2016). While the pathways leading to physical injury
and mortality are not yet fully resolved (Hooker et al., 2019),
individual behavioral change has been highlighted as a pivotal
symptom of sonar-related disturbance (DeRuiter et al., 2013;
Southall et al., 2019). In the last 75 years, engineers and marine
mammal scientists have come up with creative technological
solutions to assess the behavior (e.g., spatial movements, call
rates, diving patterns, group dynamics) of whales and dolphins
before, during, and after sound exposure (Nowacek et al., 2016).
Static passive acoustic platforms, for instance, have played a
prominent role in BACI studies of shallow nearshore and shelf
ecosystems, where numerous cetacean populations co-occur with
human activities (e.g., Risch et al., 2012; Sarnocińska et al., 2020).
Many BRSs also focus on deep-diving oceanic species in offshore
habitats, where the onerous costs of running dedicated CEEs
(i.e., often in excess of several US$ 100,000 for a single season)
(Harris et al., 2016) provide a strong impetus for integrating
multiple sampling approaches, including visual focal follows
and combinations of archival biologging and near real-time
biotelemetry (Berga et al., 2019; von Benda-Beckmann et al.,
2019). However, commonly used animal-borne tags like DTAGs
and S-TAGs capture ecological processes on fundamentally
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FIGURE 3 | Outputs from the reduced model. (A) Example dose-response curves for a subset of sample sizes (N) and sampling errors (δ). Solid lines represent the
average posterior medians across Ns = 100 simulations, followed by the average 5, 10, 15 . . . and 95% credible intervals in darker to lighter shades of blue.
(B) Posterior estimates of the effective response range (ERR). Circles and bars respectively denote the average posterior median and credible intervals for each
N × δ combination. The dashed line marks the true underlying value. (C) Summary of patterns in the precision, accuracy, and identifiability of posterior estimates
across N (across) × δ (down) combinations. Results are shown (from left to right) for the location parameter relating to the mean response threshold for all whales
(µ), the scale parameters relating to the between-whale variation (phi) and the within-whale between-exposure variation (σ ), and the two contextual covariates (α and
β). Rows indicate the average posterior credible interval width (in dB) [top], absolute percent relative bias (in %) [middle], and prior posterior overlap (PPO, in %)
[bottom]. PPO values above 35% indicate that parameters may be non-identifiable (2011).

different spatio-temporal scales (Hazen et al., 2012), and generate
data burdened with varying levels of uncertainty. For example,
estimates of received sound levels from DTAGs are typically
obtained with higher precision than on S-TAGs, especially when
the latter operate through the Argos system (Costa et al., 2010;
Irvine et al., 2020). At present, it is unclear how sampling

uncertainty from the use of different instruments propagates
into metrics of risk as used in decision-making. Here, we took
advantage of an existing Bayesian hierarchical model to address
this question and investigate the implications of tag choice for
estimating probabilistic dose-response functions (Miller et al.,
2014; Tyack and Thomas, 2019).
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FIGURE 4 | Outputs from the full model. (A) Example dose-response curves for a subset of sample sizes (N) and ratios of satellite tags (PS−TAG). Solid lines
represent the average posterior medians across Ns = 100 simulations, followed by the average 5, 10, 15 . . . and 95% credible intervals in darker to lighter shades of
blue. (B) Posterior estimates of the effective response range (ERR). Circles and bars respectively denote the average posterior median and credible intervals for each
N × PS−TAG combination. The dashed line marks the true underlying value. (C) Summary of patterns in the precision, accuracy, and identifiability of posterior
estimates across N (across) × PS−TAG (down) combinations. Results are shown (from left to right) for the location parameter relating to mean response threshold for
all whales (µ), the scale parameters relating to the between-whale variation (φ) and the within-whale between-exposure variation (σ ), and the two contextual
covariates (α and β). Rows indicate the average posterior credible interval width (in dB) [top], absolute percent relative bias (in %) [middle], and prior posterior overlap
(PPO, in %) [bottom]. PPO values above 35% indicate that parameters may be non-identifiable (Gimenez et al., 2009).

Our results highlight the importance of considering sample
size in studies of sonar impacts on free-ranging cetaceans,
and illustrate how larger datasets can deliver consistent
improvements in accuracy and precision irrespective of tag
choice. Obtaining reliable estimates of the location and scale
parameters that relate to the mean threshold of response (µ) and
its associated variance components (σ and φ) is essential, as it

is these that define the position and steepness of the cumulative
distribution function on which dose-response curves are based.
As such, any biases in model parameters may undermine
assessments of risk and lead to errors that can misguide decision-
making. For instance, the limited information available when N
is low means that posterior estimates for µ will be pulled away
from the true threshold of response (here, µ = 120 dB re 1 µPa)

Frontiers in Marine Science | www.frontiersin.org 11 October 2021 | Volume 8 | Article 674554

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-674554 September 28, 2021 Time: 16:8 # 12

Bouchet et al. Sampling Uncertainty in Cetacean-Sonar Studies

toward the prior mean (here, µ = 135 dB re 1µPa). If the latter
exceeds the former, then impact zones from sonar transmissions
will be consistently underestimated (Figures 3, 4). Conversely,
impact will be overestimated if the prior mean is lower than
the true response threshold. When paired with adequate controls
and baselines, larger datasets may also help differentiate among-
individual from within-individual heterogeneity, and facilitate
their separation from the proximate drivers that control reactions
to sound (Cleasby et al., 2015; Dunlop et al., 2018). There
is compelling evidence that many factors (other than received
sound levels) affect the onset and severity of behavioral responses
(Ellison et al., 2012; Gomez et al., 2016; Harris et al., 2018;
Southall et al., 2019). These include (1) intrinsic traits, such
as hearing sensitivity, noise tolerance, activity and motivational
states at the time of exposure, age, sex, or the presence of
dependent offspring, as well as (2) extrinsic elements, such as
the nature of the sound (e.g., frequency band) (Isojunno et al.,
2018), or the spatial relationship between emitter and receiver
(e.g., motion, depth, and proximity of the sound source). Some
of the most dramatic responses to underwater noise reported to
date appear to have been from naïve, free-ranging individuals
at very low received levels (90–120 dB re 1 Pa rms) (Finley
et al., 1990), suggesting that acoustic novelty and previous
history of exposure may also play a decisive role. However,
efforts to appropriately assess the potential for sensitisation and
habituation are complicated by the variety of timescales over
which exposures may occur—from a few hours in the context of
CEEs to upwards of several days or weeks during real military
operations—and the lack of a standardized metric of individual
experience or familiarity with sonar sounds over a range of
relevant time periods (Gomez et al., 2016). Our model was rarely
successful at recovering the influence of exposure history (α) in
the simulations, likely because of the small effect size for this
covariate relative to the overall level of variability present in
the data. In the absence of appropriate empirical measurements,
our choice of parameterisation for α was ultimately arbitrary,
yet it points to the need to further consider statistical power in
analyses of sonar effects. Modest changes in response thresholds
and the behavior of individual whales associated with disturbance
can have population-level consequences (e.g., through reduced
energy intake, Benoit-Bird et al., 2020), but these may go
undetected without adequate sample sizes.

It is important to note that the ability to tease apart the
effects of contextual factors from tags that cannot directly
measure sound is predicated on the assumptions made regarding
acoustic transmission loss. Simple transmission loss models
may not accurately predict received levels from a sonar
source to a free-diving animal (Wensveen, 2012), leading to
substantial uncertainties and biases in the impact assessment
process (Farcas et al., 2016). This is particularly the case in
oceanographically dynamic habitats and over convoluted seabed
terrain, where depth-mediated changes in sound profiles can
manifest throughout the water column (Siderius and Porter,
2006; Schick et al., 2019; von Benda-Beckmann et al., 2019).
Accounting for fine-scale variations in sound profiles is a
complicated problem to tackle which requires the development
of sophisticated sound propagation models, not all of which

perform well in areas different to the ones in which they
were built (Siderius and Porter, 2006). Using a propagation
model was outside the scope of the present study and would
have undermined the applicability of our results, constraining
inference to a narrow range of environmental conditions (e.g.,
bathymetry, ocean currents) with limited value for management.
For simplicity and generality, we thus assumed that sonar pings
propagated away from the source uniformly in all directions
along the horizontal plane (i.e., spherical spreading). While
this is clearly a simplification of the sound field, evidence
suggests that it may provide a reasonable approximation of
noise propagation in at least some homogeneous deep-water
environments (Wensveen, 2012). Our estimates of variance
in received levels at incremental distances from the source
(Supplementary Figure 5) also align with the range of values
reported in the literature, including in studies of beaked
whales that did rely on sound propagation models within
topographically complex shelf break habitats (Schick et al., 2019).
This lends confidence that our simulation successfully captured
realistic scenarios of sound exposure.

From the early days of the first DTAG deployments on
single individuals, BRSs (and CEEs) have rapidly evolved into
what are now fully multidisciplinary, multi-platform, operational
field programs that capitalize on an array of remote sensing
technologies to monitor animal behavior in complementary ways.
By simulating specific sampling regimes involving several tag
types, we were able to start evaluating how methodological
decisions regarding tag selection may influence predictions of
risk. We found that despite the occasionally high positional errors
reported in previous satellite tracking studies (Tyack et al., 2011;
Falcone et al., 2017; von Benda-Beckmann et al., 2019; Wensveen
et al., 2019; Joyce et al., 2020), the average variability in the
modeled acoustic dose experienced by whales carrying S-TAGs
was sufficiently low to support the estimation of dose-response
relationships (Supplementary Figure 5). This aligns with an
expanding body of literature documenting the utility of satellite-
transmitting tags for evaluating the impacts of anthropogenic
sound on marine mammals (Tyack et al., 2011; Falcone et al.,
2017; von Benda-Beckmann et al., 2019; Wensveen et al., 2019;
Joyce et al., 2020), in complement to other tools. In our example,
similar estimates of the ERR were obtained on average from
a sample of N = 20 whales with DTAGs (assuming a fixed
measurement error of δ = 2.5 dB) as from a sample of N = 30
whales all carrying S-TAGs (unless uplinks were consistently
poor) (Figures 3, 4). This type of comparative assessment is not
only useful for planning future survey effort but also for framing
expectations about the realm of inference that is attainable given
existing datasets. A key assumption, however, is that responses
are comparable and detection rates equal between tag types. This
is an important caveat, as the energetic costs associated with
sonar disturbance vary with the nature and strength of behavioral
responses, and are a function of species’ life histories and
physiologies (Czapanskiy et al., 2021). For example, the relative
energy expenditure of a blue whale exhibiting a “mild” foraging
response has been shown to exceed that of an “extreme” flight
response in Cuvier’s beaked whales (Czapanskiy et al., 2021).
Failure to detect weak responses, or responses of a particular type,
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on instruments that deliver coarser-resolution data like S-TAGs
would lead to bias in estimates of the dose-response functions
and thus assessments of biological impacts. An additional issue
is that the accuracy of Argos locations has been shown to be site-
and species-specific, and mediated by both diving patterns and
the positioning of the tag on the animal’s body (Mul et al., 2019).
For instance, Costa et al. (2010) and Irvine et al. (2020) provided
evidence that drifts in the frequency of tag transmissions at cold
temperatures may be responsible for higher levels of errors in
animals undergoing deep, long-duration dives like sperm whales
or northern elephant seals (Mirounga angustirostris)—and thus
presumably beaked whales. Given the above, our estimates likely
remain conservative and are strictly only relevant within the
bounds of error recorded on tags deployed on Z. cavirostris
(as part of the Atlantic BRS study), particularly as further
work is required to validate our results with other species
in different environments. That said, we anticipate that any
disparities in performance between taxa or between instruments
will quickly narrow in the near future given the enormous
advances in telemetry systems that have been accomplished in
recent years (e.g., higher numbers of polar-orbiting satellites,
better sensitivity of satellite sensors, longer transmitter battery
life, more streamlined tag shapes). Already, the accuracy of tags
enabled with Fastloc-GPS surpasses conventional Argos tracking
systems by several orders of magnitude (Dujon et al., 2014),
leading to an exponentially rising volume of telemetry data of
constantly improving quality. Similarly, much research is being
directed at improving current methods for the characterisation
of behavioral change,3 and engineering efforts to enhance tag
adhesion and augment the array of onboard electronics available
are expected to facilitate a new generation of longer-lasting, data-
rich DTAG and S-TAG attachments that can yield novel insights
into not only the levels of noise required to elicit behavioral
responses, but also the physiological mechanisms through which
these responses may cause harm (Nowacek et al., 2013; Hooker
et al., 2019). Further improvements to our modeling framework
are also possible and may entail: (i) the inclusion of a formal
detection process, which acknowledges that behavioral responses
are harder to detect from coarser-resolution data and lead to a
larger proportion of censored observations on S-TAGs relative
to DTAGs, (ii) the use of dedicated sound propagation models
to better represent the range of received levels which whales are
likely to experience, (iii) the addition of a depth component to
map received levels in three dimensions, (iv) correlated patterns
of satellite uplink quality for animals fitted with S-TAGs, (iv)
different model parameterisations (e.g., prior choice). We have
made our code freely available to support these efforts.

CONCLUSION

Determining how cetaceans react to manmade underwater
noise is vital for making informed decisions about what may
constitute acceptable levels of risk to species from sound-
producing activities. A significant challenge in studies of cetacean

3See https://github.com/r-glennie/CTMCdive for an example.

exposure to military sonar lies in teasing out pattern from noise
within complex datasets gathered using instruments that are
subject to varying degrees of measurement error. Very few BRSs
consider how sample size and tag choice may affect statistical
power (Dunlop et al., 2012; Cato et al., 2016), yet understanding
how these two elements interact to shape ecological inference is
essential in delivering robust estimates of uncertainty that can
help managers adhere to precautionary principles in the face
of many unknowns. We demonstrated that clear improvements
in the accuracy and precision of parameter estimates from a
Bayesian hierarchical dose-response model are possible with
increased sample sizes, largely independently of tag choice
(DTAG vs. S-TAG). Thus, substantial advances in our capacity
to predict sonar impacts on cetaceans are likely to be made in
the future as collaborative efforts to conduct multi-platform BRSs
continue to persist in earnest.
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