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Metamorphosis is a critical developmental event in mollusks, and neuroendocrine
system plays an essential role in this process. Rapana venosa is an economically
important shellfish in China, but the artificial technology of R. venosa aquaculture
is limited by metamorphosis. As a carnivorous gastropod, food habit transition
makes the mechanism of R. venosa metamorphosis more complex. To investigate
the changes in the neuroendocrine system and to reveal its role in regulating
the food habit transition and metamorphosis of R. venosa, we cloned the cDNA
sequences encoding 5-hydroxytryptamine receptor (Rv-5HTR), nitric oxide synthetase
(Rv-NOS) and cholecystokinin receptor (Rv-CCKR), and investigated their expression
by quantitative real-time PCR analysis, and explore the spatio-temporal changes of 5-
HT protein expression using Immunohistochemical (IHC) analysis. The expression of
the three geens was significantly increased in the early intramembrane veliger stage,
which indicates that the three genes are related to the development of digestive system.
Additionally, expression of the three genes was decreased after metamorphosis, while
Rv-NOS and Rv-CCKR were increasingly expressed in competent larvae, which may
help the larvae find suitable environments and promote digestive system development
for metamorphosis, and the result of 5-HT IHC analysis also reflects the development of
neuroendocrine system. Furthermore, results show that CCK can effect the expression
of digestive enzyme, NOS and 5-HT receptor. Finally, based on the present results, we
hypothesized that CCK and CCK receptor may be critical regulatory factors of food
habit transition and metamorphosis. These results might provide information on the
development of neuroendocrine system of R. venosa, and new insight into the regulation
of the food habit transition and metamorphosis of gastropods.
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INTRODUCTION

Metamorphosis is a critical developmental event in the biphasic
life cycle in mollusks that is evolutionarily crucial because it
develops independently in different clades (Hadfield et al., 2000;
Huan et al., 2015). Extensive morphological and physiological
changes occur during metamorphosis but are accompanied by
high mortality (Harding, 2006; Huan et al., 2015). Therefore,
premetamorphosis recruitment and postmetamorphosis survival
control mollusk population dynamics. To date, the mechanism
of metamorphosis has been most well studied in bivalves (Coon
et al., 1985; Satuito et al., 1999; Yang et al., 2007; Gireesh and
Cherukara, 2008; Yang B. et al., 2015; Niu et al., 2016; Moore and
Bringolf, 2018), and in gastropods, studies are mainly focused on
abalone and some herbivorous snails (Barlow and Truman, 2010;
Li et al., 2018). Numerous neuroactive compounds, including
g-aminobutyric acid (GABA), various catecholamines, serotonin
(5-HT), and nitric oxide (NO) are associated with metamorphic
processes in a variety of mollusks, which has been extensively
studied (Leise et al., 2001), and the neuroendocrine system plays
an important role in the regulation of metamorphosis.

The veined rapa whelk (Rapana venosa), a native to temperate
Asian waters (Harding, 2006), is an economically important
gastropod snail in China due to its high economic and medicinal
value (Dolashka et al., 2011; Nesterova et al., 2011; Olga et al.,
2015; Voelter et al., 2016). Unfortunately, R. venosa is highly
threatened, and its population has dramatically declined in recent
years (Wei et al., 1999; Yang et al., 2007). Although artificial
aquaculture was started early (Yuan, 1992; Yang et al., 2007),
the large-scale culture of this species is seriously limited by
its high mortality during metamorphosis. As a carnivorous
gastropod, R. venosa needs to undergo a food habit transition
from herbivorous to carnivorous during metamorphosis, which
is different from the metamorphosis of lifelong herbivory
gastropods and makes the mechanism of metamorphosis more
complex. Our group has performed some studies on the
metamorphosis of R. venosa, including studies of the differences
in transcriptome, proteome, metabolome, digestive enzyme and
microorganisms before and after metamorphosis (Song et al.,
2016a,b,c; Yang et al., 2020a,b), as well as the effect of bait
induction on the rate of metamorphosis (Yu et al., 2020). Song
et al. (2016a) mentioned that the expression of the NOS and 5-
HT receptors decreased after metamorphosis (Song et al., 2016a).
However, there is no further study on the regulation of the
neuroendocrine system on the metamorphosis of R. venosa.

Bather (1921) showed that the presence of conspecific adults
or useful food sources could trigger metamorphosis in marine
invertebrates, and our previous study suggested that oysters can
significantly improve the metamorphosis rate of larvae (Yu et al.,
2020). In this process, oysters were inducers, as well as food
sources; these results may suggest a link between the digestive
system and metamorphosis and that the neuroendocrine system
regulates metamorphosis by regulating the digestive system,
which is very likely to occur in carnivorous gastropods. Many
studies have indicated that food can increase digestive enzyme
activity (Ou and Liu, 2007; Genodepa et al., 2018). Kinouchi
et al. (2012) also indicated that the consumption of large protein

molecules can promote the development of pancreatic digestive
functions in rats, and cholecystokinin (CCK) is an important
agent in this process. CCK is a brain-gut peptide with a variety of
physiological functions that regulate the secretion of trypsin and
the growth of the pancreas; as well as a neurotransmitter in the
central and enteric nervous systems. Many studies have suggested
the regulatory effect of CCK on the digestive system in the
vertebrates, such as rats (Gibbs et al., 2012), porcines (Bugge et al.,
2018), fish (Himick and Peter, 1994; Liu et al., 2014; Navarro-
Guillén et al., 2017), and also a few studies in invertebrate,
Aplysia californica, Nereis diversicolor, and Crassostrea gigas
(Vigna et al., 1984; Dhainaut-Courtois et al., 1985; Schwartz et al.,
2018). Furthermore, He et al. (2015) indicated that increased
CCK expression after food habit transition might suggest a
regulatory effect of CCK on the food habit transition of carp,
and leptin, insulin and NOS were also described as being related
to the food habit transition. These results may show that the
regulation of the neuroendocrine system plays a vital role in
digestive system development, food habit transition, and even
metamorphosis in larvae. Meanwhile, NOS has been suggested to
play an indispensable role in the regulation of feeding behavior
in Lymnaea stagnalis (Kawai et al., 2011) and Aplysia (Jacklet,
1995). Moreover, Tripathi et al. (2015) have showed that the NOS
signal transduction pathway is downstream of CCK receptor, and
the NO has been indicated that can activate cGMP synthesis in
the crab stomatogastric nervous system and regulate the digestive
fuction in crab (Scholz et al., 1996). Additionally, NOS also plays
a role in the regulation of 5-HT on metamorphosis, and 5-HT
has also been indicated has effect on feeding behavior in goldfish,
rat and chickens (Pedro et al., 1998; Vry and Schreiber, 2000;
Zendehdel et al., 2012). Therefore, NOS, 5-HT and CCK are likely
to be the key mediators of the process of the food habit transition
oyster-induced metamorphosis of R. venosa.

A previous study indicated that significant changes occur in
the nervous system during the metamorphosis of R. venosa.
The expression of the NOS and 5-HT receptor was found
to decrease after metamorphosis (Song et al., 2016a), but no
further study has examined their roles in the metamorphosis
of R. venosa, and whether the neuroendocrine system regulates
metamorphosis by regulating the digestive system is unknown.
In the present study, we aimed to examine the development of
the neuroendocrine system by obtaining cDNA sequences and
determining the expression profile of 5-HT receptor, NOS and
CCK receptor gene mRNA, and observed the spatiotemporal
expression characteristics of 5-HT by immunohistochemical
(IHC) analysis. Therefore, the present study can provide new
insight into the mechanism of gastropod metamorphosis from
the perspective of the neuroendocrine and digestive systems.

MATERIALS AND METHODS

Larval Rearing and Sample Preparation
A pair of adult R. venosa (2 year old) as parents, and the spawn,
intramembrane larvae and planktonic larvae of R. venosa were
cultured according to the methods described by Yang et al.
(2007) at Blue Ocean Co., Ltd (Laizhou, Shandong, China).
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Planktonic larvae were cultured in 3 m × 5 m × 1.5 m
cement pools at 24–26◦, at a density of 0.5/ml. The mixture
of Platymonas subcordiformis, Isochrysis galbana, and Chlorella
vulgaris was used as a diet (15× 104 cell/ml, three or four times)
for the Planktonic larvae. Intramembrane larval samples were
collected from seven major developmental stages: the cleavage
stage (c), the blastula stage (b), the gastrulae stage (g), the
trochophore stage (t), the early intramembrane veliger stage
(ev), the middle intramembrane veliger stage (mv), and the later
intramembrane veliger stage (lv). Planktonic larval and postlarval
samples were collected from five major developmental stages:
the one-spiral whorl stage (V-I), the two-spiral whorl stage (V-
II), the three-spiral whorl stage (V-III), the four-spiral whorl
stage (competent larva, V-IV), and the postlarval stage (J). The
samples were collected based on the methods described in our
previous study (Yang et al., 2020a), and each developmental stage
was sampled in triplicate and sextuplicate and stored at −80◦C
for qRT-PCR, respectively, and each sample contains 30 larvae.
For the immunohistochemistry (IHC) assays, larvae at different
developmental stages were washed in PBS, and 7.5% MgCl2
solution was slowly added to completely anesthetize the larvae.
Then, the samples were fixed at room temperature for 2–6 h using
4% paraformaldehyde solution, washed again in PBS, transferred
to 70% ethanol and stored at−20◦C for use.

CCK Induction Assays
The larvae reached the four-spiral stage (shell height >1,250 µm,
competent larvae) were used for the CCK induction assays
(CCK peptide: T510159, Shanghai). The following controls and
treatments were included in the assays: (1) control group without
CCK polypeptide (control, C), and (2) treatment group with CCK
polypeptide (1 mg/L) (CCK induction, K), each group with three
biological repeats, each tank (393 mm × 282 mm × 223 mm)
contained 80 larvae. We randomly collected three samples from
each tank at 2 h (early stage, e) and 12 h (later stage, l) after
treatment, and each sample contains 30 larvae, then washed them
three times with PBS. We obtained a total of 12 samples, which
were divided into four groups, namely Ce, Cl, Ke, and Kl, which
were used to analyze the mRNA expression of critical genes
related to metamorphosis, including carboxypeptidase, cellulase,
5-HTR, and NOS. All samples were stored at -80◦C until use.

All procedures involved in the animal collection, rearing
and dissection were conducted following the Guideline of
Ethical Regulations of Animal Welfare of the Institute of
Oceanology, Chinese Academy of Sciences (IOCAS 2013.3).
Our study protocols were approved by the Animal Welfare
Committee of the IOCAS.

Cloning of the Full-Length cDNA and
Sequence Analysis
Total RNA was extracted from all the larval samples using the
RNA Isolation Kit (Tiangen, China) following the manufacturer’s
protocol, and the quality was determined by a NanoDrop
spectrophotometer (Thermo Scientific, United States) and gel
electrophoresis. First-strand cDNA (5′- and 3′-RACE-ready
cDNAs) synthesis and rapid amplification of the cDNA ends

(RACE) were performed by using the SMARTerTM RACE cDNA
amplification kit (Clontech, United States). The primers for
RACE were designed based on expressed sequence tags in the
transcriptome library of R. venosa (Song et al., 2016a) using
Primer Premier 5 software (Supplementary Table 1). The 5′
ends of the 5-HT receptor, NOS, and CCK receptor genes were
amplified with the primers 5HTR-5′-GSPn, NOS-5′-GSPn and
CCKR-5′-GSPn, respectively, and a universal primer mix (UPM)
(Supplementary Table 1). The 5′-RACE-ready cDNA was used
as the template. The 3′ ends of the three genes were amplified
using 5HTR-3′-GSPn and NOS-3′-GSPn, and UPM and 3′RACE-
ready cDNA were used as the templates. Confirmation of the
full-length cDNAs by polymerase chain reaction (PCR) was
conducted as follows: 94◦C for 2 min; 35 cycles of 94◦C for
30 s; 50–60◦C for 30 s; 72◦C for 1 min; and 72◦C for 10 min
(Eppendorf, Germany). The PCR products were inserted into the
pMD19-T vector (Takara, Japan) and transformed into JM109
competent cells (Takara, Japan) according to the manufacturer’s
instructions, and ten positive clones were selected to confirm the
nucleotide sequences by TsingKe Biological Technology (Beijing,
China). The sequences were analyzed and assembled by DNAStar
software to obtain the full-length cDNA sequence.

The full-length cDNA and predicted protein sequences were
analyzed using National Center for Biotechnology Information
BLAST programs1. The molecular masses and theoretical
isoelectric points of the putative proteins were predicted
using ExPasy Compute pI/Mw software2. The transmembrane
structure of 5-HT receptor was predicted by TMHMM. The
sequences of the three genes from different species were obtained
from GenBank databases. Then, DNAMAN software and the
ClustalW sequence alignment program3 were used to perform
multiple alignments, and MEGA 7.0 was used to construct
phylogenetic trees with the neighbor-joining method.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was extracted from all the larval samples using
the RNA Isolation Kit (Tiangen, China) to analyze the mRNA
expression of the 5-HT receptor, NOS, CCK receptor, carboxy
genes during early stages of development. The qRT-PCR primers
were designed based on the full-length cDNA sequences of the
three genes, and the 60S ribosomal protein L28 (RL28-F, RL28-
R) was used as a housekeeping gene for within-experiment
signal normalization (Song et al., 2017; Supplementary Table 1).
First-strand cDNA was synthesized for qRT-PCR using reverse
transcriptase (Takara). The SYBR Green real-time PCR assay
(2 × SYBR Green qPCR Mix, Sparkjade) was used with an
Eppendorf Mastercycler R© ep realplex (Eppendorf, Hamburg,
Germany) for the qRT-PCR analysis. The 10-µl reaction mix
volume was prepared, containing 10 µl of 2× SYBR Green qPCR
Mix (Sparkjade, China), 0.2 µl each of 10 pmol the forward
and reverse primers, 0.6 µl (100 ng) of cDNA and 4 µl sterile
deionized water. Amplifications were performed according to
the manufacturer’s instructions. Standard curves were generated

1http://www.ncbi.nlm.nih.gov/BLAST/
2http://www.expasy.org/tools/pi_tool.html
3http://www.ebi.ac.uk/clustalW
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with cDNA template dilutions of 10, 102, 103, 104, and 105.
qRT-PCRs were performed using the following thermocycler
program: 95◦C for 2 min and 40 cycles of 95◦C for 15 s and 60◦C
for 30 s. The relative gene expression was calculated using the
2−11 Ct method.

Immunohistochemical (IHC) Analysis of
5-HT
The samples used for the immunohistochemical analysis of 5-
HT in R. venosa were washed in PBS three times, for 10 min
each time. An 8% EDTA solution was used to dissolve the
shell of the larvae, and the soaking time varied from 1 to 12 h
depending on the thickness of the larval shell at the different
stages. The larvae were washed with PBS three times again, and
then, blocking solution (0.25% BSA, 0.03% NaN3, 1% Triton
X-100 and PBS) was added overnight at 4◦C. After that, the
samples were incubated for 2 h at room temperature with primary
antibodies (1:800 in PBS) and washed three times with PBS
for 1 h each. Then, the samples were incubated with Alexa
594-conjugated goat anti-rat IgG and Alexa 488-conjugated
goat anti-rabbit IgG (1:1,000 in PBS) for 12–24 h at 4◦C and
then washed three times with PBS for 10 min each. Next, a
suitable amount of the samples was transferred to slides to
generate slide specimens, which were sealed with 80% glycerol.
The specimens were examined and imaged with a fluorescence
microscope (Nikon ECLIPSE 90i), and the images were processed
with Adobe Photoshop CS3. Negative controls for all the IHC
tests were included. The primary antibodies used for IHC were
5-HT (Serotonin) Rabbit Antibody (ImmunoStar, 20080)4 and
anti-α-tubulin (Sigma, T6793). The secondary antibodies used
for IHC analysis were Alexa 594-conjugated goat anti-rat IgG
(Jackson Lab, United States) and Alexa Fluor R© 488-conjugated
goat anti-rabbit IgG (Jackson Lab, United States). Negative
control slides for all the IHC tests were included.

Data Analysis
The results of the qRT-PCR analysis of 5-HT receptor, NOS and
CCK receptor were analyzed by using one-way ANOVA with
Tukey’s test and LSD test with a significance level of P < 0.05,
and the normality and equality of variances were assessed by
Levene’s test before performing ANOVA. All the statistics were
conducted using SPSS 19.0 software (SPSS Inc., United States),
and the results were expressed in (Means ± SEM). Different
superscript letters indicate significant differences (P < 0.05). The
heatmaps in Figure 3 were made using the pheatmap package in
R with Euclidean distance.

RESULTS

Identification and Analysis of the 5-HT
Receptor, NOS and CCK Receptor Genes
The full-length cDNA sequences of 5-HT receptor, NOS and
CCK receptor were cloned from a cDNA library generated

4https://www.immunostar.com/shop/antibody-catalog/5-ht-serotonin-rabbit-
antibody/

from an R. venosa larval developmental sample mixture and
named Rv-5HTR, Rv-NOS, and Rv-CCKR, respectively. The full-
length cDNA of Rv-5HTR is 1,741 bp in length, comprising
a 47-bp 5′ UTR, a 212-bp 3′ UTR, and a 1,482-bp ORF
encoding 493 amino acids (Supplementary Figure 1A), and
contains a serotonin receptor subtype 7 domain (Supplementary
Figure 2) (GenBank Accession No. MW383250). The calculated
molecular mass and isoelectric point of the predicted Rv-
5HTR protein are 54.26 kDa and 9.33, respectively. The full-
length cDNA of Rv-NOS is 3,813 bp in length, comprising
a 28-bp 5′ UTR, a 38-bp 3′ UTR, and a 3,747-bp ORF
encoding 1248 amino acids, and contains a PDZ domain, a NOS
eukaryotic oxygenase domain and a ferredoxin-reductase (FNR)-
like C-terminal domain (Supplementary Figure 1B) (GenBank
Accession No. MW383249). The calculated molecular mass and
isoelectric point of the predicted Rv-NOS protein are 138.82 kDa
and 6.12, respectively. Then, the full-length cDNA of Rv-CCKR
is 3,630 bp in length, comprising a 105-bp 5′ UTR, a 2418-bp
3′ UTR, and a 1290-bp ORF encoding 429 amino acids, and
contains a CCK receptor domain (Supplementary Figure 1C)
(GenBank Accession No. MW383248). The calculated molecular
mass and isoelectric point of the predicted Rv-CCKR protein are
48.86 kDa and 9.80, respectively.

Homology and Phylogenetic Analysis of
the Rv-5HTR, Rv-NOS, and Rv-CCKR
Genes
The protein sequences of Rv-5HTR, Rv-NOS and Rv-CCKR
from different species were used for homology and phylogenetic
analyses. A BLAST search showed that the predicted amino
acid sequences of Rv-5HTR had the highest sequence identity
with that from Pomacea canaliculata (XP_025094540.1, 79.08%),
followed by that from Aplysia californica (XP_005102984.1,
67.43%), Haliotis discus hannai (QEZ90776.1, 63.79%),
Mizuhopecten yessoensis (XP_021371611.1, 59.68%), Octopus
sinensis (XP_036367596.1, 53.21%), Bombyx mori (AIZ66402.1,
42.28%), Homo sapiens (AAF35842.1, 41.48%), Mus musculus
(NP_032334.2, 39.44%), and Danio rerio (NP_001116793.1,
41.10%) (Figure 1A). The Rv-NOS shared higher similarity with
that from other species and had extremely high sequence identity
with that from Stramonita haemastoma (CBV37021.3, 95.83%),
followed by that from P. canaliculata (XP_025092594.1, 73.86%),
A. californica (NP_001191470.1, 70.38%), Crassostrea virginica
(XP_022339299.1, 58.20%), Octopus vulgaris (QHX41539.1,
62.99%), Bos taurus (XP_024833521.1, 50.16%), H. sapiens
(NP_000611.1, 49.84%), M. musculus (NP_032738.1, 57.72%),
and D. rerio (XP_005165110.1, 57.93%) (Figure 1B). Rv-
CCKR had the highest sequence identity with that from
P. canaliculata (XP_025088086.1, 67.37%), followed by that
from O. vulgaris (XP_029642692.2, 51.52%), M. yessoensis
(VDI47157.1, 52.70%), C. virginica (XP_034300900.1, 47.86%),
H. sapiens (NP_795344.1, 41.69%), M. musculus (NP_033957.1,
40.48%), Drosophila melanogaster (NP_001097023.1, 48.46%),
and D. rerio (XP_017213239.1, 42.09%) (Figure 1C). To further
elucidate the evolutionary relationships of the three genes from
R. venosa with those of other species, we chose >10 species for
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phylogenetic analyses and constructed phylogenetic trees by N-J
methods. The phylogenetic tree indicated that both Rv-5HTR
and Rv-CCK were first clustered with those of P. canaliculata,
while Rv-NOS was first clustered with that of S. haemastoma and
was far from that of vertebrates. All three genes were clustered
with those of mollusks, which are closely related to gastropods,
and significantly separated from those of vertebrates (Figure 2).

Gene Expression of Rv-5HTR, Rv-NOS,
and Rv-CCKR During Development
Quantitative real-time PCR was performed to detect the mRNA
expression levels of the three genes at different developmental
stages. The mRNA expression of Rv-5HTR was high in the
cleavage stage (c) when the larvae had just hatched, then
significantly decreased and was low in the early intramembrane
larval stage (Figure 3A) (P < 0.05). The high expression
reappeared in the early intramembrane veliger stage (ev) and
into the planktonic larval stage, was maintained a high level
throughout this stage, and a significant decrease occurred in
the postlarval stage (J). Additionally, the expression of Rv-
NOS greatly fluctuated throughout the whole early stage of
development. Rv-NOS reached the first peak in the blastula
stage (b), then significantly decreased in the gastrulae stage (g),
significantly increased in the trochophore stage (t), significantly
increased again in the early intramembrane veliger stage (ev)
and reached the second peak. Then, the expression level slightly
decreased and remained at this level until the two-spiral whorls
stage (V-II), when it increased again, reached the third peak,
sharply decreased in the three-spiral whorls stage (V-III), and
increased again in the four-spiral layer (competent larva, V-IV),
when it reached the fourth peak before significantly decreasing
at postlarval stage (J) (Figure 3B). The expression of Rv-
CCKR was low in the early intramembrane larval stage, then
significantly increased in the early intramembrane veliger stage
(ev), reached a peak in the middle intramembrane veliger
stage (mv), continuously decreased until the four-spiral whorl
stage (competent larva, V-IV), increased again and significantly
decreased in the postlarval stage (J) (Figure 3C). The expression
patterns of the three genes were slightly similar (Figure 3D),
especially those of Rv-5HTR and Rv-CCKR, which were clustered,
and all three genes first increased in the early intramembrane
veliger stage (ev) and decreased in the postlarval stage (J)
(P < 0.05).

Immunohistochemical (IHC) Analysis of
5-HT Throughout the Whole Early
Developmental Stage
The results of the immunohistochemical analysis of 5-HT showed
in Figure 4. We didn’t observed positive immune signals in
the cleavage stage (c), blastocyst stage (b) and gastrula stage (g)
(Figures 4a–c). Two pairs of positive immune signals (Figure 4d,
top organ, profile figure, only one signal is visible, as indicated
by a white arrow) were observed at the base of the velum and
the future eye site during the trochophore larval stage (t). The
number of immune-positive signals increased to 5 in the early
intramembrane veliger stage (ev), and these signals indicated the

ganglia between the parietal and lateral ganglia of the parietal
organs (Figure 4e, white arrow). The 5-HT immune-positive
signal extended to both cerebral nerve fibers in the middle
intramembrane veliger (mv) (Figure 4f, hollow arrow). Positive
signals began to appear in the lower foot primordia of the later
intramembrane veliger larvae (lv) (Figure 4g, white arrow), and
a strong signal appeared at the velum (Figure 4g, white arrow).
Furthermore, the immunohistochemical analysis of the four-
spiral whorl stage larvae (competent larvae, V-IV) revealed a
complex neural network in the mantle (Figure 4h, hollow arrow),
foot (Figure 4h, white arrow) and velum (Figure 4h, blue arrow).
The three major nerves in the velum (Figure 4i, white arrow) and
the receptors in the base of the ciliate (Figure 4i, hollow arrow)
were clearly connected in a complex nerve network.

Changes in Critical Gene Expression
Induced by CCK
To assess the digestive and neuroendocrine systems of larvae
induced by CCK, the mRNA expression of carboxypeptidase,
cellulase, 5-HTR and NOS was detected (Figure 5). The
expression of the carboxypeptidase gene was significantly
increased in both the early and later stages in competent larvae
induced by oysters, while cellulase was significantly decreased
in the later stage (P < 0.05). The expression of 5-HT receptor
increased significantly, while the expression of NOS decreased
significantly in both the early and later stage in competent larvae
induced by oysters (P < 0.05).

DISCUSSION

Metamorphosis, the transition of free-swimming larvae to
benthic and often sessile and attached juveniles, is one of the most
distinctive life-changing events for many molluscan species, and
the neuroendocrine system plays a key role in metamorphosis
and has been extensively studied in herbivorous gastropods and
bivalves. 5-HT and NO have been widely confirmed to regulate
metamorphosis in I. obsolete, Phestilla sibogae, Haliotis asinine
and a variety of bivalve species (Satuito et al., 1999; Leise et al.,
2001; Croll, 2006; Yang et al., 2013; Ueda and Degnan, 2014; Zhu
et al., 2020). However, the mec hanism by which metamorphosis
is regulated in carnivorous gastropods may be more complicated
due to the accompanying food habit transition, but little is
known about this phenomenon. Therefore, to further understand
the regulatory mechanism of R. venosa, the development and
changes in the neuroendocrine system, especially those related
to the digestive system during the early developmental stage,
deserve more attention. This study elucidated the mechanism
of neuroendocrine system development in R. venosa through an
integrated approach of localization of the Rv-5HTR protein in the
larva and examination of the molecular-metabolic responses of 5-
HT, NOS, and CCK in order to further investigate the regulatory
effect of the neuroendocrine system on the food habit transition
and metamorphosis of R. venosa.

5-HT is one of the evolutionarily oldest neurotransmitters
and performs its various physiological functions through seven
5-HT receptor subfamilies (5-HT 1–7) (Hannon and Hoyer,
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FIGURE 1 | Multiple alignment based on Rv-5HTR (A), Rv-NOS (B), and Rv-CCKR (C) deduced amino acid sequences from Rapana venosa and other species.
Rv-5HTR: serotonin receptor subtype domain 7, denoted in green box; Rv-NOS: PDZ domain denoted in pink box, NOS eukaryotic oxygenase domain denoted in
green box and ferredoxin-reductase (FNR) like C-terminal domain denoted in yellow box; Rv-CCKR: CCK receptors domain denoted in green box. Additionally, the
logo shows how conservative motif is in each position. The higher the letter, the more conservative the position. Different amino acids in the same position will scale
according to its frequency. (5-HT receptor: GenBank Accession No. MW383250; NOS: GenBank Accession No. MW383249; CCK receptor: GenBank Accession
No. MW383248) (The proteins used in the analysis were showed in Supplementary Table 2).

2008); 5-HT exerts a significant effect on the development and
metamorphosis of marine invertebrate larvae (Leise et al., 2001;
Sahoo and Khandeparker, 2018). In the present study, Rv-5HTR,
which may belongs to serotonin receptor subtype 7, one of the
14 vertebrates serotonin receptors, is a member of the class A

GPCRs and is activated by the neurotransmitter 5-HT. We found
that the different subtypes of 5-HTR evolved independently in
vertebrates, which has been not clear in invertebrates since the
few studies. Previous studies indicated that the most prominent
5-HT cells during larval development were the five apical cells,
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FIGURE 2 | Phylogenetic trees based on Rv-5HTR (a), Rv-NOS (b), and Rv-CCKR (c) deduced amino acid sequences from Rapana venosa and other species. The
trees were constructed based on the multiple sequence generated by Clustal X and aligned using the neighbor-joining method in MEGA 7.0. The genes which have
been pharmacologically proven were highlighted with asterisk, which has been listed in Supplementary Table 3.
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FIGURE 3 | qRT-PCR analysis of Rv-5HTR (A), Rv-NOS (B), and Rv-CCKR (C) mRNA expression and the heatmap (D) of three genes expression during Rapana
venosa larval development (mean ± SEM, n = 3). Different superscript letters indicate significant differences (P < 0.05). [the cleavage stage (c), the blastula stage (b),
the gastrulae stage (g), the trochophore stage (t), the early intramembrane veliger stage (ev), the middle intramembrane veliger stage (mv), and the later
intramembrane veliger stage (lv). the one-spiral whorl stage (V-I), the two-spiral whorl stage (V-II), the three-spiral whorl stage (V-III), the four-spiral whorl stage
(competent larva, V-IV), and the postlarval stage (J)].

and Hadfield et al. (2000) found that 5-HT was first expressed
in apical organs during the development of gastropod larvae and
was the main neurotransmitter in the apical organs. Our results
showed that the 5-HT increased in the early intramembrane

veliger stage (ev) both in the results of qRT-PCR and IHC, which
may be the critical stage in the initial development of the digestive
system in R. venosa. These results may reveal the regulation
of 5-HT in the early development of R. venosa and suggest a
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FIGURE 4 | Immunoreactivity of 5-HT and α-tublin in early development stage of Rapana venosa. [(a). cleavage; (b). blastula; (c). gastrulae; (d). late trochophore;
(e). early intra-membrane veliger; (f). middle intra-membrane veliger; (g). later intra-membrane veliger; (h). competent larval stage; (i). velum of competent larvae].
No positive immune signals in the cleavage stage (a), blastula stage (b) and gastrulae stage (c). Two pairs of positive immune signals in late trochophore stage
[(d), top organ, profile figure, only one signal is visible, as indicated by a white arrow]. Immune-positive signals increased to 5 in early intra-membrane veliger stage
(e). The 5-HT immune-positive signal extended to both cerebral nerve fibers in the middle intramembrane veliger stage [(f), hollow arrow]. Positive signals began to
appear in the lower foot primordia of the later intramembrane veliger larvae, and a strong signal appeared at the velum [(g), white arrow]. The immunohistochemical
analysis revealed a complex neural network in the mantle in four-spiral whorl stage larvae (competent larvae, V-IV) [(h), hollow arrow], foot [(h), white arrow] and
velum [(h), blue arrow]. The three major nerves in the velum [(i), white arrow] and the receptors in the base of the ciliate [(i), hollow arrow] were clearly connected in a
complex nerve network.

relationship between 5-HT and the digestive system; a previous
study also reported that 5-HT and its receptors play important
roles in the regulation of gastrointestinal and endocrine functions
(Berger et al., 2009).

Furthermore, 5-HT has been reported to significantly
increase the rate of metamorphosis in Ilyanassa obsoleta by
soaking or injection (Couper and Leise, 1996; Leise et al.,
2001). Hadfield et al. (2000) indicated that 5-HT and 5-
HTR in the apical organ can facilitate metamorphosis by
sensing external chemical signals, and 5-HT is the key
factor of signal transduction and metamorphosis initiation.
We also observed the complex neural network based on
the localization of the 5-HT protein in the competent larval

stage of R. venosa (Figure 4h) and the velum of competent
larvae (Figure 4i), and the receptors in the base of the
ciliate network were particularly clear. Croll (2006) indicated
that early development of serotonergic pedal neurons may
reflect the need to regulate the activities of large numbers of
ciliated cells found on the foot, which has been demonstrated
in adults of a variety of gastropod species (Audesirk et al.,
1979; Syed and Winlow, 1989). On the other hand, Glebov
et al. (2014) reported that the expression level of 5-HT
receptor gene was downregulated during the transition from the
premetamorphic to metamorphic stages in Helisoma trivolvis;
similarly, the expression level of Rv-5HTR was decreased after
metamorphosis in the postlarval stage (J) in the present
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FIGURE 5 | mRNA expression of critical genes (Carboxypeptidase, Cellulase, 5-HT receptor and NOS) in Competent larva induced by CCK (mean ± SE, n = 3).
(Different superscript letters indicate significant differences, *P < 0.05). [Ce: Control (early, 2 h), Cl: Control (later, 12 h), Ke: CCK Induction (early, 2 h), Kl: CCK
Induction (later, 12 h)].

study, and Yang Z. et al. (2015) indicated that 5-HT did not
significantly induce the metamorphosis of R. venosa. These
results may suggest that 5-HT and Rv-5HTR may not be
positive regulators of metamorphosis in R. venosa. Therefore,
the regulatory mechanism of 5-HT and Rv-5HTR requires
further exploration.

Nitric oxide is an important molecular messenger that plays
a critical role in the nervous systems of both vertebrates
and invertebrates (Snyder and Bredt, 1992; Colasanti and
Venturini, 1998), and Leise et al. (2001) indicated that NO
played an antagonistic role in the 5-HT mediated pathway
of larval metamorphosis, and that NO was produced by
NOS catalyzing the five-electron heme-based oxidation of
the guanidine nitrogen of L-arginine to L-citrulline. In the
present study, the Rv-NOS gene contains a PDZ domain, a
NOS eukaryotic oxygenase domain and a ferredoxin-reductase
(FNR)-like C-terminal domain. The PDZ domain is often
found in a variety of eumetazoan signaling molecules and

may be responsible for specific protein-protein interactions.
The NOS eukaryotic oxygenase domain also has a C-terminal
electron-supplying reductase region, which is homologous to
cytochrome P450 reductase and binds to NADH, FAD, and
FMN. We found that Rv-NOS was tightly clustered with the
gene from S. haemastoma in the phylogenetic tree (Figure 2b),
and the sequence similarity of homologous alignment was as
high as 95.83%; this result indicated that the two species were
closely related. In S. haemastoma, the mRNA transcripts mainly
expressed in the central nervous system and peripheral structures
which involved in sensory organs, such as the osphradium,
cephalic tentacles, and buccal/esophageal tissues (Brown et al.,
2004; Cioni et al., 2011); this result has also been confirmed in
A. californica (Moroz, 2010). The present results showed that the
expression of NOS was increased in both trochophore larvae (t)
and the early intramembrane veliger stage (ev), which are critical
periods for the development of velum and the digestive system.
These results may suggest that NOS plays an important role in
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the olfactory and digestive systems in R. venosa and that NOS
dramatically changes during the metamorphosis of R. venosa
(Song et al., 2016a; Yang et al., 2020a,b). In addition, we found
that both the mRNA expression levels of NOS were decreased
in the postlarval stage (J) compared to the competent larval
stage (V-IV), which may further confirm the hypothesis that
NOS plays a negative regulatory role (Froggett and Leise, 1999).
Additionally, Sahoo and Khandeparker (2018) indicated that the
inhibitory effects of NO and NOS may enhance the probability
of locating a suitable substratum by delaying metamorphosis
and the dispersal capability of the larvae to increase gene flow
and enhance individual vigor, which may explain the increase in
the mRNA expression of Rv-NOS in the competent larvae (V-
IV) in our results. However, Ueda and Degnan (2014) found
that NOS and NO may be positive regulators of the initiation
of metamorphosis in some gastropods, such as H. asinine. The
signaling pathways of NOS and NO have extensive functions,
and their regulation during the metamorphosis of R. venosa
requires further study.

Tripathi et al. (2015) demonstrated that CCK stimulates
NOS, which has also been confirmed by Moustafa et al. (2011),
while we found the inhibition of CCK on NOS in R. venosa.
The Rv-CCKR gene contains a CCK receptor domain and
is a member of the class A family of seven-transmembrane
G-proteins, which are abundant in pancreatic acinar cells. CCK
is a gastrointestinal regulatory hormone that is implicated in
the regulation of digestion and appetite control by stimulating
pancreatic enzyme secretion, gallbladder contraction, and gut
motility satiety and inhibit acid secretion from the stomach via
CCK receptor (Tripathi et al., 2015; Rehfeld, 2017). In the present
result, we also found that CCK can decreased the expression of
Carboxypeptidase in R. venosa, and increased the expression of
Cellulase, which may suggest that CCK can promote the food
habit transition of R. venosa. In addition, CCK is also known to
stimulate pancreatic growth in vitro and in vivo in mice, rats, or
hamsters (Cordelier et al., 1999), which may potentially explain
the increased expression of Rv-CCKR in the early intramembrane
veliger stage (ev), which is the critical stage of digestive system
development in R. venosa. Additionally, Schwartz et al. (2018)
indicated that plausible role of Cragi-CCK signaling in the
regulation of feeding in in the oyster Crassostrea gigas. He et al.
(2015) reported that CCK was increasingly expressed in grass
carp after food habit transition, while in the present study, the
expression of Rv-CCKR was significantly decreased, the difference
may due to the different type of food habit transition, and the
significant changes suggest that Rv-CCKR and CCK are involved
in food habit transition during metamorphosis. Additionally, the
CCK can increase the expression of 5-HT receptor, and Cooper
and Dourish (1990) have also indicated that the 5-HT and CCK
are synergistic and interdependent in the regulation of feeding.

CONCLUSION

Here, we show the changes of 5-HT and NOS during food
habit transition in metamorphosis of R. venosa. Moreover,

we found CCK is an important factor that regulates the
development and function of the digestive system, which
may further suggest a close relationship between food habit
transition and metamorphosis. By exploring the changes in
critical genes during the early stages of larval development,
the developmental process of the neuroendocrine system
was initially identified; by further exploring the regulation
of CCK, we reveal the relationship between digestive
system and neuroendocrine system. This study provides
new insight for studying the process of metamorphosis in
carnivorous gastropods.
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