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Amino acids (AA) and carbohydrates (CHO) are important components of the marine
organic carbon cycle. Produced mainly by phytoplankton as part of the particulate
organic carbon (POC) fraction, these compounds can be released into the outer medium
where they become part of the dissolved organic carbon (DOC) pool and are rapidly
taken up by heterotrophs (e.g., bacteria). We investigated the quantity and quality of
POC and DOC, AA and CHO composition in both pools in three different water masses
in the Fram Strait (Arctic Ocean) in summer 2017. Polar Waters and Atlantic Waters
showed similar concentrations of particulate and dissolved AA and CHO, despite Polar
Waters showing the highest DOC concentrations. In Mixed Waters, where the two
water masses mix with each other and with melting sea ice, the concentrations of
particulate and dissolved AA and CHO were highest. AA and CHO composition differed
substantially between the particulate and dissolved fractions. The particulate fraction
(>0.7 µm) was enriched in essential AA and the CHO galactose, xylose/mannose, and
muramic acid. In the dissolved fraction non-essential AA, several neutral CHO, and
acidic and amino CHO were enriched. We further investigated different size fractions
of the particulate matter using a separate size fractionation approach (0.2–0.7 µm,
0.7–10 µm and >10 µm). The chemical composition of the 0.2–0.7 µm size-fraction
had a higher contribution of non-essential AA and acidic and amino sugars, setting them
apart from the 0.7–10 µm and >10 µm fractions, which showed the same composition.
We suggest that the relative differences observed between different size fractions and
DOC with regards to AA and CHO composition can be used to evaluate the state of
organic matter processing and evaluate the contribution of autotrophic phytoplankton
or more heterotrophic biomass. In the future, changing conditions in the Central Arctic
Ocean (Atlantification, warming, decreasing ice concentrations) may increase primary
production and consequently degradation. The AA and CHO signatures left behind after
production and/or degradation processes occurred, could be used as tracers after the
fact to infer changes in microbial loop processes and food web interactions.

Keywords: Arctic Ocean, organic matter cycling, microbial loop, organic carbon, essential amino acids, neutral
sugars, particulate matter size fraction
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INTRODUCTION

Through photosynthesis phytoplankton cells (and also sea-
ice algae in higher latitudes) take up inorganic carbon and
incorporate it into numerous organic molecules. The four
major biomolecules, amino acids (AA), carbohydrates (CHO),
fatty acids, and DNA/RNA make up the bulk part of cell
biomass (Geider and LaRoche, 2002). Their synthesis depends
on availability of light, temperature and the overall physiological
state of phytoplankton cells, however, intra-cellular proportions
are also massively regulated by N and P availability, consequently
affecting biomolecule synthesis rates, cellular C:N:P ratios and
overall growth rates (Arrigo et al., 1999; Falkowski, 2000;
Geider and LaRoche, 2002). Under nutrient limiting conditions
the partitioning of C into C-rich storage compounds such as
carbohydrates or triglycerides is increased and the partitioning
between essential AA (EAA) and non-essential AA (NEAA) is
affected (Grosse et al., 2017, 2018). Additionally, the contribution
of individual AA and CHO to total AA and CHO concentrations
in phytoplankton can depend on community composition
(Markou et al., 2012 and references therein).

Phytoplankton cells can actively excrete organic matter (OM)
(Baines and Pace, 1991; Thornton, 2014) hence AA and CHO
become part of the dissolved organic matter pool (DOM) that
small heterotrophic consumers (e.g., bacteria) depend on. Other
pathways by which OM enters the dissolved pool include passive
release through the cell membrane (Marañón et al., 2004),
through cell destruction via viral lysis or grazing (Brussaard,
2004; Saba et al., 2011), or enzymatic degradation of particulate
organic matter (Wetz et al., 2008). Overall, the released AA and
CHO can contribute up to 20% to open ocean DOC pool and even
more in shelf areas (Pakulski and Benner, 1992; Davis et al., 2009;
Kaiser and Benner, 2009; Panagiotopoulos et al., 2014).

The accessibility of total dissolved AA and dissolved combined
CHO (TDAA and DCCHO) for bacteria depends on the
molecular complexity. For example, monosaccharides and single
(free) AA are labile, taken up quickly by bacteria, and have short
turnover times of minutes to days. In their study Luo et al. (2010)
determined that labile compounds alone cannot support bacterial
biomass in the ocean but that up to 40% of bacterial C-demand
is satisfied by semi-labile OM. The semi-labile fraction has
two major contributors: Oligo- and polysaccharides (combined
CHO) and peptides (combined AA) (Søndergaard et al., 2000;
Engel and Haendel, 2011). Because of their higher complexity,
turnover times of the semi-labile fraction range from months to
years (Hansell et al., 2009).

Individual AA and CHO are taken up preferentially based
on their molecular structure and can be reworked into more
degraded compounds (Dauwe and Middelburg, 1998; Veuger
et al., 2012). For example, loss rates of the individual amino
acids isoleucine, threonine, and valine were high during a long-
term degradation experiment, while glycine showed low rates,
and no loss was detected for lysine and proline (Veuger et al.,
2012). As some molecules are precursors or breakdown products
of others, the synthesis/degradation of one will lead to a relative
accumulation of another. Using the molecular composition of the
AA pool, a degradation index was developed to infer the relative

age or “freshness” of a sample (Dauwe and Middelburg, 1998;
Kaiser and Benner, 2009). Similarly, dissolved carbohydrates
degradation alters neutral CHO composition, for example by
a relative decrease in arabinose and galactose and a relative
increase in glucose (Amon and Benner, 2003; Goldberg et al.,
2009; Engel et al., 2012).

So far, studies have focused on either the dissolved or
the particulate pool or on either AA or CHO (Borchard and
Engel, 2015). But a concurrent assessment of the AA and
CHO composition in different size fractions (e.g., phytoplankton,
bacteria, DOC) would be necessary to characterize source-
sink interactions.

Our study aims to determine the quantity and quality of
individual biomolecules within the particulate and dissolved OM
pools. To evaluate if the biomolecule composition of producers
is mirrored by heterotrophic bacteria, we also investigated
biomolecule composition of three different POC size fractions.
The three studied fractions targeted larger primary producers
such as Phaeocystis sp. colony stages and larger or chain-forming
diatoms (>10µm), smaller primary producers and protozoa, i.e.,
Phaeocystis sp. single flagellates or other nano- and dinoflagellates
(0.7–10 µm) and small auto- and heterotrophs including bacteria
and archaea (consumers, 0.2–0.7 µm).

Our study took place in the Fram Strait, the only deep gateway
to the central Arctic Ocean, an ocean heavily impacted by climate
change. The eastern Fram Strait is influenced by warm and saline
Atlantic Water (AW), which is transported north via the West
Spitsbergen Current (WSC, e.g., Cottier et al., 2005; Beszczynska-
Möller et al., 2012; Appen et al., 2016). In the west, the East
Greenland Current (EGC) transports cold and fresher Polar
Water (PW) along the Greenland continental shelf break toward
the South (e.g., de Steur et al., 2009). Compared to the AW,
the PW contains higher DOC concentrations that originate from
terrigenous sources supplied by Arctic Rivers via the Transpolar
Drift (Hansell et al., 2004). The East Greenland Polar Front
System separates these two water masses (Paquette et al., 1985).
However, substantial horizontal mixing and exchange by eddies
can occur (Wekerle et al., 2017) and together with meltwater from
drifting ice floes produce an Mixed Water (MW) body.

We hypothesize that water masses differ in the quantity
and quality of their biomolecule composition. To address this
hypothesis, we focus on two main questions: (1) to what extent
do water masses affect the biomolecule composition of POC
and DOC in terms of concentration and composition, (2) does
the biomolecule composition differ between size fractions of
particulate matter?

MATERIALS AND METHODS

Study Area and Sample Collection
During the summer season of 2017 (23 July–19 August), a total
of 15 stations were sampled within the LTER observatory
HAUSGARTEN with the research vessel RV Polarstern
(Figure 1). The sampling was carried out using 12L Niskin
bottles attached to a CTD rosette (Sea-Bird Electronics Inc. SBE
991 plus probe), equipped with temperature and conductivity
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FIGURE 1 | Map of stations sampled for dissolved and particulate compounds (black squares and gray triangles). Size fractionation was performed on stations EG3,
HG1, and N5, depicted as gray triangles. The dotted black line indicates the sea ice monthly median edge retrieved from https://www.meereisportal.de (Spreen
et al., 2008).

sensors, as well as a pressure sensor, altimeter, chlorophyll
a (Chl a) fluorometer, and transmissometer. Hydrographic
data, including temperature and salinity, was retrieved from
PANGAEA (von Appen and Rohardt, 2018). Water samples were
taken from 5 depths: Above Chl a maximum (10 m), at the Chl
a maximum (according to the fluorescence sensor in 15–35 m),
below Chl a maximum (20–45 m), at 50 and 100 m. Subsamples
were taken as described below and stored for later analysis in the
home laboratory.

A size fractionation of PAA and PCHO was performed at
stations HG1, EG3, and N5 (Figure 1). First, 600 ml of sample was
filtered over a 10 µm gauze. Visible zooplankton individuals (e.g.,
copepods) were carefully removed using tweezers. Contents from
the gauze were washed onto a pre-combusted GF/F filter (4 h,
500◦C) using filtered seawater (0.2 µm) resulting in one replicate
for >10 µm. The filtrate was again filtered over pre-combusted
GF/F filters in duplicates of 300 ml and a cut-off at 0.7 µm.
The filtrate was then filtered over Supor Filters (0.2 µm, Pall) to
collect the size fraction 0.2–0.7 µm. All samples were stored in
pre-combusted aluminum-foil packs (4 h, 500◦C) at–20◦C and
analyzed as described below.

Dissolved and Particulate Organic
Carbon (DOC, POC)
Samples for DOC were taken in duplicates by filtering 20 ml
of seawater through GMF filters (0.45 µm) and collected in
combusted glass ampoules (4 h, 500◦C). Samples were acidified
with 20 µl of 30% hydrochloric acid, flame sealed, and stored
at 4◦C in the dark until analysis. In the lab, DOC samples were
analyzed by high-temperature catalytic oxidation (TOC -VCSH,

Shimadzu, Sugimura and Suzuki, 1988) using the modified
protocol after Engel and Galgani (2016).

POC samples were taken by filtering aliquots of 1–6 L of
seawater onto combusted GF/F filters (4 h at 500◦C). Filters were
stored frozen (–20◦C) until analysis. In the lab, filters were soaked
in 0.1N HCl for removal of inorganic carbon and dried at 60◦C.
POC concentrations were determined with a Carlo Erba CHN
elemental analyzer (Sharp, 1974).

Dissolved and Particulate Biomolecules
(TDAA, PAA, DCCHO, PCHO)
TDAA samples were taken by filtering 4 ml of seawater through
0.45 µm Acrodisc syringe filters into pre-combusted glass vials
(4 h, 500◦C) and stored frozen at −20◦C until analysis. TDAA
samples contain free AA and combined AA from proteins. PAA
samples were obtained by filtering 200 ml over pre-combusted
GF/F filters (4 h, 500◦C) and stored frozen (–20◦C). The analysis
was performed according to Lindroth and Mopper (1979) and
Dittmar et al. (2009) with some modifications. 1 ml of TDAA
sample or PAA-GF/F filter in 1 ml MilliQ were hydrolyzed with
1 ml of 30% hydrochloric acid (Merck, supra pure, 4.8 M final
concentration) in sealed ampoules at 100◦C for 20 h. The 2 ml
TDAA hydrolyzate or 100 µl PAA hydrolyzate were dried in a
microwave at 60◦C under a nitrogen atmosphere and washed
twice with 0.5 ml of MilliQ to remove any remaining acid.
TDAA samples were re-dissolved in 1 ml MilliQ for analysis,
PAA samples were re-dissolved in 2 ml MilliQ and mixed with
9:1 borate buffer (pH 9.5). A 1260 HPLC system (Agilent) with
a C18 column (Phenomenex Kinetex, 2.6 µm, 150 × 4.6 mm)
was used for analysis after separation of thirteen different
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amino acids and in-line derivatization with o-phtaldialdehyde
and mercaptoethanol. A linear gradient was run with 100%
Solvent A [5% Acetonitrile (LiChrosolv, Merck, HPLC gradient
grade) in Sodiumdihydrogenphospate buffer (pH 7.0; Merck,
suprapur)] to 22% solvent B (Acetonitrile) in 50 min. The
following standards were used: Asparagine+ aspartic acid (AsX),
glutamine + glutamic acid (GlX), serine (Ser), glycine (Gly),
threonine (Thr), arginine (Arg), alanine (Ala), tyrosine (Tyr),
valine (Val), isoleucine (Ile), phenylalanine (Phe), leucine (Leu),
and γ- aminobutyric acid (GABA). A summary of abbreviations
can be found in Table 1.

Samples for DCCHO (>1 kDa) were taken by filtering 20 ml
of seawater through 0.45 µm Acrodisc syringe filters into pre-
combusted glass vials (4 h, 500◦C) and stored frozen at −20◦C
until analysis. PCHO samples were obtained by filtering 200 ml
over pre-combusted GF/F filters (4 h, 500◦C) and stored frozen
(–20◦C). The analysis was conducted according to Engel and
Haendel (2011). DCCHO samples were first desalinated by
membrane dialysis (1 kDa MWCO, Spectra Por) for 5 h at 1◦C.
DCCHO and PCHO samples were hydrolyzed for 20 h at 100◦C
with 0.4 M HCl final concentration and then neutralized through
acid evaporation under vacuum and nitrogen atmosphere (1 h,
60◦C). Samples were analyzed using high-performance anion-
exchange chromatography coupled with pulsed amperometric
detection (HPAEC-PAD) on a Dionex ICS 3000. The system
was calibrated with a mixed sugar standard solution including
the neutral sugars: Fucose (Fuc), rhamnose (Rha), arabinose
(Ara), galactose (Gal), xylose/mannose (Xyl/Man), and glucose
(Glc), the amino sugars: Galactosamine (GalN), glucosamine
(GlcN), and the acidic sugars: Galacturonic acid (GalA), gluconic
acid (GluUA), glucuronic acid (GlcA) and muramic acid
(MurA). A summary of abbreviations can be found in Table 1.
Concentrations of GlcUA were below detection limits for PCHO

TABLE 1 | Glossary of abbreviations of sub-classes and individual amino acids
and carbohydrates.

Amino acids Carbohydrates

TDAA Total dissolved amino acids DCCHO Dissolved combined
carbohydrates

PAA Particulate amino acids PCHO Particulate carbohydrates

NEAA Non-essential amino acids Fuc Fucose

EAA Essential amino acids Rha Rhamnose

AsX Asparagine + aspartic acid Ara Arabinose

GlX Glutamine + glutamic acid Gal Galactose

Ser Serine Glc Glucose

Gly Glycine ManXyl Mannose/xylose

Ala Alanine GalN Galactosamine

Thr Threonine GlcN Glucosamine

Tyr Tyrosine GlcUA Gluconic acid

Arg Arginine GalA Galacturonic acid

Val Valine GlcA Glucuronic acid

Ile Isoleucine MurA Muramic acid

Phe Phenylalanine

Leu Leucine

GABA γ-aminobutyric acid

and DCCHO samples and were only detected in very low
concentrations in two size-fractions at HG1.

Nutrients, Chlorophyll a, TEP
Samples for the analysis of inorganic nutrients were collected
directly from Niskin into sterile 50 ml Falcon tubes. The
tubes were rinsed with sample water three times before the
sample was drawn. Samples were then stored at –20◦C for
later analysis on land. Inorganic nutrients (nitrate + nitrite,
nitrite, phosphate, silicate, and ammonium) were analyzed
with a QuAAtro Seal Analytical continuous flow autoanalyzer
following the manufacturers methods, which are based on
common colorimetric techniques after Grasshoff et al. (2009).
All measurements were calibrated using a set of five nutrient
standards prepared with commercially available Merck solutions
(traceable to SRM from NIST). These standards were prepared
in an artificial seawater (ASW) matrix, which was also used as
wash-water between the samples. The accuracy of the analysis was
assessed via the measurement of KANSO Ltd. (Japan) Certified
Reference Materials. Detection limits were: Nitrate + nitrite
[NO3

−
+ NO2

−] 0.05 µM, nitrite [NO2
−] 0.005 µM; phosphate

[PO4
3−] 0.01 µM; silicate [Si(OH)4] 0.02 µM; ammonium

[NH4
+] 0.01 µM.

Chlorophyll a (Chl a) samples were taken by filtering 0.5–
2 L seawater onto glass fiber filters (Whatman GF/F) under low
vacuum (<200 mbar). All filters were stored at −20◦C until
pigments were extracted with 5–10 ml of 90% acetone. First,
filters were sonicated in an ice bath for <1 min, and subsequently
extracted at 4◦C for 2 h. Before the measurement, samples were
centrifuged for 10 min at 5,000 rpm at 0◦C. Chl-a concentration
was determined fluorometrically (Turner Designs), together with
total pheophytin concentration after acidification (HCl, 1.0 N)
slightly modified to the methods described in Edler (1979)
and Evans et al. (1987), respectively. The standard deviation of
replicate test samples was (<10%).

The acidic polysaccharide-containing transparent exopolymer
particles (TEP) were analyzed by photometric analysis. Therefore,
60–150 ml samples were filtered onto 0.4 µm polycarbonate
filters, stained with a calibrated Alcian Blue solution and rinsed
with several milliliter of ultrapure water (Passow and Alldredge,
1995). The filters were stored at–20◦C until spectrophotometric
analysis in the home laboratory. The adsorption of Alcian
Blue to the sample was detected colorimetrically. In order to
dissolve particles, each filter was incubated for 3 h in 6 ml
of H2SO4 (80%). Subsequently, the solution was measured at
787 nm with an UV-Vis spectrophotometer (Shimadzu UV-
1700 PharmaSpec). Xanthan gum was used for calibration,
and total TEP concentrations are given in mg xanthan gum
equivalent (Xeq) L−1.

Statistical Analysis
Statistical comparison of water mass composition of OM
constituents and nutrients was conducted using the Kruskal-
Wallis ANOVA because datasets showed no normal distribution
after Kolmogorov-Smirnov-test. Post hoc comparison of
means (Wilcox test) was used to assess significant differences
among water masses.
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Principle component analysis (PCA) was performed to
explore differences in individual AA and CHO composition
between dissolved and particulate pools. Data for the relative
contribution (%) of individual AA and CHO concentrations to
total AA and CHO concentrations (nmol L−1) was used. The
package CRAN:factoMineR in the open-source software R was
used for the PCA analysis using a correlation matrix (Lê et al.,
2008; R Development Core Team, 2014).

RESULTS

Three different water masses were identified using temperature,
salinity, and density data according to Cokelet et al. (2008,
Figure 2). The main water mass in the eastern part of the Fram
Strait was Atlantic Water (AW) defined by temperatures > 2◦C
and salinities > 34.9. Polar Water (PW) was encountered with
temperatures < 0◦C and salinity < 34.7, in the western Fram
Strait. Stations, where the two water masses mix and the sea
surface layer was impacted by sea-ice melt, were referred to as
Mixed Water (MW). MW temperatures ranged between 0 and
7.2◦C and MW salinities ranged between 29.6 and 34.9. Water
mass specific differences in nutrient distribution occurred as well
(Supplementary Figure 1). In general, PW was characterized
by higher concentrations of PO4

3− and Si(OH)4. Significant
differences in NO3

− only occurred between AW and PW in

TABLE 2 | Chlorophyll a and TEP distribution across the different water masses.

Chl a Atlantic
Water

n Mixed
Water

n Polar
Water

n

Chlorophyll a [µg
L−1] average ± stdev

0.34 ± 0.45 22 0.85± 0.68 24 0.53± 0.53 22

Range 0.01–1.56 0.05–2.57 0.05–1.90

TEP [µg Xeq. L−1]
average ± stdev

38.9 ± 22.9 23 62.4± 29.1 25 33.4± 21.1 29

Range 18.6–101 22.5–115 12.5–85.7

n, number of samples.

sampling depths below the Chl a maximum. The upper two
water depths (Chl a maximum and above) showed no significant
differences. Average concentrations and concentration ranges for
Chl a and TEP were similar for AW and PW and highest in MW
(Table 2 and Supplementary Figure 2).

Distribution of Dissolved and Particulate
Constituents
Highest POC, PAA, and PCHO concentrations were found in
MW. Their respective concentrations ranged between 1.1 and
21 µmol L−1 for POC, 0.27–6.5 µmol C L−1 for PAA and
0.02–0.86 µmol C L−1 for PCHO (Figure 3 and Supplementary
Figure 3). Contribution of PAA to POC was 28 ± 16%
(n = 62), PCHO contributed 4.8 ± 2.7% to POC (n = 63,

FIGURE 2 | Temperature (A) and salinity (B) plotted along the cruise track using 1 m averaged CTD data. Water masses were identified after Cokelet et al. (2008).
Circles identify Polar Water (PW), diamonds identify Mixed Water (MW), and triangles identify Atlantic Water (AW).
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FIGURE 3 | Distribution of particulate and dissolved organic carbon across Fram Strait (A,B) and contribution of amino acids (C,E) and carbohydrates (D,F) to
carbon with these fractions.

Supplementary Figure 4). Concentrations of DOC were highest
in PW, decreased in MW and were lowest in AW ranging
between 56 and 101 µmol C L−1 (Figure 3 and Supplementary
Figure 3). TDAA concentrations ranged between 0.32 and
1.7 µmol C L−1 and DCCHO concentrations between 0.88 and
4.3 µmol C L−1, contributing an average of 0.9 ± 0.4% (n = 74)
and 2.7 ± 1% (n = 73) to DOC concentration, respectively
(Supplementary Figure 4). Both dissolved biomolecule fractions
showed highest concentrations in the MW (Figure 3 and
Supplementary Figure 3).

Biomolecule Composition Within
Different Pools and Size Fractions
PCA analysis of AA and CHO showed clear separation of
dissolved and particulate pools. For AA, 78.3% of the variance
was explained by the first two axes (Figure 4A). PAA showed
increased contributions of the EAA Leu, Phe, Val, Ile, Arg, and
Tyr, while TDAA had increased contributions of NEAA AsX,
Gly, Thr, GABA, and Ala. Both groups spread along PC2 which
showed the elevated contribution of GlX at positive PC2-values
and elevated Ser contributions along negative PC2-values.

Similarly, 67.6% of the variance in CHO can be explained
by PC1 and PC2 (Figure 4B). PCHO showed increased
contributions of Gal, Xyl/Man, and MurA; Rha was not present in
any of the samples. DCCHO had increased contributions of Ara,
Rha, Fuc, of amino sugars (GlcN, GalN) and acidic sugars (GlcA,
GalA). Furthermore, MurA was not detected in any DCCHO
sample, and no GlcUA was detected in DCCHO and PCHO
samples, with the exception of 2 sampling depths during size
fractionation (see below). Glc was the main driver of PC2 and
showed increased contributions in both DCCHO and PCHO.

Additional PCA analyses were performed separately for the
dissolved and particulate pools to determine the effect of water
masses and depth on biomolecule composition (Figure 5). An
effect of water mass was observed in the TDAA composition
(Figure 5A), where PW showed an association with GABA (green
symbols). Additionally, a separation by sampling depth in the
AW and MW was detected where samples from the Chl a
maximum and above (blue and black triangles) were enriched
in EAA (e.g., Tyr, Leu, Phe), and deeper samples were rather
associated with higher contributions of NEAA Ala, Thr, Gly
(circles). A less clear trend emerged in the PAA (Figure 5B),
where PW samples from below the nutricline (green circles)
associated with GABA and Arg and were slightly separated from
many of the AW and MW surface samples (blue and black
triangles), which associated closer to the EAA.

CHO did not show water mass separation in either fraction,
but some patterns emerged as well. Within the DCCHO
(Figure 5C) Glc contribution seems to increase in deeper
samples (circles and squares) while surface samples of AW and
MW (black and blue triangles) are associated with all other
investigated sugars, including amino and acidic sugars. Similarly,
in the PCHO (Figure 5D), many deep-water samples (circles)
were associated with Xyl/Man and Ara, and many surface samples
were associated with Glc.

Differences in PAA and PCHO pool composition were
evaluated in 3 size fractions. The size fraction 0.7–10 µm
contributes the highest amounts to PAA with an average of
64± 7% (n = 15), the size fraction > 10 µm contributes amounts
up to 35% at the upper 40 m. The 0.2–0.7 µm size fraction showed
the lowest contribution with 14± 6% (n = 15). At the same time,
the 0.2–0.7 µm size fraction contributed relatively high amounts
of C to PCHO (42 ± 12%, n = 15). Similar contributions were
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FIGURE 4 | PCA biplot of distribution AA (A) and CHO (B) in dissolved and
particulate fractions.

made from the 0.7–10 µm fraction, while the > 10 µm fraction
contributed the lowest amounts (45 ± 8% and 13 ± 7%, n = 15,
respectively). This resulted in opposite C partitioning between
PAA and PCHO in the fractions > 0.7 µm and 0.2–0.7 µm.

Phytoplankton most likely dominated in the size
fractions >0.7 µm which contained 4.3 ± 2.4 times more
C in PAA than in PCHO (n = 30). The size fraction < 0.7 µm was
most likely dominated by bacteria and archaea and contained
only 0.8 ± 0.4 times of C in PAA than PCHO (Figure 6 and
Supplementary Table 1).

PCA analysis of mol% of individual PAA and PCHO
between fractions showed a clear separation between fractions.
While > 10 µm and 0.7–10 µm fractions clustered, the 0.2–
0.7 µm fraction was separated (Figure 7). The 0.2–0.7 µm
fraction was associated with higher contributions of AsX and GlX

as well as acidic and amino sugars (GlcA, GalA, GlcN, GalN).
GlcUA was detected only in 2 samples at HG1 (10 m/0.2–0.7 µm
and 35 m/>10 µm). Within the PCHO, Xyl/Man also caused
separation along PC2.

DISCUSSION

Where Water and Melting Ice Meet
The Fram Strait is the gateway to the Arctic Ocean where
northward-flowing, warm and more saline AW in the east meets
southward flowing, cold PW in the west. The two water masses
meet and mix with each other and melting sea-ice in the marginal
ice zone, forming MW. These mixing zones extend over several
km and are characterized by higher biological productivity
(Thomsen et al., 2016; Baltar and Arístegui, 2017; von Appen
et al., 2018; Fadeev et al., 2020). Our research area encompassed
all three water masses and the study supports earlier findings
that MW is indeed more productive than either PW or AW
(based on Chl a and POC concentrations). A detailed study
of such a mixing event showed that upwelling on the outside
of the filament brings nutrients to the surface, which enhances
productivity and can eventually export POC in the filament
center on timescales of days to weeks (von Appen et al., 2018).
In the same filament, Fadeev et al. (2020) investigated the
composition of bacteria and phytoplankton and found elevated
densities of both diatoms and Phaeocystis sp. compared to
outside-filament waters, and a bacterial community that is usually
associated with a summer aging phytoplankton bloom. Blooming
of fast-growing phytoplankton species, such as diatoms, were
also observed in other low-latitude, submesoscale-frontal systems
(Basterretxea Oyarzabal and Aristegui, 2000; Clayton et al.,
2014; Allen et al., 2015). A similar mixing process and the
concurrent injection of new nutrients was potentially responsible
for increased biomass in MW in our study. The subsequent DOM
release from new phytoplankton biomass and its degradation
after nutrient depletion fuels the existing bacterioplankton
community, emphasizing that this narrow streak of MW
between AW and PW is important for primary and secondary
production in the area. According to Nöthig et al. (2020) AW
is more productive than PW in terms of both POC and Chl a
concentration, opposite to us finding no statistical differences in
POC concentration between the two. The reason for this could
be two fold; (1) the sampling in 2017 took place in post-bloom
conditions (Engel et al., 2019) and low overall biomass resulted in
relatively similar concentrations between water masses. Secondly,
Nöthig et al. (2020) only distinguish between PW and AW, using
the 0◦ Meridian as a boundary, rather than physical settings,
and therefore included MW as part of AW. However, they also
emphasize that productive zones were found at the dynamic ice
edge of the Fram Strait where warm and nutrient rich AW partly
recirculates and comes into contact with the sea ice cover of
the western Fram Strait allowing favorable growth conditions
for phytoplankton.

MW were also characterized by increased contribution of
PAA to POC in our study, indicating sufficient N availability for
phytoplankton growth. Available N supports the synthesis of PAA
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FIGURE 5 | PCA biplot of AA and CHO composition in dissolved (A,C) and particulate (B,D) fractions. Boxed abbreviations of AA and CHO in each panel refer to
the respective cluster of arrows where direct association of arrow and molecule name was not graphically possible. Color and symbols refer to water mass and
depth, respectively.

(structural proteins and enzymes required for phytoplankton
cells functioning and growth), while increased PCHO can
indicate either an increased contribution of storage PCHO under
nutrient limitation (Granum et al., 2002; Borsheim et al., 2005)
or high amounts of excreted heteropolysaccharides such as
transparent exopolymeric particles (TEP) (Passow, 2002; Engel
et al., 2017). Based on the similarity seen in Chl a, POC and
TEP concentrations, probably both mechanisms contributed.
Nutrient distribution in the upper two water depths was patchy
and ranged from concentrations below the detection limit to
sufficient concentrations across all three WM, hence we probably
encountered plankton communities at different physiological
stages. While POC concentrations can be used to determine
biomass distribution, DOC concentrations across Fram Strait
are not appropriate to deduce the availability of labile and
semi-labile organic substances. DOC concentrations in PW were
much higher than in AW, but due to increased terrigenous
contributions from large rivers such as Lena, Mackenzie, Ob,
or Yukon (Kattner et al., 1999; Anderson and Amon, 2015).
The terrigenous DOC contains numerous complex biomolecules
(e.g., humic substances) that are resistant to bacterial degradation
(Engel et al., 2019). Thus, evaluation of TDAA and DCCHO
concentrations is a more appropriate approach. The freshness
of DOC increased from PW < MW < AW with highest
contributions per water mass of 4.3% < 6.1% < 8.2% of DOC,

respectively. These values are low but in a similar range to other
studies. In the Beaufort Sea the contribution ranged between 4
and 16% (Panagiotopoulos et al., 2014). Amon and Benner (2003)
reported neutral sugar contributions to DOC ranging between 1.3
and 9.6% throughout the entire Arctic Ocean, and up to 22% in
ice flow melt water.

Quality of AA and CHO Pools
Organic carbon production and degradation determine the
quantity and quality of AA and CHO pools. PCA analysis of
AA and CHO from all water masses showed clear separation
of particulate (producers) and dissolved (degraded) pools,
demonstrating fundamental differences in their compound
composition. PAA were rich in the EAA supporting the
hypothesis that they contain actively growing phytoplankton
communities that synthesize all investigated AA. EAA are
important to sustain growth in higher trophic levels as these
have no capabilities to synthesize EAA. Several groups of bacteria
have also lost synthesis pathways for individual AA and rely on
scavenging them from the environment (auxotrophy, Tripp et al.,
2009). The TDAA pool is enriched in AA, such as Gly, AsX,
and Ala, emphasizing continuous degradation by heterotophic
bacteria (Kaiser et al., 2017).

Hence, PC1 (Figure 4A) is a reflection of the degradation
index established by Kaiser and Benner (2009). Interestingly, our
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FIGURE 6 | Contribution of different size fractions to concentrations of PAA (A) and PCHO (B). Note differences in scales between panels.

data showed a separation between of GlX and Ser along PC2.
A similar separation was found between Atlantic and Pacific
Water (Kaiser and Benner, 2009) and could potentially be an
indicator for differences in bacterial communities composition.
For example, it is known that peptidoglycan, peptides in gram-
negative bacteria, exclusively contain GlX, Ala and MurA (see
below), while other peptides can additionally include AsX, Ser,
and ornithine (Schleifer and Kandler, 1972). GlX is used by some
Gram-positive Bacilli to form a capsular polypeptide (Hanby and
Rydon, 1946; Troy, 1973) and Ser frequently appears in iron
scavenging siderophores (Demange et al., 1990; Bernardini et al.,
1996; Martinez et al., 2000) and lipo-peptides (Morikawa et al.,
1993; Vater et al., 2002).

Distinguishing further between water masses and depths
(Figures 5A,B) revealed a separation of TDAA and PAA
associated with the degradation index (along PC1). Essential
TDAA are associated with productive surface waters (Chl a
maximum and above) especially in AW and MW. Deeper
waters are associated with higher contributions of Ala,
Thr and Gly. PW show the most degraded TDAA pool
associated with Gly, Thr and especially GABA, indicating
highly degraded TDAA pools in the entire PW water column.
GABA is a non-protein AA produced by marine bacteria
but also by fungi (Morse et al., 1980; Masuda et al., 2008).
Differences in GABA, GlX and Ser distribution could again
indicate compositional differences in microbial communities
between ice-free AW and ice-covered PW as demonstrated

by Fadeev et al. (2018) and others (Pernthaler et al., 1998;
Crump et al., 1999).

Similarly, PCHO and DCCHO pools show differences in
composition. Gal has increased contributions to the PCHO pool,
which could be associated with diatoms (Markou et al., 2012).
MurA was also found in PCHO. It is however only found in the
unique cell wall biopolymer peptidoglycan, which is synthesized
by Gram-negative and Gram-positive bacteria (Schleifer and
Kandler, 1972). It consists of glycan strands of the disaccharide
N-acetyl-glucosamine and N-acetyl muramic acid which are
cross-linked by small peptides consisting of specific amino acids
(Schleifer and Kandler, 1972). Muramic acid has been identified
in DOM (Benner and Kaiser, 2003) and might be associated with
bacteria colonized particles in our study. Therefore, the MurA
signal in the PCHO fraction could signal the presence of gel-
like particles, which can be colonized by bacteria. Transparent
polymer particles (TEP) are one form of gel-like particles and
contain large amounts CHO. Acidic sugars (GlcA, GalA, GalUA)
in the DCCHO can be an indicator for freshly excreted DOM
(Borchard and Engel, 2015) while in the PCHO fraction they are
an additional indicator for the presence of TEP (Alldredge et al.,
1993). The occurrence of MurA in the particulate fraction, e.g., as
indicator for gel-like particles should be investigated further.

As seen in Figure 4B, PC1 shows qualitative differences
between PCHO and DCCHO, while PC2 is driven by Glc.
Glc contributions to PCHO are usually explained by nutrient
limitation. When photosynthesis is limited by either N or P, the
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FIGURE 7 | PCA plot of different size fractions in PAA (A) and PCHO (B).

further synthesis of Glc into AA, structural lipids or DNA/RNA
is limited, reducing community growth rates (Falkowski, 2000).
Instead, Glc is then incorporated into storage products such as
Glc-rich chrysolaminarin or processed further into storage lipids
(Janse et al., 1996; Kroth et al., 2008). Alternatively, increased

contributions of TEP could be reflected in the shifting relative
composition of PCHO.

Looking closer into water mass and depth-related distribution
(Figures 5C,D) confirm the special role of Glc, especially in
the DCCHO fraction where it is associated foremost with
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waters below the Chl a maximum and the nutricline. Glc is
increased in the PCHO pool in the surface (Chl a max and
above), where when excreted Glc is taken up rapidly by bacteria
and hardly accumulates (Kirchman et al., 2001). The relative
increase of DCCHO-Glc at depth could be associated with
the diagenesis of CHO and the uptake of more labile sugars
from sinking OM (Amon and Benner, 2003). The melting ice
might also release degradation products from ice algae together
with ballast material, which causes particle sinking rates to
increase 2–3-fold (Iversen and Robert, 2015), and would relocate
degradation processes away from the surface and deeper into
the water column.

Differences in Size Fractions
The three size fractions targeted larger primary producers such as
Phaeocystis sp. colony stages and larger or chain-forming diatoms
(>10 µm), smaller primary producers, i.e., Phaeocystis sp.
single flagellates or other nano- and dinoflagellates (0.7–10 µm)
and bacteria and archaea (0.2–0.7 µm). Comparing PAA and
PCHO between these fractions shows the importance of smaller
sized phytoplankton in the Arctic Ocean during post-bloom
summer month as they contribute higher concentrations to
both pools at all the investigated stations. Larger phytoplankton
(>10 µm) had lowest contribution in PW. As to be expected,
concentrations are highest at the surface and in the Chl a
maximum (≤20 m) and based on PAA concentrations, smaller
phytoplankton also contribute relatively more at greater depths.
The contribution of PCHO (>0.7 µm) to POC in this study was
low in comparison to the literature. Finkel et al. (2016) concluded
from a meta-data analysis that CHO constitute approximately
15% to cell biomolecules under nutrient-sufficient, exponential
growth conditions. They found the lowest values for Ochrophyta
and Bacillariophyta (<10%), comparable to values in this study
(4.8 ± 2.7%). These values are at a similar range as values found
for our samples, suggesting that nutrients were still available
throughout the study area. To increase accuracy in follow-up
studies, volumes for PAA and PCHO filtration should be similar
or higher than volume filtered for POC analysis, especially in
low biomass areas. During our study we encountered post-
bloom conditions with communities comprising of diatoms and
Phaeocystis spp. as shown by Fadeev et al. (2020). While diatoms
contain less PCHO because they have a silica shell instead of a cell
wall, Phaeocystis is mucus-, hence PCHO-rich, especially when
encountered as colonies (Alderkamp et al., 2007). Moreover,
high concentration of TEP associate with blooms of Phaeocystis
sp. have been reported for the Fram Strait (Engel et al., 2017).
Exponentially growing as well as senescent cells, both have been
shown to induce TEP formation (Passow and Wassmann, 1994;
Reigstad and Wassmann, 2007). Lipids have to be considered
as an alternative storage compound in phytoplankton and
partitioning of storage C between CHO and lipids depends
on the community composition and the experienced limitation
(N, P, or light) (Granum et al., 2002; Borsheim et al., 2005;
Grosse et al., 2017).

POC:PON ratio in the >0.7 µm size-fractions were close to
the Redfield ratio (C:N = 6.6, Table 3, Redfield et al., 1963) in
surface waters and increased with depth indicating degradation

TABLE 3 | C:N ratios of biomolecules in different size fractions, and in DOM
(<0.45 µm) as well as POC:PON at stations EG3, N5 and HG1 for individual
depths.

C:N (PAA + PCHO) POC:PON C:N
(TDAA + DCCHO)

Station Depth
(m)

>10
µm

0.7–10
µm

0.2–0.7
µm

EG3 10 4.0 4.4 6.6 6.6 10.0

20 3.7 3.6 8.5 6.6 10.2

40 4.5 4.5 11.5 8.1 14.9

50 4.7 5.3 12.2 11.7 10.2

100 3.7 4.2 7.2 9.1 10.2

N5 10 3.6 3.5 5.1 6.5 9.0

20 3.5 3.7 5.2 6.3 10.1

40 3.8 4.2 7.7 7.0 14.4

50 4.7 3.9 8.2 7.8 11.7

100 5.9 5.7 6.5 8.1 11.6

HG1 10 3.9 3.7 7.4 6.2 10.1

20 3.4 4.1 8.2 6.6 10.4

40 4.4 4.6 4.8 8.4 10.4

50 4.3 4.6 7.4 8.6 13.7

100 3.8 5.2 10.4 12.1 12.0

The molar ratios were calculated by (CAA + CCHO)/NAA for size fractions and the
dissolved pool.

processes. C:N ratios of PCHO and PAA [(CAA + CCHO)/NAA]
were lower (Table 3), suggesting additional C components (e.g.,
lipids, pigments, detritus) contribute to the larger fraction. In the
0.2–0.7 µm, the (CAA + CCHO)/NAA ratio is increased relative
to the larger size-fractions and resembles the C:N ratios typically
found in marine bacteria (C:N = 5–8), with coastal areas at the
lower side of the range and open ocean bacteria at the higher side
(Fagerbakke et al., 1996; Fukuda et al., 1998). The 0.2–0.7 µm
fraction was therefore a mixture of bacteria and detritus (see
also below). Consumers rework phytoplankton derived DOC to
retain precious N resulting in DOC:DON ratios > 9 (Table 3,
Eichinger et al., 2009).

Labile compounds can be consumed very rapidly by
heterotrophs who rework those compounds and excrete
their own DOC characterized by a complex chemical
composition (Ogawa et al., 2001). The amino sugars GlcN
and GalN are commonly found in bacteria-derived DOC
(Amelung, 2003; Benner and Kaiser, 2003). Both amino
sugars can accumulate outside the cytoplasm, perhaps in
membrane-bound components. They have been found in
glycoproteins, extracellular polymers, antibiotics (Messner, 1997;
Giroldo and Vieira, 2002; Kudo et al., 2005), and as part of
lipopolysaccharides (Trefzer et al., 1999). They also have very
low decay coefficients, making them resistant to decomposition
(Kawasaki and Benner, 2006).

The concentrations of PAA in the 0.2–0.7 µm fraction
can be used to estimate bacterial C concentrations. Overall,
AA amount to half of the C in bacteria (Simon and Azam,
1989; Neidhardt, 1996; Kaiser and Benner, 2008) and the
percentage of total cellular C as AA seems fairly constant (50–
60%) in marine heterotrophic bacteria, independent of cell size
(Simon and Azam, 1989; Kaiser and Benner, 2008). However,
those numbers were mostly derived from culture studies and
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natural communities show lower values. Kawasaki et al. (2011)
determined bacterial AA-C yields between 15.5 and 42.5% for the
open ocean and 19.3–33.8% for the coastal ocean and concluded
values are driven by the contribution of degraded particles.
Assuming 9.1 fg C bacteria cell−1 (Buitenhuis et al., 2012),
bacteria contributed 1.51–8.91 µM C resulting in AA-C yields
of 3.2–10.6%. These very low AA-C yields indicate that our
sampling stations were probably affected by high amounts of
other C-rich material, such highly degraded detritus (Amy et al.,
1983; Neidhardt, 1996) or TEP (Engel et al., 2017).

In the PCA, the two phytoplankton size fractions clustered
and were enriched in most AA except for AsX and GlX, and
in the CHO Gal, Fuc and MurA. Since we only investigated
three stations with five depths each, the data is not sufficient to
interpret if and where detritus might have played a significant
role in any size fraction. Interestingly, Ser seems to be associated
with samples taken from greater depths and potentially higher
degraded particles, while GABA is associated with the Chl a
maximum and above perhaps suggesting a bacterial presence on
particles. Gal, Fuc, MurA were mainly associated with MW and
AW, while Man/Xyl was mostly associated with PW and greater
depths, and therefore probably associated with degradation. This
agrees with findings in the PCA of unfractionated PAA.

The relative composition of the biomolecule pools can be
used to determine the production and degradation state of
the POC and DOC pools and even to distinguish between
phytoplankton and bacterial biomass as well as different water
masses. With Atlantification AW will carry their respective
plankton communities farther North into the Central Arctic
Ocean. Increased production in the central Arctic Ocean is
expected in the future, and consequently enhance degradation
processes in these currently oligotrophic areas. As a consequence,
food web interactions and microbial loop processes will be
affected. Since sampling campaigns in these areas are infrequent
and logistically challenging the AA and CHO signatures left
behind by these processes could be used to tracers after the fact.
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