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Predators must consume enough prey to support costly events, such as reproduction.
Meeting high energetic requirements is particularly challenging for migrating baleen
whales as their feeding seasons are typically restricted to a limited temporal window
and marine prey are notoriously patchy. We assessed the energetic value of the
six most common nearshore zooplankton species collected within the Oregon,
United States range of the Pacific Coast Feeding Group (PCFG) gray whale (Eschrichtius
robustus) feeding grounds, and compared these results to the energetic value of the
predominant amphipod species fed on by Eastern North Pacific (ENP) gray whales
in the Arctic. Energetic values of Oregon zooplankton differed significantly between
species (Kruskal–Wallis χ2 = 123.38, df = 5, p < 0.0001), with Dungeness crab
(Cancer magister) megalopae displaying the highest mean caloric content of all tested
species (4.21 ± 1.27 kJ g-1). This value, as well as the mean energetic value of
the mysid Neomysis rayii (2.42 ± 1.06 kJ g-1), are higher than the mean caloric
content of Ampelisca macrocephala, the predominant Arctic amphipod. Extrapolations
of these results to daily energetic requirements of gray whales indicate that lactating and
pregnant gray whales feeding in the PCFG range would require between 0.7–1.03 and
0.22–0.33 metric tons of prey less per day if they fed on Dungeness crab megalopae or
N. rayii, respectively, than a whale feeding on A. macrocephala in the Arctic. Yet, these
results do not account for differences in availability of these prey species to foraging gray
whales. We therefore suggest that other factors, such as prey density, energetic costs
of feeding, or natal philopatry and foraging site fidelity play a role in the differences in
population sizes between the PCFG and ENP gray whales. Climate change is implicated
in causing reduced body condition and increased mortality of both PCFG and ENP
gray whales due to decreased prey availability and abundance. Therefore, improved
understanding of prey dynamics in response to environmental variability in both regions
is critical.
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INTRODUCTION

Foraging efficiency is key to predator success. This efficiency must
balance energetic cost with energetic reward, forcing predators
to make decisions regarding target prey type, size, location, and
behavioral effort. To maximize the net energy gained, optimal
foraging theory (OFT) posits that an individual should target
prey with the most benefit (energy) for the lowest possible
cost (MacArthur and Pianka, 1966). Moreover, the marginal
value theorem (MVT) illustrates that patch choice requires
predators to consider the potential value of future patches relative
to a current foraging patch, as well as the time and energy
required to search for a new patch (Charnov, 1976). These
energetic trade-offs impact predator distribution patterns and
population dynamics (Owen-Smith et al., 2010; Louzao et al.,
2014), and can be particularly challenging in marine ecosystems
where prey is patchy and spatially and temporally dynamic
(Hyrenbach et al., 2000).

Foraging decisions by baleen whales cannot afford much error
as they are capital breeders with large energetic demands that
must be met within a limited temporal window while on feeding
grounds. Energy acquired during the foraging period must
support the majority of their energetic requirements needed for
foraging effort, migration, and reproduction for the subsequent
year (Lockyer, 1984). For instance, it is estimated that gray whales
(Eschrichtius robustus) must regain 11–29% of their body mass
on the feeding grounds (Villegas-Amtmann et al., 2015); hence,
finding enough prey is crucial. Prey patch selection by baleen
whales is strongly associated with patch density and capture
efficiency (Piatt and Methven, 1992; Croll et al., 2005; Goldbogen
et al., 2011; Feyrer and Duffus, 2015; Hazen et al., 2015), where
whales prioritize the densest patches in the most accessible areas
(e.g., shallow to minimize diving costs) to achieve the highest
energetic gain for the lowest cost (Croll et al., 2001; Doniol-
Valcroze et al., 2011; Goldbogen et al., 2013; Torres et al., 2020).

Additionally, there is increased recognition that prey quality,
such as caloric content, is important for the foraging ecology of
cetaceans, including baleen whales (Spitz et al., 2012). Variability
in the caloric value of zooplankton can occur within and
between species, across seasons and between years, and by region
(Mauchline, 1980). This variability may be due to differences in
lipid composition and storage (Lee et al., 2006), diet (Mauchline,
1980), or reproductive stage (Schaafsma et al., 2018). Foraging
decisions by baleen whales can be influenced by prey caloric
content. For example, it has been shown that blue whales
(Balaenoptera musculus) preferentially feed on a more calorically
rich species of krill (Nickels et al., 2018). Caloric decisions may
also be an important element in prey patch selection of generalist
baleen whales that have multiple prey options. These generalists
must maximize both density and caloric intake while minimizing
the cost of capture associated with the energetic requirements
of behavioral foraging adaptations fit to prey characteristics. For
instance, gray whales in the Bering, Chukchi, and Beaufort Seas
(hereafter referred to as Arctic) feed predominantly on benthic
amphipods (Nerini, 1984; Moore et al., 2003; Coyle et al., 2007a),
yet they feed on epibenthic and pelagic zooplankton along the

North American west coast (Nerini, 1984; Nelson et al., 2008;
Feyrer and Duffus, 2011; Gosho et al., 2011).

Gray whales in the eastern North Pacific Ocean migrate
from breeding grounds in Baja California, Mexico to their
feeding grounds in the Arctic during the summer (Rice and
Wolman, 1971). The benthic amphipod community in this
region is dominated by the ampeliscid amphipod, Ampelisca
macrocephala, which comprises over 70% of the benthic
community (Coyle and Highsmith, 1994) and is the primary
prey of the Eastern North Pacific (ENP) gray whale population
(Nerini, 1984). ENP individuals feed benthically by diving to
the seafloor at mean depths of 40–50 m (Schonberg et al.,
2014) and sucking up benthic infauna in the soft sediment
(Nerini and Oliver, 1983). A sub-group of this population of
gray whales, termed the Pacific Coast Feeding Group (PCFG),
does not migrate to the Arctic feeding grounds but rather stops
approximately halfway up the North American west coast and
utilizes the region from northern California, United States to
northern British Columbia, Canada as their foraging ground
(Calambokidis et al., 2002). PCFG gray whales are well-known
as generalist feeders (Nerini, 1984) based on evidence of feeding
on benthic amphipods (Burnham and Duffus, 2016), mysids
(Newell and Cowles, 2006; Feyrer and Duffus, 2011), cumaceans
(Gosho et al., 2011), crab larvae (Nelson et al., 2008), ghost
shrimp (Duffus, 1996; Darling et al., 1998), and herring roe
(Darling et al., 1998). The ability to feed on such a wide variety
of zooplankton prey requires different feeding behaviors adapted
to successfully capture variable prey in a diversity of habitats.
Torres et al. (2018) used an unoccupied aerial system (UAS; a.k.a.
“drone”) to describe and quantify a variety of foraging tactics
employed by PCFG individuals along the Oregon, United States
coast, including “headstands,” “bubble blasts,” and “sharking” on
reefs, as well as documentation of whales expelling sediment
from their mouths.

Abundance estimates of the ENP and PCFG indicate the
population sizes are two orders of magnitude different, with
the ENP estimated at ∼20,000 individuals (Stewart and Weller,
2021), while the PCFG contains only ∼250 individuals (Weller
et al., 2013; Calambokidis et al., 2017). Genetic analysis has yet
to resolve the degree of reproductive mixing between the ENP
and PCFG sub-groups. Mitochondrial genetic data indicates low
genetic exchange between sub-groups, yet microsatellite analysis
showed no evidence that whales from the two different feeding
grounds are reproductively isolated (Frasier et al., 2011; Lang
et al., 2014). The relatively large size of the ENP population
suggests that migrating all the way to the Arctic feeding grounds
is advantageous despite the longer, and therefore more costly,
migration. Increased prey quantity, quality, and availability in the
Arctic potentially outweigh the trade-off of increased migration
costs. Yet, PCFG whales are also able to gain critical energetic
mass throughout a foraging season (Soledade Lemos et al., 2020)
and successfully recruit calves (Calambokidis and Perez, 2017),
all while migrating half as far. Hence, the mystery of the PCFG
persists: Why would a gray whale not join the PCFG? Or is life as
a PCFG gray whale harder than perceived, perhaps due to reduced
prey quality?
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To help unravel the mystery of the PCFG, this study aims
to (1) assess the quality (caloric content) of different potential
zooplankton prey on the Oregon coast, and (2) compare the
quality of prey on the Oregon coast (as a proxy for the entire
PCFG range) to the quality of prey in the Arctic ENP feeding
grounds through extrapolations of gray whale energetic needs
using published values in the literature. We hypothesize that
Oregon coast prey will vary by species, reproductive stage,
and time of year. Furthermore, we anticipate that Arctic prey
(ampeliscid amphipods) will be more calorically rich than
Oregon prey, contributing to the fact that the majority of ENP
gray whales migrate to the Arctic to feed during the summer
rather than traveling half as far to feed in the PCFG range. Our
aim is to inform the foraging energetics of the PCFG through
comparisons to the larger population of ENP gray whales and
thus elucidate the existence of this small sub-group and inform
population management efforts.

MATERIALS AND METHODS

Sample Collection and Preparation
Collection of zooplankton samples was conducted near the coast
of Newport (44◦38′12′′ N, 124◦03′08′′W), Oregon, United States,
between June and October from 2017 to 2019 as part of a larger
study on gray whale ecology (Soledade Lemos et al., 2020).
Collection occurred using a simple, low-cost light trap, which
was a modified plastic water jug with an LED light placed inside
to attract zooplankton (adapted from design in Chan et al.,
2016). The light trap was deployed overnight at randomly selected
nearshore sites where gray whales were observed foraging
previously that day (Figure 1). The bottom habitat of the
collection sites was rocky reef, with and without kelp. The trap
was deployed overnight with an anchor and float line to keep
the trap just above the seafloor. This system is effective at
sampling epibenthic species associated with the benthos in rocky
coastal habitats where it is difficult to sample using towed nets
(Chan et al., 2016). The light trap was collected the subsequent
day. In addition, Dungeness (Cancer magister) and porcelain
(Porcellanidae sp.) crab larvae were opportunistically sampled
in the Newport study area with nets where gray whales were
observed feeding on surface swarms (Figure 1).

Once collected, all samples were transferred to sterile jars
and frozen at −20◦C until subsequent sorting and calorimetric
analysis. All samples were sorted to species level and separated
by reproductive stage. All sorted samples were blotted and
wet-weighed prior to being dried in a desiccating oven at
60◦C between 48 and 72 h until they reached a constant
mass. After reweighing, the dried samples were ground into a
homogenous powder and, using a pellet press (Parr Instruments,
Moline, IL, United States), were made into 2–100 mg pellets,
depending on the amount of sample available each day. Pellet
weights were recorded for each sample prior to calorimetry.
Where possible, a minimum of three replicate pellets were
made per sample. However, the small sample number of certain
species or reproductive stages on some sampling days limited
replication (Table 1).

Calorimetry
Pellets were combusted using a semi-micro bomb calorimeter
(Model 6725, Parr Instruments, Moline, IL, United States).
Calibrations of energetic density estimates were performed using
0.2 g benzoic acid (C6H5COOH) pellets and resultant caloric
densities were corrected for uncombusted fuse wire and/or
sample (Parr Instruments Company, 2010). Caloric densities with
standard deviations (SD) are reported here in kilojoules per gram
wet weight (kJ g-1 WW).

Statistical Analysis
All statistical analyses were conducted using R (version 4.0.2;
R Core Team 2020). Data did not meet the assumptions of
normality and homogeneity of variance, therefore Kruskal–
Wallis rank sum tests were performed to assess differences
in energetic value between species, reproductive stage, and
time (month and year). If significant differences were detected,
pairwise comparisons with the Dunn’s test were carried out.
A Bonferroni correction was applied to account for multiple
comparisons (Dunn, 1961). A total of eight Kruskal–Wallis tests
were performed, resulting in a new Bonferroni-adjusted alpha
value of 0.006 (0.05/8). Linear regressions were conducted to
test for the effect of reproductive stage on caloric content with
day of year (DOY).

Extrapolations to Daily Whale Energetic
Needs
Although PCFG gray whales show varying degrees of site fidelity
to specific foraging sites within their range (Calambokidis et al.,
2017), they also move between foraging sites within and between
foraging seasons (Lagerquist et al., 2019). Hence, PCFG whales
may gain their annual energetic needs from a variety of locations
within the PCFG range. The nearshore bottom habitat along
the central Oregon coast is predominantly rocky reef, with
interspersed sedimentary areas (Romsos et al., 2007; L. Torres,
pers. obs.). The prey associated with this habitat type (Table 1)
are similar to those described for British Columbia (Dunham
and Duffus, 2002; Feyrer, 2010; Feyrer and Duffus, 2011, 2015),
Washington (Scordino et al., 2017), and northern California
(Jenkinson, 2001). Therefore, for our extrapolations of PCFG
gray whale caloric requirements from prey, we assume that (1)
a similar suite of prey species is available to gray whales across
the PCFG range as we captured off central Oregon, and (2)
caloric estimates by species and reproductive stage documented
in our analysis are similar across the PCFG range. However,
we recognize that we did not measure the caloric content of all
prey types known to be fed on by gray whales in this range,
such as herring roe (Darling et al., 1998) and benthic amphipods
(Burnham and Duffus, 2016), but these have never been captured
in our study’s field site (Oregon). Since it is unlikely that gray
whales feeding in the PCFG range exclusively consume one
species of prey during the whole foraging season, we created
a PCFG composite prey caloric value by calculating the mean
caloric value of the six Oregon prey species tested in this study.

Caloric values of A. macrocephala, the predominant amphipod
species in the Arctic feeding grounds of ENP gray whales
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FIGURE 1 | Locations of prey samples collected with a light trap (open circles) or opportunistic collections of surface swarms of crab larvae (black triangles) in
Newport, along the Oregon coast in the Pacific Northwest coast of the United States.

(Nerini, 1984), were compiled from the published literature
(Highsmith and Coyle, 1990, 1992; Hondolero et al., 2012;
Wilt et al., 2014). These studies report the caloric content of
A. macrocephala as dry weight values. In contrast, we have
reported wet weight values of caloric content because this unit
is relevant to foraging whales, as this is the form in which
prey is consumed. Therefore, to facilitate comparison of the
number of individual zooplankton by species needed to be

consumed by a gray whale to meet their daily energetic needs,
we converted the published average dry weight caloric content
for A. macrocephala (4.473 kcal g-1; Hondolero et al., 2012) to
average wet weight caloric content (2.021 kJ g-1) after obtaining
the dry and wet weights of the samples used in that study (K. Iken,
unpublished data).

Prey caloric values were extrapolated by species to the daily
energetic requirements (MJ day-1) for pregnant and lactating
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TABLE 1 | Energetic values (wet weight) and sample sizes by zooplankton species
and reproductive group collected from June to October in 2017 to 2019 in central
Oregon.

Species Number of
energetic

values

Mean
energetic
value (kJ

g-1)

Minimum
energetic
value (kJ

g-1)

Maximum
energetic
value (kJ

g-1)

Standard
deviation

Atylus tridens 28 1.25 0.47 2.93 0.57

Gravid 2 0.78 0.60 0.97 0.26

No brood pouch 25 1.31 0.47 2.93 0.58

Empty brood
pouch

1 0.71 – – –

Dungeness crab
megalopae

13 4.21 2.61 6.14 1.27

Holmesimysis
sculpta

100 1.60 0.47 5.21 0.66

Gravid 33 1.74 0.83 3.04 0.58

No brood pouch 48 1.65 0.83 5.21 0.73

Empty brood
pouch

19 1.23 0.47 2.36 0.49

Neomysis rayii 128 2.42 0.59 7.96 1.06

Gravid 37 2.50 1.27 7.96 1.04

No brood pouch 67 2.59 0.86 5.54 1.12

Empty brood
pouch

24 1.86 0.59 3.47 0.75

Polycheria osborni 11 0.83 0.53 1.14 0.21

Porcelain crab
larvae

4 1.17 1.00 1.31 0.14

PCFG composite
prey

284 1.91 – – –

Ampelisca
macrocephala

– 2.02 – – –

Mean energetic value (wet weight) of all Oregon prey species tested in this study
(PCFG composite prey) and Arctic amphipod species Ampelisca macrocephala
(obtained from Hondolero et al., 2012 and K. Iken, unpublished data) are also
included in the table.

female ENP gray whales based on the results of Villegas-
Amtmann et al. (2017) to estimate the requirements per day of
(1) the biomass of prey, in metric tons, and (2) the number of
individual prey items. Villegas-Amtmann et al. (2017) calculated
daily energetic requirements for self-maintenance and costs of
reproduction over a female’s 2-year reproductive cycle. Biomass
(metric tons) of prey required per day was calculated by dividing
the daily energetic requirement by the mean caloric value (MJ
g-1) of each prey species, divided by 1 million. Number of
individual prey items required per day was calculated by dividing
the biomass of prey required per day by the mean wet weight per
individual of each prey species.

RESULTS

Sample Collection and Preparation
Light trap deployment depth was 11.2 ± SD 2.98 m. A total
of 36 light traps were deployed, however, following recovery,
five traps did not contain any zooplankton, likely due to a
malfunction of the light used to attract zooplankton to the trap.

Therefore, 31 light trap samples and three opportunistic surface
samples were analyzed.

In total, nine zooplankton species were identified: the
mysids Alienacanthomysis macropsis, Exacanthomysis davisi,
Holmesimysis sculpta, and Neomysis rayii, the amphipods Atylus
tridens, and Polycheria osborni, Dungeness crab megalopae and
porcelain crab larvae, and an unknown species of Caprellidae.
A. macropsis, Caprellidae sp., and E. davisi were rare, only
being identified in 1, 1, and 4 light trap samples, respectively.
These occurrences were represented by a single specimen,
which prevented successful calorimetric determination for
these three species.

For the mysids, gravid females were identified through the
presence of a brood pouch that contained any developmental
stage of offspring (from eggs to larvae). Individuals that had a
brood pouch without any contents were classed as empty brood
pouch females and considered to have already released their
young. For A. tridens, gravid females were identified by a clutch
of eggs in their pereopods. Reproductive stages could not be
discerned for P. osborni due to its small size.

Energetic Value
A total of 284 energetic values were determined (Table 1). Caloric
content did not vary significantly between years (Kruskal–Wallis
χ2 = 3.20, df = 2, p = 0.202). Therefore, samples were pooled
across years for all subsequent analyses.

The energetic density between species (pooled across
reproductive stage and month) varied significantly (Kruskal–
Wallis χ2 = 123.38, df = 5, p ≥ 0.0001; Figure 2A). Dungeness
crab megalopae (n = 13) had the highest mean energetic density
(4.21 ± 1.27 kJ g-1) and the amphipod P. osborni (n = 11) had
the lowest mean energetic density (0.83 ± 0.21 kJ g-1). Caloric
values of Dungeness crab megalopae and the mysid N. rayii
(2.42 ± 1.06 kJ g-1) were significantly higher than those of the
mysid H. sculpta (1.60 ± 0.66 kJ g-1), porcelain crab larvae
(1.17± 0.14 kJ g-1), and the amphipods A. tridens (1.25± 0.57 kJ
g-1) and P. osborni (Dunn’s test, p < 0.001). Dungeness crab
megalopae and N. rayii caloric contents were also significantly
different from one another, with the former having the higher
caloric value (Dunn’s test, p = 0.0006). The caloric contents
of H. sculpta and P. osborni differed significantly (Dunn’s test,
p = 0.0006), with H. sculpta having a higher caloric content.
All other pairwise comparisons were not significant (Dunn’s
test, p > 0.006). Comparison of the mean caloric values of the
prey species tested in this study to the mean caloric value of
Arctic amphipod A. macrocephala (2.02 kJ g-1) showed that
two Oregon zooplankton species have higher caloric contents,
namely Dungeness crab megalopae and N. rayii (Table 1). The
PCFG composite prey caloric value was 1.91 kJ g-1.

Since significant differences between species were found,
analyses to determine whether energetic values vary by
reproductive stage and month were carried out within each
species. Sufficient replicate samples for different reproductive
stages and months were only obtained for the two mysid species
(N. rayii and H. sculpta) and the amphipod A. tridens.

Reproductive stages had significantly different caloric values
for H. sculpta (Kruskal–Wallis χ2 = 10.34, df = 2, p = 0.005),
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FIGURE 2 | Median caloric content and interquartile ranges (kJ g-1 wet weight) by (A) species, (B) reproductive stage, and (C) month. Sizes of the zooplankton
images are scaled at actual ratios relative to one another.

however, not for N. rayii (Kruskal–Wallis χ2 = 9.49, p = 0.008)
nor A. tridens (Kruskal–Wallis χ2 = 3.35, p = 0.187) (Figure 2B).
For H. sculpta, females with empty brood pouches had
significantly lower caloric values (1.23 ± 0.49 kJ g-1) than gravid
females (1.74 ± 0.58 kJ g-1; Dunn’s test, p = 0.0007), but not
than individuals with no brood pouch (1.65± 0.73 kJ g-1; Dunn’s
test, p = 0.008). No significant differences were identified between

H. sculpta gravid females and individuals without a brood pouch
(Dunn’s test, p > 0.1).

Significant differences in energetic content between months
were only detected for H. sculpta (Kruskal–Wallis χ2 = 15.38,
df = 4, p = 0.004; Figure 2C), whereby September was
significantly higher than all other months (June, July, August;
Dunn’s test, p < 0.002), except October (Dunn’s test, p > 0.4).
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Linear regressions of caloric content by reproductive stage within
each species over time (DOY) revealed that the energetic value of
the gravid reproductive stage increased significantly throughout
the season for both mysids, H. sculpta (F1,31 = 15.71, p = 0.0004,
R2 = 0.32) and N. rayii (F1,35 = 6.138, p = 0.0182, R2 = 0.12)
(Figure 3). All other linear regressions conducted were not
significant (p > 0.2; Figure 3).

Energetic Extrapolation
A gray whale feeding exclusively on Dungeness crab megalopae,
the highest caloric prey tested in this study (Table 1), would
meet its daily energetic requirements by consuming 0.95 or
0.64 (pregnant or lactating, respectively) metric tons day-1

(Figure 4A). In contrast, a gray whale feeding exclusively on
the amphipod P. osborni, the lowest caloric prey tested in this
study (Table 1), would meet its daily energetic requirements
by consuming 4.82 or 3.25 (pregnant or lactating, respectively)
metric tons day-1 (Figure 4A). A pregnant female would
need to consume 1.65, 1.98, 2.50, 3.20, and 3.42 metric tons
day-1, while a lactating female would require 1.12, 1.34, 1.69,
2.16, and 2.31 metric tons day-1 of N. rayii, A. macrocephala,
H. sculpta, A. tridens, and porcelain crab larvae, respectively
(Figure 4A). A gray whale feeding on the PCFG composite
prey would meet its daily energetic requirements by consuming
2.09 or 1.41 (pregnant or lactating, respectively) metric tons
day-1 (Figure 4A).

The number of individual zooplankton a gray whale needs
to consume to achieve its daily energetic requirement varies
widely by prey species (Figure 4B). The smallest total number
of individual prey a gray whale would need daily is 26.8
or 18.1 million individuals of N. rayii, depending on if the
gray whale is a pregnant or lactating individual, respectively
(Figure 4B). In contrast, if a gray whale fed solely on porcelain
crab larvae, the greatest number of individual prey items would
be needed, totaling 5,698 or 3,846 million individuals day-1,
depending on the stage of the gray whale (pregnant or lactating,
respectively; Figure 4B). A pregnant female would need to
consume 26.9, 28.4, 156.9, 222.2, and 2,421 million individuals
day-1, while a lactating female would require 18.2, 19.1,
105.9, 150.0, and 1,634 million individuals day-1 of Dungeness
crab megalopae, A. macrocephala, H. sculpta, A. tridens, and
P. osborni, respectively (Figure 4B). A gray whale feeding on
the PCFG composite prey would need to capture 96.6 or 65.2
(pregnant or lactating, respectively) million individuals day-1

(Figure 4B) to meet its daily energetic requirements.

DISCUSSION

Contrary to our hypothesis, Arctic prey (ampeliscid amphipods)
are not the most calorically rich prey species available to
gray whales in the eastern North Pacific (of the seven species
considered in this study). Rather, two prey species collected
in the PCFG range along the Oregon coast, Dungeness crab
megalopae and the mysid N. rayii, had higher caloric values
than A. macrocephala, which is the predominant ampeliscid
amphipod species in the Arctic ENP feeding grounds. Given that

the PCFG sub-group of gray whales is considerably smaller (∼250
individuals; Calambokidis et al., 2017) than the ENP (∼20,000;
Stewart and Weller, 2021), our comparative results suggest that
caloric value of prey may not be a driver in the larger population
size of the ENP, but rather prey abundance, depth, habitat, and
patch density may influence gray whale foraging ground use.

Baleen whales must hold their breath while diving to search
for, locate and consume their prey, making foraging behavior
energetically costly for rorqual whales (e.g., blue and humpback
whales; Acevedo-Gutiérrez et al., 2002) and likely for gray whales
too, which spend only 17% of their time at the surface while
feeding (Stelle et al., 2008). Hence, whales must ensure they target
prey patches that are dense enough to compensate for these costs
(Goldbogen et al., 2012; Torres et al., 2020). Historically, ENP
gray whales foraged in high abundances in the northern Bering
Sea, particularly in the Chirikov Basin (Johnson and Nelson,
1984), where the benthic amphipod community is considered
one of the most productive in the world, with the predominant
species, A. macrocephala, reported as being the most productive
benthic marine amphipod species (Highsmith and Coyle, 1990).
In the 1980s the mean abundance of A. macrocephala was
2,499 ± 1,183 individuals m-2 (Highsmith and Coyle, 1990),
however, recent density estimates demonstrate a large reduction,
of up to 50% in some areas (Moore et al., 2003; Coyle et al.,
2007b). This reduction in benthic prey populations has occurred
simultaneously to increased pelagic fish populations, a reduction
of sea ice, and increased air and ocean temperatures, and it is
believed that a major ecosystem shift from arctic to subarctic
conditions is occurring in the northern Bering Sea (Grebmeier
et al., 2006). Coincident with this decline in primary prey and
ecosystem change, the foraging habitat of ENP gray whales has
shifted further north into the Chukchi Sea to an area where
water depths range from 40 to 60 m (Moore et al., 2003; Bluhm
et al., 2007; Brower et al., 2017, 2018), which is markedly deeper
than where gray whale foraging was previously concentrated
in the shelf waters of the northern Bering Sea (20–40 m;
Coachman et al., 1975). The increased depth range means that
benthically feeding ENP gray whales must dive deeper than
previously, which may increase the energetic cost of foraging.
In contrast, along the Oregon coast, PCFG gray whales typically
forage in water depths that are on average four times shallower
(mean = 12.7 m, SD = 3.98 m, n = 345 sightings, L. Torres
unpublished data) than feeding habitat in the Chukchi Sea.
The shallow depth of PCFG foraging habitat not only reduces
dive time and associated energetic costs, but likely also reduces
the amount of surface recovery time needed in between dives,
thereby increasing the amount of foraging time available to
PCFG whales. However, foraging depth does not account for prey
availability and therefore is not directly related to consumption
rates or energetic costs. Thus, empirical data of foraging gray
whale bioenergetics (i.e., kinematics, respiratory patterns) paired
with prey availability information are needed to evaluate these
hypotheses regarding cost-benefit trade-offs between PCFG and
ENP gray whales. Nevertheless, it appears that PCFG whales
have three advantages over ENP whales: a considerably shorter
migration (Calambokidis et al., 2002), greater or equal prey
caloric value, and possible behavioral energetic advantages of
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FIGURE 3 | Caloric content (kJ g-1 wet weight) of different reproductive stages (empty brood pouch, gravid, and no brood pouch) as a function of day of year (DOY;
ranging from June to October) for the mysids Holmesimysis sculpta and Neomysis rayii, and the amphipod Atylus tridens. A. tridens is only represented on one panel
due to small sample size of this species for the empty brood pouch and gravid reproductive stages. Asterisks indicate significant regressions (p < 0.02).

FIGURE 4 | Daily prey requirements (A: metric tons; B: number of individuals) needed by pregnant and lactating female gray whales to meet their energetic
requirements on the foraging ground. Energetic requirement estimates obtained from Villegas-Amtmann et al. (2017). Note logarithmic scale of y-axis in panel (B).
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shallow foraging habitat. Despite this, the vast majority of gray
whales in the North Pacific forage in the Arctic, not the PCFG
range. Therefore, we hypothesize that prey within the PCFG
range have reduced availability, predictability, and patch density
compared to ENP foraging grounds in the Arctic.

Dungeness crab megalopae were the most calorically rich prey
tested in this study. A gray whale, regardless of reproductive
stage, would need less than half of the required amount of
A. macrocephala to reach its daily energetic requirements if it
only consumed Dungeness crab megalopae. However, Dungeness
crab megalopae occurrence on the Oregon coast is not consistent
throughout the summer due to the seasonality of Dungeness
crab reproduction (Roegner et al., 2007), with the megalopae
larvae only available to nearshore foraging gray whales in the
late spring and early summer (Shanks and Roegner, 2007).
Therefore, while Dungeness crab megalopae can be considered
caloric “gold mines,” they are an ephemeral prey resource for
foraging gray whales. Consequently, PCFG gray whales must
be flexible foragers with a diverse diet and the ability to switch
between prey types as availability dictates.

In contrast to Dungeness crab megalopae, the mysid species
N. rayii and H. sculpta are more consistently available throughout
the summer along the PCFG range due to their continuous
iteroparous reproduction (Mauchline, 1980). While the energetic
benefit of feeding on N. rayii is not as large of a benefit as
feeding on Dungeness crab megalopae, a diet of the former would
result in a gray whale in either reproductive stage requiring
approximately one million less individual prey items a day than
if it fed on A. macrocephala in the Arctic (Figure 4B). Sighting
rates of PCFG whales peak toward the end of the feeding season in
August and October (Scordino et al., 2017) and may be explained
by the concurrent seasonal increase in caloric content of prey,
particularly of gravid mysids (Figure 3). Mysids aggregate by
size class and reproductive stage (Kaltenberg and Benoit-Bird,
2013), making patches of gravid individuals with high caloric
content even more profitable to foraging gray whales. However,
little is known about mysid patch density and distribution
due to their preferred shallow, rocky, often kelp-dominated,
habitat that makes net-tow and hydroacoustic measurements
challenging. The wide range of mysid density estimates within
the PCFG range (714–15,541 individuals m-3) illustrate the high
variability and patchiness of this prey resource to gray whales
(Kaltenberg and Benoit-Bird, 2013; Feyrer and Duffus, 2015).
At small scales, fluctuating oceanographic conditions, such as
internal waves, currents, and tides (Prairie et al., 2012), and
swarming behaviors, including antipredator responses (Folt and
Burns, 1999; Kaltenberg and Benoit-Bird, 2013), drive mysid
patch dynamics. These factors make fine-scale mysid density hard
to measure since patches may form and disperse faster than they
can be quantified (Feyrer and Duffus, 2015).

While caloric content and patch density impact the energetic
benefit of foraging decisions, whale foraging behavior can
significantly impact the energetic cost side of the equation. Mysid
species may be more continuously available throughout the
foraging season in the PCFG range, but their patchy distribution
may require a gray whale to search harder and/or longer
before it finds a suitably dense prey patch to offset foraging

costs, as compared to a potentially more stable distribution
of A. macrocephala in the Arctic. Two previous studies have
associated poor body condition of PCFG gray whales with
unfavorable environmental conditions linked with poor prey
availability and the costs associated with increased time spent
searching (Newell and Cowles, 2006; Soledade Lemos et al., 2020).
When mysid patches become less dense and/or abundant, PCFG
gray whales may have to work harder to find enough prey to meet
their energetic demands. However, the risk of this patchier prey
availability in the PCFG range relative to A. macrocephala in the
Arctic region may be compensated for by the elevated caloric
content of N. rayii and especially Dungeness crab megalopae.

Furthermore, the energetic input required of a gray whale to
capture surface swarms of crab larvae, including both Dungeness
crab megalopae and porcelain crab larvae, appears to be very
low based on field observations and drone footage (L. Torres,
pers obs). When feeding on both species of crab larvae, gray
whales appear to exert little energy as they lay at the surface,
with minor forward movement, and repeatedly open and close
their mouths to capture and filter prey (Supplementary Video).
In contrast, PCFG whales are often observed working harder
(qualitative assessment based on body dynamics and breathing
rates) when foraging on mysids that are commonly found in
rock crevices of reef systems and kelp forests (Torres et al.,
2018; L. Torres, pers obs). Torres et al. (2018) documented
several unique behaviors displayed by PCFG gray whales while
foraging in reef habitat, including “bubble blasts” where whales
release air while underwater presumably to access or aggregate
prey, and “headstands” where whales position themselves head
down, flukes up in the water column to push their head/mouth
region into the substrate to capture prey. While these qualitative
assessments do not account for any variation of internal
biomechanics of prey consumption (i.e., gular and tongue
pumping), it does suggest that foraging on mysids and benthic
amphipods may be more energetically costly than feeding on
surface crab larvae. However, quantitative assessments of the
energetic requirements of these different foraging behaviors are
required to confirm this hypothesis.

It is possible that PCFG whales do not exclusively feed along
the West Coast range, but perhaps switch foraging ground use
relative to environmental and prey conditions. Classification of
a PCFG whale is defined as an individual documented in the
range between northern California to northern British Columbia
(from 41◦N to 52◦N) between June 1 and November 30 in at least
two different years (International Whaling Commission (IWC),
2012). While this definition requires an individual to show some
degree of site fidelity to the PCFG range, it does not preclude
PCFG whales from utilizing areas outside of the PCFG range. In
fact, satellite tag and photo identification data demonstrate that
PCFG individuals utilize areas outside of the PCFG range (i.e., Icy
Strait and Kodiak Island, Alaska, United States) in the late spring
and early summer, before spending the majority of the summer
feeding within the PCFG range (Mate et al., 2010; Gosho et al.,
2011; Ford et al., 2013). The PCFG’s small abundance estimate
and evidence of matrilineal fidelity (Calambokidis and Perez,
2017) suggests that knowledge of this alternative foraging ground
could be culturally transmitted (e.g., Valenzuela et al., 2009;

Frontiers in Marine Science | www.frontiersin.org 9 July 2021 | Volume 8 | Article 683634

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-683634 July 17, 2021 Time: 18:42 # 10

Hildebrand et al. Do Gray Whales Count Calories?

Baker et al., 2013), and, as our study demonstrates, potentially
advantageous. Comparative assessments of recruitment rates and
population dynamics between the PCFG and ENP relative to
oceanographic factors and prey availability may elucidate the
relative advantage of this cultural group, and reveal whether
feeding in the PCFG range is an exclusive behavior or used as an
ecological safety net during unfavorable conditions in the Arctic.

Although our study demonstrates that some prey species
found in the PCFG gray whale range have greater caloric value
than the predominant prey in ENP feeding grounds in the
Arctic, thus enabling PCFG whales to potentially meet their daily
energetic requirements faster, the vast majority of gray whales in
the North Pacific feed on ampeliscid amphipods in the Arctic.
If we assume that gray whales forage optimally (MacArthur
and Pianka, 1966; Charnov, 1976), this conundrum indicates
that prey patch density and predictability, and behavioral
cost of capture likely play a significant role in the trade-
offs of foraging ground use. However, reduction of ampeliscid
amphipod biomass from the 1980s to the 2000s (Moore et al.,
2003; Coyle et al., 2007b) and rapidly changing environmental
conditions in the Arctic (Johannessen et al., 2004; Overland and
Stabeno, 2004; Wang et al., 2012; Box et al., 2019), raise questions
about the stability of this Arctic food resource to gray whales.
In fact, ENP gray whales have undergone two unusual mortality
events (UME) in the last two decades (1999–2000 and 2019-
present), with elevated strandings of emaciated whales likely
due to reduced prey availability as a function of the population
exceeding carrying capacity (Rugh et al., 2005; Coyle et al., 2007b)
and/or environmental change (Le Boeuf et al., 2000; Moore et al.,
2001, 2003; Stewart and Weller, 2021). Furthermore, ENP calf
production is correlated with spring sea ice conditions in the
Arctic, with early access to prey by gestating females resulting
in higher calf production in the subsequent year (Perryman
et al., 2020). Yet, ongoing climate change is predicted to alter
this pattern in the future (Perryman et al., 2020). Even though
the abundance estimates for the PCFG have remained relatively
stable since 2002 (Calambokidis et al., 2017), environmental
changes are also occurring within the PCFG range, with increased
occurrence of marine heat waves (Gentemann et al., 2017; Joh and
Di Lorenzo, 2017; Frölicher et al., 2018) and resultant changes in
prey communities (Peterson et al., 2017; Brodeur et al., 2019).
To understand and anticipate gray whale population response
to these impacts of climate change, it is important to monitor
their prey availability, foraging ecology, and health (i.e., body
condition) at both foraging grounds. Addressing these topics will
enhance management of both the ENP and PCFG gray whale

populations and further our understanding of the factors that
limit the carrying capacity of the PCFG region.
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