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Demersal fishes constitute an essential component of the continental shelf ecosystem,
and a significant element of fisheries catch around the world. However, collecting
distribution and abundance data of demersal fish, necessary for their conservation and
management, is usually expensive and logistically complex. The increasing availability
of seafloor mapping technologies has led to the opportunity to exploit the strong
relationship demersal fish exhibit with seafloor morphology to model their distribution.
Multibeam echo-sounder (MBES) systems are a standard method to map seafloor
morphology. The amount of acoustic energy reflected by the seafloor (backscatter)
is used to estimate specific characteristics of the seafloor, including acoustic
hardness and roughness. MBES data including bathymetry and depth derivatives
were used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis,
Lagocephalus sceleratus, Lethrinus miniatus, Loxodon macrorhinus, Lutjanus sebae,
and Scomberomorus queenslandicus. The possible improvement of model accuracy
by adding the seafloor backscatter was tested in three different areas of the Ningaloo
Marine Park off the west coast of Australia. For the majority of species, depth was
a primary variable explaining their distribution in the three study sites. Backscatter
was identified to be an important variable in the models, but did not necessarily
lead to a significant improvement in the demersal fish distribution models’ accuracy.
Possible reasons for this include: the depth and derivatives were capturing the significant
changes in the habitat, or the acoustic data collected with a high-frequency MBES were
not capturing accurately relevant seafloor characteristics associated with the species
distribution. The improvement in the accuracy of the models for certain species using
data already available is an encouraging result, which can have a direct impact in our
ability to monitor these species.
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INTRODUCTION

Coral reef fish constitute an essential component of the
continental shelf ecosystem, and a significant element of fisheries
catch around the world (Anderson et al., 2009). Successful
management and conservation of these demersal fishes rely
on our ability to monitor their abundance and distribution.
However, collecting distribution and abundance data is often
expensive and logistically complex (Anderson et al., 2009).
Increasing availability of seafloor mapping technologies, such as
Multibeam echo-sounders (MBES), has led to the opportunity
to exploit the strong relationship demersal fish species exhibit
with seafloor morphology to model their distribution in a cost-
effective manner (Brown et al., 2012).

Multibeam echo-sounders (MBES) are used to map the
seafloor by transmitting acoustic energy toward the seafloor.
The two-way travel time of this energy, to and from the
transducer, combined with the angle of its travel, is used to
determine the depth (bathymetry). The amount of acoustic
energy reflected by the seafloor (backscatter) is used to estimate
specific characteristics of the seafloor, including acoustic hardness
and roughness (Fonseca and Mayer, 2007). The importance of
depth to the assemblage of demersal fish has been well established
(Fitzpatrick et al., 2012; Garcia-Alegre et al., 2014). As well as
the direct influence depth has on demersal fish, it is also seen
as a proxy for a broader set of variables involved in processes
that occur at different levels of the water column which are
usually harder to sample, e.g., temperature and light (Sih et al.,
2017). Depth derivatives (e.g., ruggedness) are used to describe
the complexity of the seafloor which can also influence the
distribution of demersal fish at a variety of scales (Monk et al.,
2011; Costa et al., 2014). Differences in the seafloor backscatter
are used to help discriminate between benthic habitats, which
can be closely related to the distribution of demersal species (e.g.,
sand vs. rock bottom; Monk et al., 2010; Monk et al., 2011).
Therefore, the inclusion of seafloor backscatter data in demersal
fish distribution models is slowly becoming more common.
Multiple descriptors can be derived from the original backscatter
data adding several lines of potentially useful information for
species distribution modeling (Hasan et al., 2012a).

One of the most common products derived from the
raw backscatter data is a mosaic, where the backscattered
energy (measured as the backscatter strength on the dB scale,
and backscatter intensity on the linear scale) received from
different grazing angles is normalized for a certain angle or a
range of angles. This method produces a regular grid usually
with a resolution equal to the bathymetry layer (Fonseca
et al., 2009). However, the relationship between the backscatter
strength/intensity and grazing angle is related, for certain
frequencies, to particular properties of the seafloor (Fonseca and
Mayer, 2007). Normalizing the data to a specific angle dismisses
valuable information contained in the angular response curve
(ARC) (Hamilton and Parnum, 2011). Another approach is to
characterize the seafloor using the Angle vs. Range Analysis
(ARA) (Fonseca et al., 2009). During the ARA analysis, the
backscatter response observed is compared to expected acoustic
response curves based on a mathematical model, the Jackson

Model (Jackson et al., 1986). In particular, the ARA analysis can
be used to estimate the sediment grain size, which has been shown
in some demersal species to be a driver of distribution, or at least
a correlate. Previous studies have focused on testing the relevance
of including the backscatter and its derivatives to model the
distribution of benthic habitat classes (Ierodiaconou et al., 2007;
Brown et al., 2012; Hasan et al., 2012a). Less attention has been
placed in testing the benefit of adding the angular response data in
modeling the distribution of demersal fishes which traditionally
included the mosaic image and derivatives e.g., texture features
(Hasan et al., 2014).

In the present study, terrain variables were used to model
the distribution of fish data derived from Baited Remote
Underwater Stereo-Video (stereo-BRUVS). The overarching aim
was to test the possible improvement of a model’s accuracy
if the backscatter data is included. This was tested in three
areas of the Ningaloo Marine Park (NMP) with different
bathymetry and levels of terrain complexity. Seven species
where chosen as an indicative evaluation of the accuracy
of species distribution models: starry triggerfish (Abalistes
stellatus), Robinson’s seabream (Gymnocranius grandoculis),
silver toadfish (Lagocephalus sceleratus), red throat emperor
(Lethrinus miniatus), sliteye shark (Loxodon macrorhinus), red
emperor (Lutjanus sebae), and school mackerel (Scomberomorus
queenslandicus). The probability of presence of each of these
species was modeled using depth, depth derivatives and
backscatter (mosaic and ARC) data as explanatory variables.

MATERIALS AND METHODS

Study Area
Ningaloo Reef (NR) is the longest fringing coral reef in Australia,
and is considered a biodiversity hotspot and to be in a good
state of conservation compared with other coral reefs (Gazzani
and Marinova, 2007; Schonberg and Fromont, 2012). The NMP
was designed to protect 90% of these iconic waters (CALM and
MPRA, 2005). A biodiversity analysis of different phyla including
demersal fish, sponges, and soft corals showed the NMP is a
biogeographical overlap zone, where more tropical species occur
in the northern section and both tropical and temperate species
are present in the southern area (Simpson and Waples, 2012).
In the present study, three areas of the NMP were used to
model the distribution of demersal species of fish using depth
derivatives and backscatter information. Mandu in the northern
area, Point Cloates in the central area and Gnaraloo in the
southern zone (Figure 1).

Baited Remote Underwater Stereo-Video
A multidisciplinary project was conducted in NMP between 2006
and 2009 by the Western Australia Marine Science Institution
(WAMSI) and associates (Waples and Hollander, 2008). As
part of this project, many aspects of the NMP were studied,
including the demersal fish composition using Baited Remote
Underwater Stereo-Video (stereo-BRUVS). A total of 656 stereo-
BRUVS were deployed across the areas in Figure 1 in March-May
2009, between depths of 15 and 350 m. The stereo-BRUVS data
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FIGURE 1 | Study site. (A) Mandu in the northern area of the NMP, (B) Point Cloates in the central area, and (C) Gnaraloo in the southern area of the NMP. The
deployment location of the stereo-BRUVS is shown as red stars, and the backscatter mosaics are shown as black and white images.

included 239 deployments in Mandu, 185 in Pt Cloates and
155 in Gnaraloo (Waples and Hollander, 2008; Simpson and
Waples, 2012). A database that included relative abundance,
produced by the Australian Institute of Marine Science (AIMS),
was used in the present study. The commonly used metric,
MaxN, corresponds to the maximum number of individuals of
the same species observed together in one frame at any one time,

during the analyzed period of the video, and has been shown
to provide a conservative estimate of relative abundance (Willis
et al., 2000; Cappo et al., 2003). Only the first hour of recording
was used for the MaxN estimation analysis, which commences
the moment the cameras touch the bottom. More details on the
collection and analysis of the stereo-BRUVS can be found in
Harvey et al. (2007).
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Depth and Depth Derivatives
Depth and depth derivatives MBES surveys of the study areas
were conducted in 2008 by Geoscience Australia and AIMS,
using a Kongsberg EM3002, operating at 300 kHz. The MBES
bathymetry was downloaded from the Geoscience Australia (GA)
website as a raster with 3 m resolution. Ten depth derivatives
were calculated from the bathymetry as shown in Table 1 (Moore
et al., 2010, 2011). Some of the derivatives were produced using
the raster package (Hijmans, 2016) of the free software R (R
Development Core Team, 2017) and the rest were produced using
Landserf v2.3 as specify in Table 1. Ecological processes occurring
at different scales can affect the distribution and abundance of
demersal fishes. Therefore, four different windows sizes were
used in the production of the derivatives. The finest scale of
analysis was fixed by the resolution of the MBES data (3 m) and a
3× 3 window of analysis, while the other three were chosen based
on the spatial dependence of the species. A variogram analysis
was used to identify the maximum distance at which the species
display spatial dependency (the range) (Holmes et al., 2008). For
the species with spatial dependency, the range was above 4 km.
Therefore, the scales were chosen to cover the span between the
finest resolution and below the maximum range of any of the
species using four windows sizes of analysis (number of cells) 3
by 3 (81 m2), 9 by 9 (729 m2), 15 by 15 (2,025 m2), and 21 by 21
(3,969 m2). The largest windows size was selected to be within the
maximum range of the species, but also based on the pixel size of
the ARA-phi layer (60 m). For the fractal dimension calculation,
the smallest windows size allowed in Landserf is 9 by 9. Therefore,
the 3 by 3 window analysis was not used for this variable.

Backscatter Derivatives
The backscatter information was included in the models as
two different layers. The first one was the full-coverage, 3-m
resolution mosaic, downloaded from the GA website. The second
one is an approximation of the sediment phi size estimated using
the ARA (Fonseca et al., 2009), applied to the raw files.

Angle vs. Range Analysis
The relationship between the backscatter strength and the grazing
angle is commonly known as the ARC. ARC is related, for certain
frequencies, to particular properties of the seafloor (Hasan et al.,
2014). Therefore, the ARC can be used to infer characteristics of
the seafloor using the Angle vs. Range Analysis (ARA; Fonseca
et al., 2009). In this study, we used the FMGT software (version
7.8) to conduct an ARA analysis using the raw MBES backscatter
data. A full description of the method followed during the ARA
analysis in FMGT can be found in Fonseca and Mayer (2007), a
brief description of the method is given here.

The backscatter angular response is first corrected for
radiometric and geometric distortions to locate each ping to its
correct angular position. In the next step, a group of consecutive
pings is stacked in the along-track direction, 30 pings were
stacked. The stack of the pings produces two seafloor patches,
one for the port side and another for the starboard side. The size
of the patch being analyzed is approximately half of the swath of
the MBES system coverage. The stacking of the pings in a patch
has the effect of reducing the resolution of the final layer, but

it is a necessary step to reduce the speckle noise, typical to any
acoustic method. An average ARC calculated for each patch is
then compared to a formal mathematical model which relates the
observed backscatter with seafloor properties in a process called
the ARA-inversion. During the inversion, the model is used to
produce an approximation of the acoustic impedance, roughness
and consequently the mean grain size of the patch under analysis.
An ARA-inversion analysis was conducted for all the patches
in the three studied sites to obtain maps of the distribution of
grain size, with a resolution of 60 m. During the analysis, only
incidence angles between 20 and 60◦ were included, as the angles
in the near nadir and outer angle regions tend to be noisy with
less power of discrimination between different types of substrate
(Hasan et al., 2012b).

As part of the WAMSI project, 290 sediment samples
were collected using a Van-Veen grab sampler for surface
and subsurface material between 2007 and 2006 (Colquhoun
et al., 2007). The grain size estimated for this ground-truth
data was compared with sediment phi size estimated using the
ARA analysis, correlation and regression was used to test the
relationship between them.

Species Distribution Models
The environmental variables including depth, depth derivatives,
and the backscatter data were used as explanatory variables
to explain the probability of presence of A. stellatus, G.
grandoculis, L. sceleratus, L. miniatus, L. macrorhinus, L. sebae,
and S. queenslandicus. The species were selected based on
a minimum 25 presence in each of the sampled areas. All
the species included in the present study are carnivores with
different degrees of generalist feeding behavior using a variety
of benthic habitats (Table 2). Lutjanids and lethirinids including
G. grandoculis, L. miniatus, and L. sebae have a strong association
to hard bottom or substrate with a certain degree of vertical
relief (Parrish, 1987). L. sceleratus and A. stellatus, on the other
hand, have a preference for sandy bottoms (Randall, 1967;
Rousou et al., 2014). Seafloor backscatter can help to differentiate
hard from sandy bottoms; therefore, this study has the hypothesis
that the inclusion of seafloor backscatter will improve the
accuracy of the models for the lutjanids and lethirinids species.
For S. queenslandicus and L. macrorhinus, water column variables
may be more important in explaining their distribution (Collette
and Nauen, 1983; Gutteridge et al., 2011), and it is expected that
the inclusion of seafloor backscatter data to have a marginal effect
on their models.

Random Forest (RF) is a robust statistical method with
many advantages to solving ecological problems, including high
classification accuracy and particularly high capacity to model
complex interactions without statistical pre-assumptions like
normality (Breiman, 2001). The algorithm begins by selecting
a bootstrap sample from the data, approximately 63% of the
original observations are used at least once in the bootstrap
sample. The rest of the observations not selected for the bootstrap
sample are called out-of-bag (OOB) observations. RF fits a tree to
each bootstrap sample, but in each node, only a subsample of the
variables is available for the binary partitioning (one-third of the
total number of variables in the case of regression and the square
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TABLE 1 | Depth derivatives produced from bathymetry. Aspect (orientation of the slope) was divided in two variables using trigonometric transformations.

Variable Abbreviation Description Software References

Slope Slope Rate of change in elevation over the analysis windows
express in degrees

Landserf v2.3 Wood, 1996

Aspect Northness NS Cosine of aspect (e.g., slopes facing north (NS = 1), facing
south (NS = –1)

Landserf v2.3 Wood, 1996

Eastness WE Sine of aspect (e.g., slopes facing east (WE = 1), or west
(WE = –1)

Landserf v2.3 Wood, 1996

Curvature Profile Profc Curvature of a line formed by intersecting the vertical plane
oriented in the direction of the steepest slope with the
terrain surface

Landserf v2.3 Wood, 1996

Plan Planc Curvature of a line formed by intersecting the horizontal
plane oriented in the direction of the steepest slope with the
terrain surface

Landserf v2.3 Wood, 1996

Mean Meanc Mean curvature in any plane Landserf v2.3 Wood, 1996

Fractal dimension Fractal Indicates how surface roughness changes over space with
a minimum value of 2.0 indicating smooth, scale invariant
behavior and a theoretical maximum of 3.0 indicating a
space filling rough surface

Landserf v2.3 Wood, 1996

Standard deviation of depth SD Standard deviation of depth R raster package Holmes et al., 2008

Benthic position index BTI Measure of the position of a particular pixel concerning the
average depth of its surrounding neighbors. Positive values
showing depth above the average (ridges), and negative
values for pixels below the average (though).

R raster package Wilson et al., 2007

Terrain ruggedness index TRI Men of the absolute difference between the value of a cell
and its neighboring cells

R raster package Wilson et al., 2007

Roughness Rough Difference between the maximum and the minimum depth
of a cell and its neighboring cells

R raster package Wilson et al., 2007

TABLE 2 | Habitat and feeding preference of the species included in the study.

Species Habitat Feeding preferences References

Gymnocranius grandoculis Hard substrata or substrata having some vertical relief Benthic invertebrates and small fishes Parrish, 1987

Lethrinus miniatus

Lutjanus sebae

Scomberomorus queenslandicus Pelagic in bays and around islands and coastal reefs Neritic species Collette and Nauen, 1983

Lagocephalus sceleratus Sandy, rocky substrates and seagrass meadows Benthic invertebrates and small fishes Rousou et al., 2014

Loxodon macrorhinus Inshore habitats with clear waters Benthic invertebrates and small fishes Gutteridge et al., 2011

Abalistes stellatus Sand, sponge, and weed areas on deep slopes. Feeds on benthic animals Randall, 1967

root in the case of classification). All the trees are fully grown and
used to predict the OOB observations. The predicted value for
each observation is based on the average value predicted by the
trees (Breiman, 2001). In this study, we used RF classification to
model the presence/absence of the nine selected species and RF
regression for the richness of species.

For the RF classification, the sensitivity and specificity were
evaluated using the Area Under the Curve (AUC) of the Receiver
Operator Curve. The AUC varies between 0 and 1. Values higher
than 0.9 are considered outstanding whereas values between
0.9 and 0.7 indicate good performance. Values lower than 0.7
indicate poor prediction and values lower than 0.5 indicate that
the model is not better than a random classification (Hosmer
et al., 2013). The performance of the models was also tested using
the F1, and Kappa statistics. The F1 is the harmonic mean of
precision and sensitivity while the Kappa statistic (K) measures
the level of chance-corrected agreement between the observed

and predicted classes. According to Landis and Koch (1977) the
level of agreement measured with K can be classified as K < 0.0
poor, 0 ≤ K < 0.2 slight, 0.21 ≤ K < 0.4 fair, 0.41 ≤ K < 0.6
moderate, 0.61≤K < 0.8 substantial, K > 0.8 almost perfect. The
effect of including the backscatter data as explanatory variables in
the accuracy of the models was examined using two scenarios,
the first one including depth and depth derivatives (DV) and in
the second one the two backscatter variables were added (DVBS).
A fivefold cross-validation procedure was used, for each fold 65
percent of the data was used to train the model and the rest to test
it, an AUC, F1, and K was obtained for each fold and the mean
and standard error of the statistics is reported. The difference
in the mean AUC, F1, and K for the DV and DVBS scenarios
was tested using a t-test in R. The mean importance of the co-
variables was also calculated. For the RF regression the accuracy
was measured by the mean square error (MSE), and also the
percentage of variance explained by the model is reported.
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RESULTS

Angle vs. Range Analysis
A significant correlation was found in the Mandu area between
the phi sediment size estimated using the backscatter data in the
ARA analysis and the ground-truth sediment samples grain size
(r = 0.59, p < 0.001, r2 = 0.25, p < 0.001). A significant correlation
was also found in the Pt Cloates area between the phi sediment
size estimated using the backscatter data in the ARA analysis and
the ground-truth sediment samples grain size (r = 0.47, p = 0.003,
r2 = 0.22, p < 0.001). The relationship between the grab grain size
and the ARA-phi for the full data combined was also significant
(p < 0.001, Figure 2). No significant correlation was found for
the Gnaraloo site.

Species Distribution Models
The performance of the models was species- and area-dependent
with some species being better modeled in some areas than
others and all species models having acceptable levels of
accuracy (mean AUC > 0.7) in at least one of the studied
sites (Figure 3A). The effect of adding the backscatter data
(DVBS) also varied by species and study site with no consistent
improvement in the accuracy of the models. The Mandu area
had fewer models of species with acceptable levels of accuracy
(mean AUC > 0.7) while Pt Cloates had only one species
with model mean AUC consistently < 0.7. A similar pattern
was observed in terms of K with lower values K < 0.2
in the Mandu area and higher mean K-values in the Pt
Cloates area K > 0.4 considered as moderate performance
(Figure 3B). The majority of the species had relatively high F1
mean > 0.7 (Figure 3C).

For G. grandoculis, the inclusion of the seafloor backscatter
had a positive effect on the performance of the models increasing
the mean AUC, K and F1 in all the three study sites. The
increase on the mean value was significant for the K statistic
in the Mandu and Pt Cloates area, and for the F1 in the Pt
Cloates area. The significant increase of the F1 in the Pt Cloates
area meant the accuracy of the resulting model was F1 > 0.7.
The significant increase of the mean K also meant the model
including the seafloor backscatter had an accuracy considered
moderate (K > 0.4). Although the increase of the mean AUC
in the G. grandoculis models was not significant, the mean AUC
(± se) for Pt Cloates area was > 0.7 after the inclusion of the
seafloor backscatter data (Figure 3A).

The DVBS scenario had a better performance in the models
of L. miniatus, and S. queensladicus in at least two of the study
sites, with different levels of improvement. The inclusion of
DVBS resulted in a significant increase of the mean AUC for
L. miniatus in the Pt Cloates area (Figure 3A) and a significant
increase in the mean K in the S. queensladicus model in the
Gnaraloo area (Figure 3B). A significant increase in the mean
AUC was observed for the L. sceleratus model (Figure 3A) in
the Mandu area, and a significant increase of the mean K in the
Gnaraloo area (Figure 3B), when the seafloor backscatter was
included; however, the mean AUC of the model in the Mandu
area remained < 0.7.

FIGURE 2 | Linear regression between the grain size calculated with the ARA
analysis and the phi size calculated from the ground-truth samples.

Richness
The RF for the richness of demersal species explained different
level of variance in the three study sites (Table 3). The model
with the lowest level of mean explained variance was at Gnaraloo,
although, the DVBS scenario produced a significant increase of
explained variance by 5% (P < 0.05). In the Mandu area, a
significant portion of variance was explained by the models, with
more than 25% of mean explained variance. However, no change
in explained variance was observed in the DVBS scenario. The
richness of demersal fish species was particularly well modeled
in the Pt Cloates area with variance explained of greater than
40%. The importance of the backscatter data was evident with an
increase of the explained variance in the DVBS scenario, although
the increase was not significant (Table 3).

Variables Importance in the Distribution Models
A summary of the most important variables explaining the
distribution of the species is shown in Table 4. Depth and seafloor
backscatter were the most important variables in the construction
of the models for the majority of the species in the three study
sites (Table 4). Depth was key for the majority of the species
in the three study areas, with some exceptions. Variables related
to terrain variability (including roughness, TRI, and standard
deviation of depth) were important for many of the species, in
particular at a broad-scale (15–21 neighbors). For the models of
L. sceleratus, L. macrorhinus, and S. queenlandicus, for example,
the terrain variability variables had higher importance than depth
in the Pt Cloates area.

The seafloor backscatter, and the ARA-phi layer, were among
the three most important variables in the models of six of the
seven studied species in at least one of the study areas. For
G. grandoculis, the ARA-phi was the second most important
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FIGURE 3 | (A) Mean AUC, (B) Kappa, and (C) F1, and standard error of the Random Forest distribution models for A. stellatus, G. grandoculis, L. sceleratus,
L. miniatus, L. macrorhinus, L. sebae, and S. queenslandicus in the three study sites of the Ningaloo Marine Park. The depth and depth derivative scenario (DV), and
the depth, depth derivatives plus the backscatter data (DVBS) scenario are shown. Red dotted horizontal lines in (A,C) show AUC = 0.7 and F1 = 0.7 respectively,
and for (B) the orange dotted lines indicate K = 0.2 and K = 0.4, while the red ones indicate K = 0.6 and K = 0.8. * denotes significance at the 0.05 level.

variable in the models of the three study sites, confirming its
importance for this species as shown by higher mean AUC,
F1 and K of the DVBS models compared to the DV scenario.
For L. sceleratus DVBS models in both the Mandu and Gnaraloo
areas the ARA-phi and the backscatter mosaic ranked among
the three most important variables in the models. The ARA-
phi variable was identified as one of the three most important

variables in the models of L. miniatus, S. queenslandicus, in
both Pt Cloates and Gnaraloo areas. For the L. macrorhinus and
L. sebae model, the ARA-Phi was important in the Gnaraloo and
Pt Cloates areas, respectively.

Depth was the most important variable in the construction of
the model for the richness of species in the Mandu area, in both
DV and DVBS scenarios. For the Pt Cloates area, TRI, followed
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TABLE 3 | Mean percentage of variance explained by the Random Forest for the
total richness of species in the three study sites for both the depth and depth
derivatives (DV, BT + DV) and depth, depth derivatives and seafloor backscatter
data (DVBS, BT + DV + BS) scenarios.

Variable Scenario Variance explained

Mandu Pt Cloates Gnaraloo

Richness DV 26% 42% 2%

DVBS 26% 46% 7%**

** denotes significance at the 0.01 level.

by the profile curvature were the most important variables
explaining the richness of species. The ARA-phi layer was also
considered important when included in the model for Pt Cloates,
although with a lower ranking. For the Gnaraloo area, slope,
profile curvature and depth were the most important variables in
the DV model, while for the DVBS model, both the ARA-phi layer
and backscatter mosaic were second and third in importance.

DISCUSSION

The accuracy of the species distribution models based on depth
and depth derivatives varied among species and study sites.
Higher accuracies were observed, in general, for the species in
the Pt Cloates area, which is considered to have a complex
seafloor. The terrain variables were less successful in modeling
the presence of the species in the Mandu area. The addition of
the seafloor backscatter in the species distribution models did
not necessarily increase the model’s accuracy in a significant
manner, although, in the majority of the cases the ARA-phi
layer was ranked as an important variable when included in
the models. The ARA-phi layer was particularly important
in the model of G. grandoculis in the three study sites, and
L. miniatus in two areas, increasing the accuracy of the models.
A significant portion of the species richness variation was
explained using the terrain variables, and the addition of the
seafloor backscatter improved the accuracy of the model in
the Gnaraloo area.

Backscatter Derivatives
A significant relationship was found between the phi size
estimated with the ARA analysis and the grain sediment size
measured from the grab samples. However, the ARA-phi analysis
did not identify coarse gravel sediments (cobbles) with phi values
below −3. Previous studies have suggested the inclusion of
backscatter, and in particular, the use of the angular response of
the backscatter can add to the discrimination between benthic
habitats (Hasan et al., 2014). However, the seafloor backscatter
intensity can be affected in different ways by the frequency of
the echo-sounder, sediment grain size, nature, and magnitude of
seabed roughness, and volume scattering by subsurface scatters
(Ferrini and Flood, 2006). For example, previous studies have
shown that the use of high-frequency MBES (e.g., 300 kHz)
can lead to misclassification of coarse sediments when the
grain size is larger than the acoustic wavelength of the sonar.
In such cases, there is a decrease in the backscatter values

for sediments of increasing grain size (i.e., λ = –2.3 φ, equal
to 5 mm; Eleftherakis et al., 2014). In this study, something
similar was observed with a significant correlation between
grain size and the acoustic backscatter (ARA-phi), but low
agreement between the two for large grain sizes. Also, scattering
register by a high-frequency echo-sounder would be related to
seabed surface roughness while scattering by particles under
the sediment-water interface will be relatively more important
at lower frequencies (Jackson et al., 1986). A previous study
compared a high (200 kHz) and low (50 kHz) frequency echo-
sounders and its ability to discriminate sediment grain size and
found the higher frequency system failed to differentiate between
sediment grain sizes even between mud and sand (Freitas et al.,
2008). The importance of the different variables influencing the
backscatter of the seafloor can also vary between sampling sites
(Ferrini and Flood, 2006). Therefore the seafloor backscatter
on its own has limitations to predict seabed characteristics
(Ferrini and Flood, 2006).

A drawback in the approach adopted in this study was using
a constant number of stack pings during the ARA analysis, as
the area sampled would then depend on the water depth. As a
result, the sampling areas in the shallowest depths were around
three times smaller than in the deepest zones. This can produce
a misinterpretation of the sediment class in deeper areas, in
particular, in areas of transition between two different classes.
However, the vast majority of stereo-BRUVs deployments were
not located in areas of transition between different ARA-phi
classes reducing the risk of mixing sediment classes. Hence, it
is unlikely that the different resolutions of the ARA-phi size
layer had a significant effect on the species distribution models.
The high ranking of the ARA-phi in the models of species
distribution, reinforce the idea that the resolution of the variable
was appropriate.

Species Distribution Models
For the majority of species, depth was a primary variable in
explaining their distribution across the three study sites and
for both DV and DVBS scenarios. Depth is a common variable
influencing the distribution of species in coral reef areas, as
it is related to the effects of light availability on community
composition and function (Hill et al., 2014).

The importance of the depth derivatives at different window
sizes varied among species and study sites. For the most abundant
species, such as A. stellatus, L. sceleratus, and G. grandoculis,
broader-scale variables (15 × 15 and 21 × 21 windows size)
of TRI, roughness, slope and fractal dimension were considered
key variables in explaining their distribution. These results agree
with previous studies, showing that broad-scale variables are
more relevant for species with higher mobility and larger home
ranges that use a variety of benthic habitats (Franklin et al., 2009;
Tamburello et al., 2015). For other species, like L. macrorhinus,
which had the lowest prevalence in the study, the fine-scale
variables were more important in two of the study areas,
indicating a higher level of specialization. For the remaining
species, a mix of fine and broad-scale variables was important in
the construction of the distribution models.

The ARA-phi layer which was calculated with a broad
resolution of 60 m, was found to be one of the three most
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TABLE 4 | Summary of variable importance in the construction of the distribution models for the species included in the study.

Species Importance Area/scenario

Mandu Pt Cloates Gnaraloo

DV DVBS DV DVBS DV DVBS

A. stellatus 1 Depth Depth Depth Depth NS9 NS9

2 Rough21 Rough21 TRI21 TRI21 Depth Depth

3 Slope15 Slope15 Slope21 Slope21 BPI9 Profc15

G. grandoculis 1 Depth Depth Depth Depth Depth Depth

2 Rough9 ARA_Phi Slope15 ARA_Phi Meanc21 ARA_Phi

3 BPI3 TRI15 SD15 BS Fractal21 Profc15

L. sceleratus 1 Depth ARA_Phi TRI21 TRI21 Depth Depth

2 NS3 Depth SD21 SD21 WE21 ARA_Phi

3 Planc9 BS TRI15 TRI15 NS21 WE21

L. miniatus 1 Rough15 Rough15 Depth ARA_Phi Depth Depth

2 Profc15 Profc15 SD9 SD9 TRI9 BS

3 Depth Rough21 Rough9 Depth Profc3 TRI9

L. macrorhinus 1 Depth Depth TRI9 TRI9 TRI15 TRI15

2 Rough3 Rough3 TRI15 TRI15 TRI21 TRI21

3 TRI21 TRI3 SD9 SD9 SD3 ARA_Phi

L. sebae 1 Depth Depth Depth Depth Slope9 Slope9

2 Profc21 Profc21 Rough21 Rough21 Rough21 Rough21

3 SD3 Rough3 SD21 ARA_Phi Depth Depth

S. queenslandicus 1 Fractal9 Fractal9 Planc15 ARA_Phi Depth Depth

2 Fractal21 Fractal21 Profc15 Profc15 WE21 ARA_Phi

3 Fractal15 Depth Profc21 Planc15 NS21 WE21

Richness 1 Depth Depth TRI15 TRI15 Slope9 Depth

2 Slope15 Slope15 Profc21 Profc21 Profc9 BS

3 SD9 Slope9 SD15 ARA_Phi Depth ARA_Phi

Only the three variables with highest ranking of importance are included for each species and each scenario. The scenario of depth and derivatives (DV) and depth, depth
derivatives and backscatter data (DVBS) scenarios are shown.

important variables in the species models. This reaffirms the
importance of broad-scale variables for roaming species with
a wide niche (Monk et al., 2011; Moore et al., 2011). The
backscatter mosaic at 3 m resolution was often included as a
key variable, though to a lesser extent. This study investigated
the hypothesis that the addition of the seafloor backscatter
would increase the accuracy of the models, in particular, for
G. grandoculis, L. miniatus, L. sebae, L. sceleratus, and A. stellatus
models. Seafloor backscatter data were consistently important in
the models of G. grandoculis, increasing the model’s accuracy
for the three study sites. G. grandoculis is a species that inhabits
rocky bottoms (Dorenbosch et al., 2005), which can explain the
importance of backscatter in the construction of the models
as this variable can be used to differentiate between soft/hard
bottoms (Kloser et al., 2010). L. miniatus is associated with sand
around coral reefs areas where it feeds on benthic invertebrates,
which could explain the importance of the seafloor backscatter in
the models of two of the study sites (Carpenter and Niem, 1998).
However, results showed only an increase of 2–5% in the model
mean AUC for G. grandoculis, L. miniatus and L. sceleratus, in at
least two of the study sites, and similar incremental increases in
F1 and K. Also, the increase of the mean AUC was only significant
for L. sceleratus and L. miniatus, therefore the improvement can

only be seen as indicative. L. miniatus is often more prevalent
in shallow waters, such as on the Great Barrier Reef where it
was found in 12–18 m of water (Newman and Williams, 2001),
which may explain the lack of importance in the model accuracy
for this species in the Mandu area. Depth might play a more
important role at Mandu, where rapid changes in bathymetry
are observed (Brooke et al., 2009). L. sceleratus, inhabits offshore
sandy bottoms in their early life stages with a habitat shift to
deeper or rocky grounds for the largest individuals (Fitzpatrick
et al., 2012). The inclusion of the ARA layer may, therefore,
add useful information to differentiate between sandy and rocky
habitats. For L. sebae, the inclusion of the seafloor backscatter had
a positive effect on the accuracy of the models for the Pt Cloates
while variables measuring the rugosity of the seafloor were
particularly important for this species in the three study sites.
This species is associated with exposed reef slope (Fitzpatrick
et al., 2012) which could explain the importance of variables
related to the complexity of the seafloor as coral reef areas have,
in general, higher levels of terrain complexity and rugosity.

Depth and backscatter were not considered as important
in explaining the distribution of some species. For example,
L. macrohinus is a small species of shark whose distribution
was more related to variables measuring the rugosity of the
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seafloor. Another species, S. queenslandicus, is an epipelagic
neritic schooling species (Collette and Nauen, 1983; Kailola et al.,
1993), which might explain the poor performance of the models
for this species in two of the study sites, as variables of the terrain
might not be related to its distribution.

Previous studies have found the addition of backscatter
metrics can be important in the construction of models of
demersal fish distribution (Monk et al., 2011) or suggested
further studies were needed to assess the relationship between
seafloor backscatter and the assemblage of demersal fish (Schultz
et al., 2014). The results of this study showed that the seafloor
backscatter was an important variable in the models of demersal
fish distribution. However, the inclusion of this variable did not
necessarily lead to an improvement in the accuracy of the models.
Possible reasons for that may be that the depth and derivatives
were capturing the significant changes in the habitat, or that the
substrate was not a significant driver for the species distribution.

Another factor is the uncertainty associated with the use of
seafloor backscatter to approximate specific characteristics of the
seafloor, including roughness and hardness, but also sediment
grain size. The amount of energy reflected by the seafloor is
affected by the frequency of the MBES, and although higher
frequencies are more affected by seabed roughness, they have less
penetration in the sediment. For example, a 100 kHz frequency
in fine sediment is expected to penetrate between 0.1–1 m
(Fonseca et al., 2002), while a 12 kHz can penetrate up to 12
m in muddy deposits (Schneider von Deimling et al., 2013).
The level of penetration in the sediments of high frequencies is
also highly sensitive to small changes in sediment properties, in
particular, between fine sediments (Gaida et al., 2018). Higher
frequencies are also less effective to map coarse sediment larger
than the wavelength of the MBES, which will have a lower
level of acoustic reflectance. Therefore, the high frequency of
the MBES (300 kHz) could limit the power of discrimination
between benthic habitats (Boscoianu et al., 2008; Schneider von
Deimling et al., 2013), that might be relevant for habitat selection
of demersal fish. The use of multi-frequencies could increase our
ability to discriminate between seabed environments (Feldens
et al., 2018; Gaida et al., 2020). Previous studies have shown the
use of multiple frequencies, in particular lower frequencies (e.g.,
100 kHz) can help differentiate between soft sediments (Costa,
2019). However, the possible improvement of benthic habitat
discrimination will also be related to the characteristics of the
study site, as shown by Gaida et al. (2018).

The analysis of the 656 stereo-BRUVS showed that only
around 3% of the species were moderately prevalent, occurring
in ≥ 20% of the sampling point (Simpson and Waples, 2012).
In the present study, we included some of these species, those
with a minimum of 25 occurrences on each of the three sites in
an effort to compare the model performance in different areas
of the NMP. Therefore, they all presented a certain degree of
generalist behavior which is related to less specialized habitat
requirements, and as a result it is more difficult to produce well
performing models of the species distributions (Wilson et al.,
2008). Finally, the combination of stereo-BRUVS with acoustic
data in itself includes a certain degree of uncertainty, for example,
by the use of bait which can attract fish from the areas around

the deployment. The possible impact of the incorrect location
of presence records in the models of species distribution will
be less likely for species for which depth and ARA-phi variables
were important, considering that both variables have a high local
spatial autocorrelation (in an area of 500 m around the stereo-
BRUVs deployment) (Naimi et al., 2014). Future studies using
more than one frequency are needed to better test the benefit of
using the seafloor backscatter in habitat distribution models of
species of demersal fish, in particular, for non-generalist species.

CONCLUSION

Demersal species were well modeled with the depth and depth
derivatives in the majority of the species analyzed, in at least one
of the study sites. The addition of the backscatter data increased
the accuracy of the models for some species, in particular,
a consistent positive effect was observed for G. grandoculis.
Depth derivatives can integrate some of the seafloor roughness
information which may explain the limited benefit of adding
the backscatter data in some of the species distribution models.
Additional information related to the hardness/roughness not
included in the depth derivatives were important for some
species for which the inclusion of the backscatter data had a
positive effect.

For some species the mosaic backscatter layer appeared as an
important variable in explaining their distribution. In general,
however, the ARA-layer was more important for the variables
in the construction of the models. This is an encouraging result
that demonstrates that the use of novel derivatives which take
advantage of the angular response can produce models with
higher accuracies. Although the increase in the accuracy of the
models was not significant for the majority of the species, it can
be considered an indicative result, and more efforts are needed to
confirm this pattern.
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