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The disequilibrium between lead-210 (210Pb) and polonium-210 (210Po) is increasingly
used in oceanography to quantify particulate organic carbon (POC) export from the
upper ocean. This proxy is based on the deficits of 210Po typically observed in the
upper water column due to the preferential removal of 210Po relative to 210Pb by sinking
particles. Yet, a number of studies have reported unexpected large 210Po deficits in
the deep ocean indicating scavenging of 210Po despite its radioactive mean life of ∼
200 days. Two precipitation methods, Fe(OH)3 and Co-APDC, are typically used to
concentrate Pb and Po from seawater samples, and deep 210Po deficits raise the
question whether this feature is biogeochemically consistent or there is a methodological
issue. Here, we present a compilation of 210Pb and 210Po studies that suggests that
210Po deficits at depths >300 m are more often observed in studies where Fe(OH)3
is used to precipitate Pb and Po from seawater, than in those using Co-APDC (in
68 versus 33% of the profiles analyzed for each method, respectively). In order to
test whether 210Po/210Pb disequilibrium can be partly related to a methodological
artifact, we directly compared the total activities of 210Pb and 210Po in four duplicate
ocean depth-profiles determined by using Fe(OH)3 and Co-APDC on unfiltered seawater
samples. While both methods produced the same 210Pb activities, results from the Co-
APDC method showed equilibrium between 210Pb and 210Po below 100 m, whereas the
Fe(OH)3 method resulted in activities of 210Po significantly lower than 210Pb throughout
the entire water column. These results show that 210Po deficits in deep waters, but
also in the upper ocean, may be greater when calculated using a commonly used
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Fe(OH)3 protocol. This finding has potential implications for the use of the 210Po/210Pb
pair as a tracer of particle export in the oceans because 210Po (and thus POC)
fluxes calculated using Fe(OH)3 on unfiltered seawater samples may be overestimated.
Recommendations for future research are provided based on the possible reasons for
the discrepancy in 210Po activities between both analytical methods.

Keywords: marine chemistry, radiochemistry, polonium isotopes, precipitation methods, Co-APDC, Fe(OH)3,
210Po/210Pb disequilibrium, particle export

INTRODUCTION

The biological carbon pump is a major mechanism for removing
carbon dioxide from the atmosphere principally mediated by
the transfer of organic particles from the surface to the deep
ocean by different export pathways (Boyd et al., 2019). The
flux of particulate organic carbon (POC) varies strongly across
regions and time (Buesseler and Boyd, 2009), hindering the
estimation of POC export in the global ocean (ranging from
5 to >12 Pg C yr−1; Boyd and Trull, 2007; Henson et al.,
2011; Siegel et al., 2014). The naturally occurring radionuclides
lead-210 (210Pb, half-life = 22.3 years) and polonium-210
(210Po, half-life = 138 days) have been widely used as particle
tracers in the marine environment for decades (e.g., Bacon
et al., 1976, 1988; Cochran and Masqué, 2003) and, in the
last years, especially, to quantify POC export (e.g., Tang and
Stewart, 2019). Indeed, the combination of 210Po/210Pb with
other particle export methods, such as sediment traps or the
thorium-234/uranium-238 (234Th/238U) pair, has given a broader
perspective on downward export fluxes integrating time scales
ranging from a few days to several months (Stewart et al., 2007,
2011; Buesseler et al., 2008; Verdeny et al., 2009; Wei et al.,
2011; Le Moigne et al., 2013; Ceballos-Romero et al., 2016;
Maiti et al., 2016; Roca-Martí et al., 2016; Anand et al., 2018;
Hayes et al., 2018).

The use of 210Po/210Pb disequilibrium as a proxy for POC
export relies on the assumption that sinking of organic particles
generates a deficit of 210Po with respect to 210Pb in the upper
water column due to preferential scavenging of Po compared
to Pb (Friedrich and Rutgers van der Loeff, 2002; Verdeny
et al., 2009). Unlike 210Pb (or 234Th), Po can be assimilated
into cells, possibly as an analog of sulfur, and subsequently
cycled as the organic matter is regenerated (Stewart et al.,
2008). In the particle-poor deep ocean, radioactive equilibrium
between 210Pb and 210Po is anticipated because of the long
scavenging residence times and short half-life of 210Po (e.g.,
Bacon et al., 1976; Cochran et al., 1983). Yet, large deficits of
210Po have been observed in the mesopelagic (∼ 100–1000 m)
and bathypelagic (>1000 m) zones in different regions of the
world ocean, including the North Atlantic (e.g., Kim and Church,
2001; Hong et al., 2013; Rigaud et al., 2015), the North, Equatorial
and South Pacific (e.g., Thomson and Turekian, 1976; Nozaki
et al., 1990, 1997; Chung and Wu, 2005; Hu et al., 2014),
the Arctic Ocean (e.g., Smith et al., 2003; Roca-Martí et al.,
2018), and the Southern Ocean (e.g., Friedrich and Rutgers
van der Loeff, 2002). Disequilibrium in deep waters has been

commonly attributed to the scavenging of 210Po by particles
from the local upper water column or from the shelves due
to high biological productivity (Hu et al., 2014; Rigaud et al.,
2015; Ma et al., 2017). Recently, a model study by De Soto
et al. (2018) has argued that the disequilibrium between 210Pb
and 210Po at depth in the Porcupine Abyssal Plain, NE Atlantic,
could be explained by a significant adsorption of 210Po onto
particles as they sink through the water column concurrent with
negligible desorption. An alternate explanation is that this 210Po
deficit reflects a missing sink of 210Po in deep waters by means,
for instance, of 210Po uptake by bacteria and its transfer to
higher trophic levels in the oligotrophic ocean (Kim, 2001). Low
210Po/210Pb activity ratios at depth have also been associated
with hydrothermal activity (Kadko et al., 1987) and the focusing
of atmospherically derived 210Pb (with low 210Po) by isopycnal
transport (Nozaki et al., 1990).

One hypothesis that has not been addressed yet is that these
210Po deficits could also be influenced by an analytical bias.
Church et al. (2012) pointed out that there is the potential
for differential extraction of the Po spike used as a chemical
yield tracer (usually 209Po, although 208Po has also been used)
versus in situ 210Po, depending on the precipitation method
used. Two main methods have been used to pre-concentrate Pb
and Po from seawater samples: the iron hydroxide [Fe(OH)3,
Thomson and Turekian, 1976] and the cobalt ammonium
pyrrolidine dithiocarbamate (Co-APDC, Fleer and Bacon, 1984).
The Fe(OH)3 method is the most used analytical procedure for
the extraction of 210Pb and 210Po from seawater likely because
it is less time-consuming than the Co-APDC procedure. The
latter method involves adding APDC to the sample to chelate
Pb and Po and subsequent flocculation of the colloidal chelate
by adding excess cobalt, followed by sample filtration. To date,
studies have shown that both methods are effective in co-
precipitating stable Pb and 209Po added to seawater samples
as yield monitors, as shown by recoveries of more than 70%
of these spikes (Matthews et al., 2007; Rigaud et al., 2013).
However, to our knowledge, there has been no systematic
evaluation of whether the Fe(OH)3 and Co-APDC methods
produce comparable 210Po results.

Here, we present a compilation of 210Pb and 210Po studies
classified according to the precipitation method used and
whether 210Po deficits at depth were observed. In addition,
we directly compare the total activities of 210Pb and 210Po in
four duplicate ocean depth-profiles determined by using both
precipitation methods, Fe(OH)3 and Co-APDC, on unfiltered
seawater samples. We discuss the implications of the results of
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this comparison for using the 210Po/210Pb pair as a tracer of
particle export in the oceans and provide recommendations for
future research.

MATERIALS AND METHODS

Compilation of 210Pb and 210Po Studies
A review of 210Pb and 210Po studies was conducted in order to
identify those that reported depth profiles of total (dissolved +
particulate) 210Pb and 210Po activities in water depths >300 m,
classify them according to the precipitation method used, and
determine whether 210Po deficits at depth were found (Figure 1).
The compilation includes a total of 213 depth profiles from 41
studies published between 1976 and 2020.

The precipitation methods were divided into the following
categories: (1) Fe(OH)3 TOT siph, where unfiltered seawater
samples were precipitated with Fe(OH)3 and the supernatant
was siphoned off or decanted to allow further processing
of the Fe(OH)3 precipitate; (2) Fe(OH)3 TOT filt precip, where
unfiltered seawater samples were precipitated with Fe(OH)3
and the precipitate was filtered; (3) Fe(OH)3 DISS + PART,
where prefiltered seawater samples were precipitated with
Fe(OH)3 and the particulate fraction was analyzed separately;
(4) Co-APDC TOT, where unfiltered seawater samples were
precipitated with Co-APDC; (5) Co-APDC DISS+PART, where
prefiltered seawater samples were precipitated with Co-APDC
and the particulate fraction was analyzed separately.

In addition, we determined whether 210Po deficits at depth
were found for those profiles that presented total 210Pb and
210Po activities at least at two depths from ≥300 m. Profiles were
considered to show 210Po deficits at depth if they presented total
210Po/210Pb activity ratios <0.8 at least at two depths ≥300 m.

Duplicate Profiles of 210Pb and 210Po
Detailed procedures for the methods compared in this study
[Fe(OH)3 TOT siph and Co-APDC TOT in Figure 1] are described
below and can be found at the Center for Marine and
Environmental Radioactivity website1. Additional details for each
set of samples processed using Fe(OH)3 and Co-APDC are
provided in Supplementary Table 1 including information on
the 209Po and stable Pb tracers, detector background, blank from
the stable Pb tracer, and chemical recoveries.

Sampling and Pre-conditioning
A total of 35 duplicate sample pairs were collected for the
determination of total 210Pb and 210Po in seawater (6.5–10.4 L,
Supplementary Table 1) using Niskin bottles attached to a
conductivity-temperature-depth (CTD) rosette at four locations
(Figure 2 and Table 1). Three profiles were collected in the
Mediterranean Sea in 2011–2013 (Ionian and Catalano-Balear
Seas), while another profile was collected at the Southern Ocean
Time Series (SOTS) site in 2018. This allowed to increase
the statistical significance and compare results obtained from
contrasting oceanographic regimes. Duplicate samples were all

1https://cmer.whoi.edu/cookbook/

collected from the same CTD cast and the same Niskin bottles,
except for one profile (Catalano-Balear South, CBS) where
duplicate samples were collected from different Niskin bottles.

Unfiltered seawater samples were acidified immediately after
collection to pH 1–2 using HCl (∼ 1 mL per liter of sample), and
spiked with known amounts of 209Po (T1/2 = 125 years, 2–4 dpm,
Supplementary Table 1) and stable Pb (4–42 mg, Supplementary
Table 1) to monitor the losses of Po and Pb during the
radiochemistry procedure. Samples were vigorously shaken after
the addition of HCl and each spike. Two solutions of 209Po were
used, both in acid media (9 M HCl for the Mediterranean Sea
samples; 1 M HNO3 for SOTS) and prepared from standard
solutions (Oak Ridge National Laboratory, United States; Eckert
& Ziegler, Germany; respectively). The Pb solution (aqueous) was
prepared from ancient Pb (>200 years) to minimize 210Pb and
210Po contamination. From each pair of duplicates, one sample
was processed using Fe(OH)3 (Thomson and Turekian, 1976;
Sarin et al., 1992) and the other using Co-APDC (Boyle and
Edmond, 1975; Fleer and Bacon, 1984) as described below. All
initial processing, including the precipitation of 210Pb and 210Po,
was accomplished at sea.

Fe-Hydroxide Method
240 mg of Fe were added to each acidified and spiked sample
in the form of FeCl3 solution. After vigorous shaking, samples
were allowed to equilibrate for 9–24 h (Supplementary Table 1).
Pb and Po isotopes were then precipitated with Fe(OH)3 by
adjusting the pH to 8–9 with NH4OH. The precipitate was
allowed to settle for a few hours, and then most of the supernatant
visibly free of iron hydroxides was carefully siphoned off. The
precipitate was transferred into 250 mL plastic bottles and stored
for 12–37 days (Supplementary Table 1) until further processing
in land-based laboratories: Mediterranean Sea samples were
analyzed at Universitat Autònoma de Barcelona and SOTS
samples at the Edith Cowan University. There, samples were
centrifuged and the excess supernatant removed. Milli-Q water
was then added to the precipitates to dissolve salts and remove
them by suction after a second centrifugation. Precipitates were
transferred into beakers and dissolved using concentrated HCl.
After evaporation to near dryness, samples were re-dissolved with
∼ 80 mL of 1 M HCl and ascorbic acid was added to reduce Fe3+

to Fe2+.

Co-APDC Method
After 9–24 h of isotope equilibration, 10 mg of Co and
800 mg of APDC were added to each sample as cobalt nitrate
and APDC solutions, shaking the samples vigorously after
each reagent addition. Samples were allowed to equilibrate
for several hours (6–12 h) and then filtered through 0.2 µm
pore-size filters (Whatman membrane filters mixed cellulose
ester, WHA10401731, 142 mm diameter). Samples were stored
for later processing in the land-based laboratories. The filters
with the Co-APDC precipitates were digested at <100◦C using
concentrated HNO3 in beakers covered with watch glasses. The
solutions were then evaporated to near dryness and HNO3 was
completely eliminated from the samples by addition of 2 mL of
concentrated HCl and subsequent evaporation to near dryness
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FIGURE 1 | Compilation of studies reporting depth profiles (≥300 m) of total 210Pb and 210Po activities. Legend shows the precipitation method used in each study:
Fe(OH)3 TOT siph, Fe(OH)3 TOT filt precip, Fe(OH)3 DISS + PART, Co-APDC TOT, Co-APDC DISS+PART (see section “Compilation of 210Pb and 210Po Studies” for
definitions). Many of these studies represent a transect of stations but for clarity the dots represent the location of one of the stations sampled for 210Pb and 210Po
per study. The number next to each dot corresponds to the study reference and the numbers in parentheses refer to the number of profiles where deficits of 210Po
(total 210Po/210Pb activity ratios <0.8) at depth were found, as shown by at least two data points from ≥300 m, with respect to the total profiles analyzed per study.
The inset plot shows the percentage of profiles with deficits of 210Po at depth with respect to the total profiles analyzed per method considering all studies compiled.
To avoid duplication, data from the D341 cruise presented in Le Moigne et al. (2013) were excluded from the dataset presented in Ceballos-Romero et al. (2016);
data from Roca-Martí et al. (2018) were obtained from a combination of unfiltered and prefiltered samples [Fe(OH)3 TOT siph and Fe(OH)3 DISS + PART].

FIGURE 2 | Study areas where duplicate ocean depth-profiles were collected for total 210Pb and 210Po analyses in the Catalano-Balear (north: CBN; south: CBS)
and Ionian Seas (left map), and at the Southern Ocean Time Series (SOTS) site (right map).

for three consecutive times. The residues were re-dissolved with
∼ 80 mL of 1 M HCl.

Po Plating and Counting
Silver disks (0.1 mm thick, 25 mm diameter) were suspended in
the 1 M HCl solutions using a nylon string to allow the auto-
deposition of Po isotopes (i.e., plating) at ∼ 80◦C and constant

stirring for at least 6 h (Flynn, 1968). One side of the disks
was previously coated with urethane to maximize Po plating
on the non-coated side and optimize counting statistics. The
time elapsed between sampling and the first Po plating was
minimized as much as possible to reduce the uncertainty of 210Po
activities (Rigaud et al., 2013). 210Po and 209Po emissions were
counted by alpha spectrometry (Fleer and Bacon, 1984) using
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TABLE 1 | Total 210Pb and 210Po activities and 210Po/210Pb activity ratios measured using the Fe(OH)3 and Co-APDC precipitation methods [Fe(OH)3 TOT siph and
Co-APDC TOT protocols in Figure 1] in four duplicate ocean depth-profiles.

Study area* Depth (m) 210Pb (dpm 100 L−1) 210Po (dpm 100 L−1) 210Po/210Pb

Fe(OH)3 Co-APDC Fe(OH)3 Co-APDC Fe(OH)3 Co-APDC

IONIAN Mediterranean Sea 35.1◦N,
18.3◦E, 12 May 2013

10 10.5 ± 0.9 10.4 ± 0.8 6.6 ± 0.4 8.8 ± 0.6 0.63 ± 0.07 0.85 ± 0.09

50 10.1 ± 0.8 9.3 ± 0.7 6.3 ± 0.4 8.0 ± 0.4 0.62 ± 0.06 0.86 ± 0.08

75 10.4 ± 0.8 9.2 ± 0.7 5.5 ± 0.4 8.7 ± 0.5 0.53 ± 0.05 0.95 ± 0.09

100 10.8 ± 0.8 7.5 ± 0.6 4.7 ± 0.3 7.4 ± 0.5 0.43 ± 0.05 0.99 ± 0.10

500 7.7 ± 0.6 9.5 ± 0.7 3.8 ± 0.2 8.7 ± 0.5 0.50 ± 0.05 0.92 ± 0.09

3720 8.9 ± 0.7 8.3 ± 0.7 6.9 ± 0.4 9.6 ± 0.6 0.77 ± 0.07 1.16 ± 0.11

CATALANO-BALEAR NORTH (CBN)
Mediterranean Sea 41.0◦N, 3.3◦E,
31 May 2013

25 7.8 ± 0.6 7.2 ± 0.6 3.9 ± 0.2 4.3 ± 0.3 0.51 ± 0.05 0.60 ± 0.06

50 8.5 ± 0.7 7.9 ± 0.6 3.3 ± 0.2 4.7 ± 0.3 0.39 ± 0.04 0.60 ± 0.06

75 6.6 ± 0.5 6.5 ± 0.5 3.9 ± 0.2 5.9 ± 0.4 0.59 ± 0.06 0.91 ± 0.10

100 7.1 ± 0.6 6.7 ± 0.6 4.6 ± 0.3 6.3 ± 0.3 0.64 ± 0.07 0.94 ± 0.09

250 6.4 ± 0.5 6.4 ± 0.5 4.6 ± 0.3 5.5 ± 0.3 0.72 ± 0.07 0.86 ± 0.09

500 6.2 ± 0.5 6.7 ± 0.5 4.7 ± 0.3 6.5 ± 0.4 0.75 ± 0.08 0.97 ± 0.09

750 8.0 ± 0.7 7.4 ± 0.6 6.3 ± 0.3 6.4 ± 0.4 0.78 ± 0.08 0.88 ± 0.09

1000 7.1 ± 0.6 9.1 ± 0.7 6.1 ± 0.3 8.1 ± 0.5 0.86 ± 0.08 0.89 ± 0.09

1500 7.5 ± 0.6 6.5 ± 0.5 6.5 ± 0.3 6.0 ± 0.3 0.87 ± 0.08 0.93 ± 0.09

2200 6.8 ± 0.5 6.0 ± 0.5 5.2 ± 0.3 6.4 ± 0.4 0.76 ± 0.07 1.08 ± 0.11

CATALANO-BALEAR SOUTH (CBS)
Mediterranean Sea 39.3-39.4◦N,
0.4-0.6◦E, 11 Feb 2011

50 7.2 ± 0.7 7.1 ± 0.6 3.9 ± 0.4 3.4 ± 0.4 0.53 ± 0.08 0.48 ± 0.07

125 6.9 ± 0.6 6.1 ± 0.6 1.5 ± 0.3 3.1 ± 0.4 0.21 ± 0.05 0.51 ± 0.08

250 8.9 ± 0.8 8.1 ± 0.8 1.7 ± 0.4 4.6 ± 0.5 0.19 ± 0.05 0.58 ± 0.08

400 8.2 ± 0.7 7.2 ± 0.6 3.8 ± 0.4 5.1 ± 0.6 0.46 ± 0.06 0.72 ± 0.10

950 10.1 ± 0.8 8.9 ± 0.8 4.1 ± 0.4 6.5 ± 0.6 0.41 ± 0.05 0.73 ± 0.09

1200 9.4 ± 0.8 10.7 ± 0.8 3.6 ± 0.5 6.4 ± 0.7 0.38 ± 0.06 0.60 ± 0.08

Southern Ocean Time Series (SOTS)
47.0◦S, 142.0◦E, 5 March 2018

25 12.9 ± 0.8 11.8 ± 0.8 7.5 ± 0.6 7.6 ± 0.6 0.59 ± 0.06 0.64 ± 0.06

50 10.9 ± 0.7 10.4 ± 0.6 7.2 ± 0.5 9.4 ± 0.7 0.66 ± 0.06 0.91 ± 0.09

80 13.0 ± 0.8 11.8 ± 0.7 6.1 ± 0.5 10.4 ± 0.8 0.46 ± 0.05 0.89 ± 0.09

100 13.3 ± 0.8 12.9 ± 0.8 5.0 ± 0.5 13.8 ± 1.0 0.37 ± 0.04 1.08 ± 0.10

125 14.5 ± 0.8 13.1 ± 0.7 5.9 ± 0.6 15.1 ± 1.1 0.41 ± 0.05 1.16 ± 0.11

150 12.8 ± 0.8 12.7 ± 0.7 7.2 ± 0.6 11.2 ± 0.8 0.56 ± 0.06 0.89 ± 0.08

200 13.5 ± 0.8 13.6 ± 0.8 5.0 ± 0.4 12.2 ± 0.9 0.37 ± 0.04 0.90 ± 0.08

300 13.5 ± 0.8 14.1 ± 0.8 5.6 ± 0.5 13.5 ± 0.8 0.41 ± 0.04 0.95 ± 0.08

400 12.6 ± 0.8 13.1 ± 0.8 6.3 ± 0.5 11.6 ± 0.7 0.49 ± 0.05 0.89 ± 0.07

800 12.0 ± 0.7 13.4 ± 0.8 7.4 ± 0.6 12.5 ± 0.9 0.61 ± 0.06 0.94 ± 0.08

1000 11.7 ± 0.7 12.7 ± 0.7 8.3 ± 0.6 14.2 ± 0.9 0.71 ± 0.07 1.12 ± 0.10

1200 14.5 ± 0.8 16.7 ± 0.8 10.3 ± 0.8 13.5 ± 0.8 0.71 ± 0.06 0.81 ± 0.06

1600 14.3 ± 0.7 15.5 ± 0.8 13.5 ± 1.0 16.2 ± 1.0 0.95 ± 0.09 1.04 ± 0.08

*Primary production zone depth was 175 m at IONIAN, 90 m at CBN, 156 m at CBS, and 102 m at SOTS. Water column depth was 3775 m at IONIAN, 2274 m at CBN,
1262 m at CBS, and 4600 m at SOTS.

passivated implanted planar silicon alpha detectors (Canberra,
United States) or silicon surface barrier alpha detectors (EG&G
Ortec, United States). The disks were counted until a minimum
of 400 counts of both isotopes were accumulated or up to
a maximum of 5 days. The detector background contributed
on average to <1% of the total counts of 209Po and 210Po
(Supplementary Table 1). The recoveries of the 209Po tracer
averaged 78 ± 8% for the Fe(OH)3 method and 63 ± 16%
for Co-APDC (Mann–Whitney rank-sum test, P ≤ 0.001;
Supplementary Table 1). Solutions were re-plated and also
passed through an anion-exchange resin (AG 1-X8, Sarin et al.,
1992) to ensure the complete elimination of Po from samples
(Rigaud et al., 2013). Samples were re-spiked with 2–4 dpm of

209Po tracer and stored for at least 6 months in 9 M HCl to
allow 210Po ingrowth from 210Pb. After this time, samples were
evaporated to near-dryness and re-dissolved with 1 M HCl to
determine 210Po ingrowth from 210Pb by re-plating the solutions
on silver disks and subsequent measurement of Po isotopes by
alpha spectrometry as described above.

Chemical Recoveries of Pb and Data Treatment
Typically, two aliquots from each sample were taken before
the first and last platings to determine the chemical recovery
of stable Pb by inductively coupled plasma-optical emission
spectrometry. However, only the second aliquot was taken from
CBS samples. Considering all other samples, the recovery of Pb
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from the first aliquot was on average 89 ± 7% for the Fe(OH)3
method and 78 ± 12% for Co-APDC (Mann–Whitney rank-
sum test, P ≤ 0.001; Supplementary Table 1). These results
were not significantly different from those determined from the
second aliquot [Mann–Whitney rank-sum test, P = 0.276 for
Fe(OH)3 and P= 0.401 for Co-APDC; Supplementary Figure 1],
indicating that Pb losses occurred during the precipitation with
Fe(OH)3 or Co-APDC rather than during the anion-exchange
procedure. Therefore, for CBS samples, we assumed that the Pb
recoveries at the first plating were the same as those determined
at the last plating.

The 210Pb and 210Po blanks measured were equivalent to
0.014–0.016 dpm for the Ionian, Catalano-Balear North (CBN)
and SOTS profiles. They increased to 0.270 dpm for the CBS
profile due to the higher amount of stable Pb added. The
contamination from the Pb solution contributed on average
to <4% of the 210Po activity at the first and last platings,
except for the CBS profile, where it contributed 25–32%
(Supplementary Table 1).

210Pb and 210Po activities at the time of sampling were
carefully calculated applying blank, ingrowth, decay and recovery
corrections, as detailed by Rigaud et al. (2013). Overall
uncertainties in activity accounting for errors in counting,
detector background, 209Po activity, and the contamination from
the Pb solution were on average 7% for 210Pb (5–10%) and 8% for
210Po (5–23%) for both methods.

Three-way ANOVA tests were run in order to examine
whether Fe(OH)3 and Co-APDC resulted in comparable
210Pb and 210Po results and whether potential methodological
differences depended on the region or water depth [see
section “Direct Comparison of the Fe(OH)3 versus Co-APDC
Methods”]. The factors considered were: (i) precipitation method
[Fe(OH)3 versus Co-APDC]; (ii) region (Mediterranean Sea
versus SOTS); (iii) depth (within the primary production zone
versus deeper waters). The base of the primary production zone
(PPZ) was defined as the depth where fluorescence declined
to 10% of the maximum signal measured in overlying waters
(Owens et al., 2015). Statistical analyses were conducted using
SigmaPlot 11.0 (Systat Software, Inc., United States) with a
significance level set at 0.05.

RESULTS

Compilation of 210Pb and 210Po Studies
Two-thirds of the 210Pb and 210Po studies in the literature
compilation (Figure 1) used the Fe(OH)3 method, of which
59% analyzed total activities from unfiltered seawater samples
[Fe(OH)3 TOT], while the remaining analyzed the dissolved
and particulate fractions separately [Fe(OH)3 DISS + PART]. Most
of the Fe(OH)3 studies that measured total 210Pb and 210Po
siphoned off or decanted the supernatant to allow further
processing of the Fe(OH)3 precipitate [Fe(OH)3 TOT siph], while
some filtered the precipitate [Fe(OH)3 TOT filt precip]. Almost all
the studies that prefiltered the samples siphoned off or decanted
the supernatant from the samples as well. The other third of the
210Pb and 210Po studies used the Co-APDC method, of which

71% separated the dissolved and particulate fractions (Co-APDC
DISS+PART), while the remaining measured total 210Pb and 210Po
from unfiltered samples (Co-APDC TOT). All the Co-APDC
studies filtered the precipitate.

In addition to classifying the studies according to the
method used, we also determined whether 210Po deficits (total
210Po/210Pb activity ratios <0.8) were found. Interestingly, this
compilation shows that 210Po deficits at depths≥300 m are found
in 65–69% of the profiles analyzed using Fe(OH)3, while they
are found in only 33% of the profiles analyzed using Co-APDC
(Figure 1). This finding is independent of whether 210Pb and
210Po were analyzed on unfiltered or prefiltered seawater samples.

Duplicate Profiles of 210Pb and 210Po
210Pb and 210Po Activities
The profiles of 210Pb and 210Po determined using Fe(OH)3
[Fe(OH)3 TOT siph] and Co-APDC (Co-APDC TOT) in duplicate
samples collected from the same CTD cast are shown in Figure 3
(see data in Table 1). 210Pb activities were not statistically
different between both methods, ranging from 6.0–6.2 to 10.7–
10.8 dpm 100 L−1 in the Mediterranean Sea (t-test, P = 0.122),
and from 10.4–10.9 to 14.5–16.7 dpm 100 L−1 at SOTS (t-
test, P = 0.572). In contrast, 210Po activities were significantly
different. In the Mediterranean Sea, 210Po activities ranged from
1.5 to 6.9 dpm 100 L−1 for Fe(OH)3 and from 3.1 to 9.6 dpm 100
L−1 for Co-APDC (t-test, P < 0.001; Ionian, CBN and CBS in
Figure 3B and Table 1). In the Southern Ocean, at SOTS, 210Po
activities ranged from 5.0 to 13.5 dpm 100 L−1 for Fe(OH)3 and
from 7.6 to 16.2 dpm 100 L−1 for Co-APDC (t-test, P < 0.001).
The higher activities of both radionuclides at SOTS reflect the
higher levels of their grandparent, 226Ra, in the Southern Ocean
compared to the Mediterranean Sea (Ku and Lin, 1976; van Beek
et al., 2009).

The Fe(OH)3 results showed deficits of 210Po at all sites
and throughout the entire profiles. Below the PPZ, activities
of 210Po were lower than 210Pb on average by a factor of 1.9
and equilibrium between both radionuclides was only observed
at 1600 m at SOTS (Figure 3B). On the contrary, results
from Co-APDC showed net removal of 210Po confined in the
upper 75–100 m (Figure 3A), and similar 210Pb and 210Po
activities at deeper depths. In general, 210Pb and 210Po from Co-
APDC reached equilibrium around the PPZ depth (Figure 3A).
This is in line with recent studies that found a close overlap
between the PPZ depth and the horizon where the 234Th/238U
radionuclide pair reaches equilibrium (Puigcorbé et al., 2017;
Roca-Martí et al., 2017; Lemaitre et al., 2018; Buesseler et al.,
2020a,b). There is, however, one exception to this pattern. At
CBS, 210Po activities were lower than 210Pb activities throughout
the entire profile for both methods (Figure 3B). Consequently,
210Po/210Pb activity ratios were lower than 1.0 within the PPZ
and in deeper waters, averaging 0.37 ± 0.14 for Fe(OH)3 and
0.60 ± 0.10 for Co-APDC (Figure 4 and Table 1). In this
area of the Mediterranean Sea, turbidity spikes were observed
throughout the entire water column below the surface maximum
(Supplementary Figure 2), suggesting a possible net removal
of 210Po by particles below the PPZ in such conditions. At the
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FIGURE 3 | Vertical activity profiles for total 210Po (solid lines) and total 210Pb (dashed lines) measured in duplicate samples using the Fe(OH)3 (yellow, closed
symbols) and Co-APDC (green, open symbols) precipitation methods [Fe(OH)3 TOT siph and Co-APDC TOT protocols in Figure 1]. (A) Shows only the upper 500 m of
the water column, while (B) shows the entire profiles. Same scale is used for the x- and y-axis to facilitate comparison. The base of the primary production zone
(PPZ) is denoted by the horizontal dotted line.

other stations, turbidity spikes below the surface were not as
pronounced as at CBS.

The 210Po/210Pb activity ratios (Figure 4) from both methods
were statistically different (t-test, P < 0.001) with mean values
from surface waters to the PPZ depth of 0.53 ± 0.10 using
Fe(OH)3 and 0.84 ± 0.16 using Co-APDC, and 0.66 ± 0.17
and 0.96 ± 0.10, respectively, below the PPZ excluding
the CBS profile.

Direct Comparison of the Fe(OH)3 versus Co-APDC
Methods
Figure 5 shows a cross-plot of the 210Pb and 210Po activities
obtained from the Fe(OH)3 and Co-APDC methods. 210Pb
results from Co-APDC and Fe(OH)3 were statistically similar
(ANOVA test, P = 0.418 for the entire dataset, 0.263 for the
Mediterranean and 0.849 for SOTS; Figure 5) with differences
between mean activities of only 0.2–0.4 dpm 100 L−1 for
the entire dataset. There was no significant difference between

methods either when comparing samples within the PPZ or
below (ANOVA test, P= 0.151 and P= 0.536, respectively). This
agrees with the experiments conducted by Chung et al. (1983) in
which Fe(OH)3 and Co-APDC produced identical 210Pb results.
Chung et al. (1983) also tested the effect of equilibration times
between 210Pb and the added stable Pb carrier for times ranging
from 1 to 330 days. Their results showed no discernible effect on
the measured 210Pb activities.

In contrast, 210Po activities from samples processed using Co-
APDC were significantly higher than those obtained by using
Fe(OH)3 (ANOVA test, P < 0.001; Figure 5). The difference in
the mean 210Po activities observed between the two precipitation
methods was 3.0 dpm 100 L−1 for the entire dataset [Co-
APDC: 8.6 ± 3.6 dpm 100 L−1; Fe(OH)3: 5.6 ± 2.3 dpm 100
L−1], which corresponds to 35% of the 210Po activity obtained
with the Co-APDC method. The same statistical analysis was
applied separately for the Mediterranean Sea profiles and SOTS
(ANOVA test, P = 0.003 and P < 0.001, respectively), showing
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FIGURE 4 | 210Po/210Pb activity ratio determined by using the Fe(OH)3
(yellow, closed symbols) and Co-APDC (green, open symbols) methods.
Symbols denote different study areas: IONIAN (triangles), CBN (squares), CBS
(circles), and SOTS (stars). The vertical solid line indicates 210Po/210Pb activity
ratio = 1.0, and the horizontal dotted line is the average depth of the primary
production zone in the study areas.

that the difference in absolute and relative terms between the
two methods was larger in the Southern Ocean. At SOTS the
difference was 5.1 dpm 100 L−1, equivalent to 41% of the
210Po activity obtained with the Co-APDC method, while in
the Mediterranean Sea these values were 1.8 dpm 100 L−1

and 28%, respectively. Further, the use of Co-APDC resulted
in higher 210Po activities both within the PPZ and in deeper
waters (ANOVA test, P < 0.001 for both; Figure 5), obtaining
a difference between methods equal to 32% and 36% of the 210Po
activity obtained with the Co-APDC method, respectively.

Our results from four duplicate 210Pb and 210Po profiles
support that either scavenging method can be used for reliably
extracting 210Pb from seawater, but the Fe(OH)3 TOT siph method
underestimates 210Po activities.

DISCUSSION

Possible Reasons for the Discrepancy in
210Po Between Methods
The compilation of 210Pb and 210Po studies summarized in
Figure 1 suggests that the Fe(OH)3 and Co-APDC methods
may yield disparate results for 210Po. As these studies are from

different oceanographic regimes and were conducted at different
times, a direct comparison of methods is difficult. However,
the total 210Pb and 210Po activity results presented here from
four duplicate profiles indicate that the Fe(OH)3 TOT siph method
underestimated 210Po activities throughout the entire water
column. 210Po activities are calculated from the ratio between the
count rate of 210Po to 209Po multiplied by the known activity of
209Po added to the samples, and applying appropriate ingrowth
and decay corrections (Rigaud et al., 2013). Therefore, while
similarly high 209Po recoveries were obtained for both methods
[78 ± 8% for Fe(OH)3 and 63 ± 16% for Co-APDC], 210Po was
scavenged differently. Below we discuss two possible hypotheses
that could explain how the Fe(OH)3 method may have resulted in
a higher extraction of 209Po than 210Po from unfiltered samples
and, in turn, led to the calculation of lower 210Po activities
compared with the Co-APDC method: (1) the Fe(OH)3 protocol
did not quantitatively extract all of the dissolved 210Po from
seawater due to organic complexation; (2) siphoning of the
supernatant from unfiltered samples precipitated with Fe(OH)3
resulted in a loss of particles and associated 210Po activity.

First, different chemical speciation between the natural 210Po
present in seawater and the artificial 209Po added to the samples
(in acid media) may prevent a complete equilibration between
the isotopes over 9–24 h (Supplementary Table 1) and result in a
differential extraction when precipitating with Fe(OH)3. Little is
known about the speciation of Po in seawater, but it may behave
similarly to other group 16 metalloids, such as selenium (Stewart
et al., 2008), which is predominantly found in organic form in
surface seawater (Cutter and Cutter, 2001). Organic speciation of
Po in seawater may arise through its distinctive biogeochemistry
in which it is assimilated into organic matter and recycled
with it. Previous studies have shown that 210Po penetrates into
the cytoplasm of bacteria and phytoplankton and associates
with proteins and sulfur containing compounds in bacteria,
phytoplankton and zooplankton (Fisher et al., 1983; Cherrier
et al., 1995; Stewart and Fisher, 2003a,b). Therefore, at least some
of the dissolved 210Po atoms present in seawater, especially in
the upper water column, would have likely been recycled and
perhaps present as organic species. Further, Chuang et al. (2013)
showed that Po is particularly prone to chelation by organic
ligands like hydroxamate siderophores. Such organic speciation
of 210Po in seawater may reduce its adsorption onto iron
hydroxides, whereas 210Po would be effectively co-precipitated
as a dithiocarbamate chelate with the Co-APDC method (Boyle
and Edmond, 1975). If that was the case, regional differences in
seawater chemistry and Po speciation would result in site-specific
discrepancies between the Fe(OH)3 and Co-APDC methods, in
line with the results obtained in this study. In contrast, the 209Po
spike added to the acidified samples would not be speciated in
the same way as natural 210Po. After acidification and tracer
addition, samples in the present study were allowed to equilibrate
for 9–24 h before precipitation. This equilibration time, although
typical of many studies using the Fe(OH)3 method, may have
been too short to destroy organic ligands. As a consequence, the
209Po spike may not have completely equilibrated with natural
210Po, leading to less scavenging of 210Po than of 209Po on
iron hydroxides.

Frontiers in Marine Science | www.frontiersin.org 8 June 2021 | Volume 8 | Article 684484

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-684484 June 24, 2021 Time: 10:20 # 9

Roca-Martí et al. 210Po/210Pb Disequilibrium Comparison of Methods

FIGURE 5 | Comparison of 210Po (gray) and 210Pb (black) determined by using the Co-APDC (y-axis) versus the Fe(OH)3 (x-axis) methods. Symbols denote different
study areas: IONIAN (triangles), CBN (squares), CBS (circles), and SOTS (stars). Open symbols show samples from the primary production zone, while closed
symbols correspond to deeper samples. Solid line indicates 1:1 relationship.

Another possible explanation of the difference between the
methods may be related to the fact that total (dissolved +
particulate) 210Pb and 210Po activities were measured. Total
seawater samples in the present study were acidified to pH 1–
2 immediately after collection (see section “Duplicate Profiles
of 210Pb and 210Po”). Marine biogenic particles typically have
210Po/210Pb activity ratios >1 (Cochran and Masqué, 2003),
due both to adsorption of 210Po onto particle surfaces and
its incorporation into the particles. In contrast, 210Pb is only
adsorbed onto particle surfaces. As a consequence, 210Po may not
solubilize in an acidified sample over the 9–24 h allowed before
precipitation. Samples processed with the Co-APDC method
were filtered through 0.2 µm filters after precipitation and were
subsequently digested with concentrated HNO3, which would
have effectively dissolved any particles in the sample along
with the Co-APDC precipitate. For the samples precipitated
with the Fe(OH)3 method, most of the supernatant water was
siphoned off at sea and the precipitate was returned to the
laboratory with residual supernatant. Despite Fe(OH)3 TOT siph
being a common procedure for the determination of total
210Pb and 210Po (see Figure 1), we suggest that this method
may result in a loss of particles and associated 210Po activity

from the samples. If that was the case, the methodological
offset between the total Fe(OH)3 and Co-APDC protocols
would depend on the particulate 210Pb and 210Po activities
in seawater and vary as a function, for example, of place,
time of year and phytoplankton biomass. Indeed, previous
studies in the Mediterranean Sea and the Southern Ocean
have reported that a significant fraction of the total 210Po
activity is associated with the particulate phase. For example,
in the NW Mediterranean Sea, particulate 210Po (>0.2 µm)
activities in surface waters were reported to amount to 21%
of the total activities (Masqué et al., 2002b). This agrees
with an average of 19% of particulate 210Po (>0.7 µm)
measured at the DYFAMED site (NW Mediterranean Sea)
from surface waters to >2400 m (unpublished results, P.
Masqué). Similarly, in the Antarctic Circumpolar Current,
the relative importance of particulate 210Po (>1 µm) to
total activities was on average 14% in the upper 600 m of
the water column, including the sampling of phytoplankton
blooms (Friedrich and Rutgers van der Loeff, 2002). These levels
of particulate 210Po comprise a significant fraction of the
difference observed here between the Fe(OH)3 and Co-
APDC methods [28% for the Mediterranean Sea and 41% for
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SOTS, see section “Direct Comparison of the Fe(OH)3 versus
Co-APDC Methods”]. It is important to emphasize that this
potential bias would probably be unnoticeable for 210Pb because
particulate 210Pb activities only amounted to 3–8% of the total
activity in these studies (Friedrich and Rutgers van der Loeff,
2002; Masqué et al., 2002b), which are within the uncertainties
associated with the 210Pb measurements. However, the results
from Friedrich and Rutgers van der Loeff (2002) and the
DYFAMED site obtained by using the Fe(OH)3 DISS + PART
method showed a significant disequilibrium between total 210Pb
and 210Po at depths ≥300 m (average total 210Po/210Pb activity
ratio = 0.63 ± 0.05 and 0.79 ± 0.13, respectively). This
suggests that a possible loss of particles when siphoning the
supernatant from unfiltered samples precipitated with Fe(OH)3
may not fully explain the differences observed between the two
precipitation methods.

The compilation of 210Pb and 210Po studies shows that
deficits of 210Po at depth are more often observed when using
Fe(OH)3 versus Co-APDC, regardless of whether 210Pb and
210Po were analyzed on unfiltered or prefiltered seawater
samples (Figure 1). This observation suggests that the organic
complexation hypothesis may be the major explanation
for the difference between methods. We acknowledge,
however, that further experiments are needed in order to
test other Fe(OH)3 protocols and elucidate the underlying
reasons behind the mismatch observed in this study. In
particular, samples should be processed identically with respect
to the treatment of the precipitate [filtered for both the
Fe(OH)3 and Co-APDC methods]. Thus, at this point, our
findings cannot be extrapolated to other Fe(OH)3 protocols,
such as that used in the GEOTRACES program for the
determination of 210Pb and 210Po in filtered seawater samples
(Cutter et al., 2017).

Possible Overestimation of
210Po-Derived Fluxes Using Fe(OH)3
The comparison of methods presented in this study reveals
that while Fe(OH)3 and Co-APDC yield comparable results
for 210Pb, up to 40% lower 210Po activities can be measured
when using the Fe(OH)3 method on unfiltered seawater
samples. Moreover, unlike the iron hydroxide method, samples
processed using Co-APDC showed radioactive equilibrium
between 210Pb and 210Po at depth (see section “210Pb and
210Po Activities”), consistent with the long scavenging residence
times in the deep ocean compared with the mean life
of 210Po.

The lower 210Po/210Pb activity ratios measured by using the
Fe(OH)3 method are apparent not only in deep samples, where
large 210Po deficits have been reported in multiple studies [most
of them using Fe(OH)3, Figure 1], but are also evident in samples
from the euphotic zone and the upper twilight zone (Figure 4).
This observation has important implications with respect to
calculations of the export flux of POC (or other elements of
interest) associated with sinking particles in the upper ocean. To
evaluate these implications, we present the 210Po-derived fluxes
from a 1-D steady-state model (Equation 1), integrating the 210Po

FIGURE 6 | 210Po fluxes calculated from integrating the 210Po deficit down to
the base of the primary production zone using the Fe(OH)3 (yellow) and
Co-APDC (green) precipitation methods. Labels indicate the ratio between the
Fe(OH)3-derived to the Co-APDC-derived fluxes.

deficits observed down to the PPZ depth for the duplicate samples
processed by using Fe(OH)3 and Co-APDC (Figure 6):

210Po flux =
∫ 0

PPZ

λ210Po
(210Pb− 210Po

)
(1)

where (210Pb – 210Po) is the integrated 210Po deficit with respect
to 210Pb down to the depth of the PPZ (dpm m−2) and λ210Po is
the decay constant of 210Po (0.0050 d−1). In addition to the PPZ
depth, a relative light depth of 0.1% photosynthetically available
radiation (PAR) could also be chosen as a reference depth to
compare particle flux estimates from different sites (Buesseler
et al., 2020b), but we only used the PPZ depth because we lack
PAR data for some of the profiles.

The 210Po fluxes obtained from our four duplicate profiles are
shown in Figure 6. At CBS, the fluxes derived from Fe(OH)3
and Co-APDC are similar within uncertainties (34 ± 4 and
26 ± 4 dpm m−2 d−1, respectively). In contrast, for the Ionian
Sea, CBN and SOTS profiles, export estimates from the Fe(OH)3
method are a factor of 2 to 8 higher compared with Co-
APDC estimates. This comparison clearly reveals how different
conclusions can be drawn solely depending on the method
used, where the Fe(OH)3 method as applied here can lead
to overestimated 210Po fluxes. This suggests that 210Po fluxes
estimated from a commonly used Fe(OH)3 protocol may be
compromised to different degrees depending on the study area.
The resulting exaggerated 210Po flux would cause a proportional
overestimation of the POC fluxes when multiplying the 210Po flux
by the POC/210Po ratio associated with sinking particles.

CONCLUSION AND
RECOMMENDATIONS

This study highlights that two commonly used methods
for extracting 210Pb and 210Po from seawater can produce
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different activities for 210Po. On unfiltered seawater samples,
precipitating 210Pb and 210Po with Fe(OH)3 and siphoning off
the supernatant shows total 210Po activities up to 40% lower
than those obtained with the Co-APDC method in which the
precipitate is filtered. Deficits of 210Po can be used to quantify
POC fluxes and, therefore, the Fe(OH)3 method may lead to
artificially high 210Po-derived POC fluxes. This finding has also
important implications for understanding the behavior of Po in
marine systems and defining possible new applications of this
element to study biogeochemical cycles (e.g., sulfur).

Possible explanations for the lower 210Po activities observed
with the Fe(OH)3 method include complexation of dissolved
210Po in seawater preventing complete equilibration with the
209Po tracer added to the samples, or the loss of particles when
siphoning the supernatant from the samples. The compilation
of 210Pb and 210Po studies presented here suggests that the
former may be the major explanation for the difference between
methods. Future research is needed to investigate whether
longer sample storage after acidification and spiking allows
more complete equilibration between natural 210Po and the
209Po tracer and gives results more comparable to those from
the Co-APDC method. For these tests, we recommend using
filtered seawater samples so that only the dissolved fraction
is involved, and unfiltered seawater samples with filtration of
the Fe(OH)3 and Co-APDC precipitates. Processing a series of
identical samples with increasing times for isotope equilibration
before Fe(OH)3 co-precipitation would allow determination of
how quickly equilibration between 210Po and 209Po is reached.
Laboratory experiments using natural seawater and seawater
treated with ultra-violet irradiation (as done for trace metals),
together with dissolved organic matter measurements on the
samples, may also be useful to test the hypothesis that organic
complexation of Po leads to differential extraction of the 209Po
spike and the in situ 210Po when precipitating with Fe(OH)3.
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