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The extraction of minerals from the seabed of the deep oceans is of increasing interest
to investors, mining companies and some coastal states. To date, no commercial-scale
deep seabed mining has taken place but there is considerable pressure for minerals
mining to become an economic reality, including to supply the projected demand for
metals to support a global transition to renewable energy. At the same time, the full
environmental impacts of deep seabed mining are difficult to predict but are expected
to be highly damaging, both within, and perhaps well beyond, the areas mined. Here,
we reflect on the considerable uncertainties that exist in relation to deep seabed mining.
In particular, we provide a perspective on: (1) arguments that deep seabed mining is
needed to supply minerals for the green energy revolution, using the electric vehicle
battery industry as an illustration; (2) risks to biodiversity, ecosystem function and related
ecosystem services; and (3) the lack of equitable benefit sharing to the global community
now and for future generations. We explore the justification for a global moratorium on
deep seabed mining to ensure protection of marine ecosystems, the need to focus on
baseline research, and how improved governance of targeted marine regions could be
key to the preservation and conservation of the ocean biome.

Keywords: marine minerals, deep sea, biodiversity, battery technology, ocean governance, critical metals

INTRODUCTION

Interest in mining deep-sea minerals is growing because of a perceived or predicted need to
meet increased demand for minerals, including in support of a “green transition,” and the
financial rewards that could flow from exploitation of metal-rich deposits. The International Seabed
Authority (ISA), has, as of May 2021, issued 31 exploration contracts, many of which are with
private companies headquartered in the global north. Exploitation regulations are being drafted
by the ISA. To date, no exploitation contracts have been awarded by the ISA for mining in the
area beyond national jurisdiction (ABN]J), and no commercial deep-sea mining has taken place on
continental shelves.
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In spite of the irreversibility of environmental impacts, and
huge uncertainties over their scale and severity, the deep-sea
mining industry is gaining prominence, supported by carefully
crafted narratives that aim to position proposed operations as a
viable option to supply virgin mineral resources (Childs, 2019).
In some cases, seabed mining is presented as an unavoidable
consequence of ever-growing demand, in others as the “lesser of
two evils” in comparison to land-based mining. Reasons cited by
deep-sea mining proponents to exploit ocean mineral reserves
include a decline in terrestrial ore quantity and quality (Ali
et al., 2017; Hein et al.,, 2020), the potential for social conflict
in regions from where natural resources are extracted (Ali et al,,
2017) and the potential impact from terrestrial mining, including
on the climate (Paulikas et al., 2020a). Civil society groups are
becoming increasingly vocal in their opposition to deep sea
mining, and there are calls for industry to take into account
the profound cultural and spiritual ties that many remote island
nations have with the sea.

Mining the deep sea will cause extensive damage to, and
will have long-lasting impacts on, the ocean biome (Miller
et al, 2018; Vonnahme et al, 2020). Marine ecosystems
are already experiencing an unprecedented combination of
pressures, including climate change, acidification, deoxygenation,
pollution and the over-exploitation of living marine resources
(Danovaro et al, 2020). Targets have been set for global
ocean protection, mechanisms implemented and conservation
programmes initiated, but these are overshadowed by the
overarching lack of a coherent strategy. For example, UN
Sustainable Development Goal 14 (“to protect the health of
the ocean”) is not fully on track to achieve all ten targets
by 2030 (Johansen and Vestvik, 2020) and none of the
Aichi targets have been achieved within the past UN Decade
on Biodiversity (Secretariat of the Convention on Biological
Diversity, 2020). Progress continues this year (2021) to develop
a legally binding instrument for conservation and sustainable
use of marine biological diversity of areas beyond national
jurisdiction. Opening the deep seabed to mining on an industrial
scale would be fundamentally at odds with such commitments.

THE PERCEIVED BENEFITS AND RISKS
OF DEEP-SEA MINING

The Argued Need for Deep Seabed
Mining to Supply Minerals for the Green

Revolution

The move towards a low-carbon economy is projected to lead
to increased demand for minerals including cobalt, lithium,
nickel, copper, vanadium and indium for use in electric vehicles
(EVs), green energy technologies and storage batteries, with
large increases in demand predicted for cobalt, nickel and
lithium (Teske, 2019; World Economic Forum, 2019; Hund
et al., 2020). Interest in mining virgin resources from the deep
sea has, in part, been driven by such projections, alongside
desires to maintain a diversity of supply and concerns about
environmental and human rights impacts associated with

terrestrial mining (Church and Crawford, 2020; Lebre et al., 2020;
Paulikas et al., 2020b).

Despite detailed estimates for the quantities of minerals and
metals needed to realise the transition to green technologies, the
extent of future demand remains highly uncertain. Assumptions
on which projections are based are subject to considerable
uncertainties and are likely to evolve substantially over the
coming decades. Two key factors that influence modelled
demand are the future availability of energy-related technologies
(especially for batteries) and what those imply in terms of
metal demand and the rate and scale of manufacturing of
those technologies. Manberger and Stenqvist (2018) report that
terrestrial mineral reserves are sufficient to support a transition
to renewable technologies given potential future innovations,
with the possible exception of lithium-containing batteries
(planned exploitation of deep-sea reserves generally does not
target lithium).

Batteries have been highlighted as posing a dominant future
demand for certain metals that are also associated with deep
seabed resources and provide a useful example (Figure 1). Many
projections assume ongoing use of current lithium-ion battery
technology (incorporating cobalt and nickel) for both EV and
stationary storage uses (Hund et al., 2020), despite available and
in-development alternatives such as the cobalt-free lithium-ion
car battery from Svolt (2019), and Tesla’s use of lithium-ion
phosphate batteries in certain vehicles, which require neither
cobalt nor nickel (Tesla, 2020). Projected future demand for
EV batteries depends on the assumed transport model and the
relative scale of different transport modes. Projections are based
on models that range from a business-as-usual approach to
sustainable transport models that are less dependent on personal
vehicles. More integrated transport systems could enable even
fewer vehicles and batteries. Improved technological design, such
as elimination of built-in obsolescence, could also have a major
influence on future demands for raw materials and finished goods
(Thompson et al., 2018).

The European Commission (EC) proposal concerning
batteries and waste batteries, repealing Directive 2006/66/EC and
amending Regulation (EU) No 2019/1020 (EC, 2020), includes
measures to ensure large increases in recycling rates and greater
use of recycled content, as well as ensuring due diligence in
sourcing raw materials for batteries. The EC proposal does not
make direct reference to seabed mining but emphasises the
need for the development of sustainable battery technology and
carbon-neutral energy storage. It will be vital that, alongside
pursuit of a circular economy-based approach, the sustainability
and ethical issues arising from existing and future terrestrial
mining are also addressed.

Paulikas et al. (2020b, p.8) argue that deep seabed mining
is necessary because “Economic impact outcomes are expected
to be overall better when producing metals from nodules.” The
impact of lower prices on those currently reliant on terrestrial
mining aside, in reality, it is unlikely that terrestrial mining would
be displaced significantly if deep-sea mining were to commence;
the sectors would become competitors in a larger minerals market
without a transformational economy that reduces demand.
Paulikas et al. (2020b) express some confidence in the financial
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FIGURE 1 | Electric vehicle (EV) battery technology provides a useful case study to illustrate the uncertainties in projected demand and need for deep sea minerals.
Our focused analysis suggests that demand for the minerals used to manufacture EV batteries could vary significantly — complex underlying reasons involve an
interplay of factors such as human behaviour, investment in public transport infrastructure and technological advances.

Time to park the deep-sea mining plan:
Battery technology and the mineral crisis

If production and consumption of technological devices increases as projected by models, the need for
minerals increases and this transition to clean energy could lead to a natural resource crisis by 2050.
We examine three studies that use different underlying assumptions to reach different conclusions

on future mineral demands, and we urge a re-evaluation of plans to extract deep-sea minerals.
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outcome of their proposed nodule collection, but their analysis
fails to take proper account of the risks for current and future
generations of ignoring or undervaluing the functional ecology
of the oceans and the ecosystem services they provide.

The Risks to Biodiversity and Ecosystem
Services Should Deep Seabed Mining

Proceed

Seabed mining will cause unavoidable, irreversible harm to deep-
sea ecosystems and puts the health of the wider ocean at risk,
adding to other stressors including various forms of pollution
(litter, noise, and chemical), poor fisheries management and
climate change. Mining impacts include light and noise pollution,
sediment plumes and biodiversity loss resulting from widespread
habitat fragmentation (Van Dover et al., 2017; Miller et al., 2018;
Jones et al., 2020; Duarte et al., 2021). Deep-sea mining poses
significant risks to midwater ecosystems, which represent more
than 90% of the biosphere, contain fish biomass 100 times greater
than the global annual fish catch, connect shallow and deep-sea
ecosystems, and play key roles in carbon export and nutrient
regeneration. Deep and midwater ecosystem services could be
negatively affected by the return sediment plume, projected to be
discharged at around 1,200 m, which may persist for hundreds
of kilometres and, among other effects, clog respiratory and
olfactory surfaces (Drazen, 2020).

Mitigating the impacts of deep-sea mining - or restoring
ecosystems in a post-mining scenario — will be extremely difficult
and can never be fully achieved (Niner et al., 2018). Even gaining
an understanding of the potential biodiversity loss that could
be caused by deep-sea mining will require far greater baseline
knowledge than exists at present as well as knowledge of the
technology that would be used and its direct and indirect effects
(Clark et al., 2020; Levin et al., 2020a). Fundamental knowledge
gaps remain in our understanding of the oceans, particularly of
vulnerable deep-sea species such as cold water corals, crabs and
shrimps (Van Dover, 2014; Thompson et al., 2018; Wagner et al.,
2020). Connectivity between deep seabed habitats and broader
ecosystem functioning are poorly understood. Research suggests
that polymetallic nodules play an important part in food-web
integrity in benthic ecosystems (Stratmann et al., 2021), and
that in situ carbon fixation on abyssal plains and hydrothermal
vents and their contribution to surface productivity is greater
than previously expected (Levin et al., 2020b). Climate change
is already having a profound impact on ocean chemistry and
temperature, even in the deepest parts of our oceans, and may
be contributing to changes to the distribution or migration of
species, loss of habitat and food availability (Levin et al., 2020b).
There remains a vital need for further primary research to
inform decisions and programmes aimed at ensuring protection
of the marine environment in the face of multiple existing
stressors (Levin et al., 2020b) rather than a focus on “proof
of concept” testing of exploitation techniques that will increase
those pressures.

Predicting the scale of impacts of deep seabed mining is
made more difficult by governance and regulatory uncertainties.
For areas of the Pacific earmarked for mining (such as the
Clarion-Clipperton Zone), there is no clear vision of how many

commercial operations might proceed in parallel within an area,
to what extent mining will impact biodiversity cumulatively over
broader spatial scales, or how regulations might be enforced
and by whom. Ecosystem services framework approaches are
increasingly being used to evaluate situations where terrestrial
or shallow-water ecosystems - for example forests or wetlands -
could be impacted by human activities. It is hard to see how
such approaches could be applied within the deep sea given the
extent of uncertainties regarding ecosystem processes and their
interconnectivities across space and depth. Some have argued that
there is an opportunity for the ISA to take on such a framework,
given that no commercial-scale mining has yet taken place (Le
et al., 2017; Levin et al., 2020b).

Ecosystems services - which can be subdivided into
provisioning, regulating and cultural services (Millennium
Ecosystem Assessment, 2005) - have direct relevance to the
habitats that fall under proposed deep seabed mining areas.
Le et al. (2017) provide examples of provisioning services,
such as spawning and nursery habitats supported by seamount
ecosystems. Potentially vast provisioning resources are provided
by deep sea habitats in relation to marine genetic resources
and biomaterials, many of which have important applications in
human health (Ehrlich et al., 2006; Arrieta et al., 2010; Blasiak
et al., 2020). Regulating services include long-term methane
and carbon sequestration, both of which are highly important
for climate change mitigation. Microbial communities of vent
and nodule systems are diverse and, in many cases, still poorly
described, but may play an important regulatory part in the
global cycling of carbon, sulphur and heavy metals (Meyer-
Lombard et al., 2013; German et al., 2015; Sweetman et al., 2019).
Experiments indicate that the regulatory function is significantly
affected by physical disturbance, with changes persisting over
long timescales, such that deep seabed mining may be directly
at odds with current climate goals if such regulatory services are
degraded (Nath et al,, 2012).

The cultural services provided by undisturbed ecosystems
are diverse and may pose still greater challenges for inclusive
and quantitative assessment. Many societies hold the oceans
and marine life as sacred within their traditions and histories.
Such services include those that relate to educational and
aesthetic resources provided by the deep sea. Local community
organisations and Indigenous groups such as The Alliance of
Solwara Warriors are, alongside civil society organisations such
as the Deep Sea Conservation Coalition, questioning the need
for, and implications of, deep-sea mining. These groups are
challenging the lack of transparency within the processes under
the ISA by which applications are considered and exploration
contracts issued with little public scrutiny and with no clear
regard for cultural values (Levin et al., 2020a).

The Lack of Equitable Benefit Sharing
With the Global Community

To date, considerations of equitability in relation to deep-sea
mining have focused largely on the proposed mechanisms for
financial benefit sharing. Article 140 of the United Nations
Convention on the Law of the Sea (UNCLOS), under which
mandate the ISA operates, requires that revenue generated from
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seabed mining needs to be equitably shared between nations,
with a particular consideration taken of developing States. The
ISA is in the process of negotiating benefit sharing, with some
suggestions that initial royalties to be shared among nations
will total 2%, rising to 6% at a future date (Levin et al,
2020a). This model would mean that mining companies would
benefit from around 70% of the total project profits, the ISA
around 6%, including the amounts to be distributed, with the
remainder to go to the sponsoring state (The African Group,
2018). Negotiations of such a benefit system had already been
opposed by 47 African member states, who calculated a potential
financial return of less than US$100,000 per annum per country
(The African Group, 2019).

Beyond the detail of financial benefit sharing, however, an
emerging approach that seeks to grant locations, habitats and
ecosystems “Rights of Nature” could bring a fundamentally
different perspective to debates on deep-sea mining by enabling
re-evaluation of the relationship between humanity and the
natural world. Although the concept of giving rights to nature
might seem new to many in the industrialised West, the concept
is not unusual to some Indigenous communities. In 2008,
Ecuador became the first nation to include Rights of Nature
in its constitution (Republic of Ecuador, 2008). Other examples
of such an approach are few but are gradually increasing in
number. In New Zealand, for example, the Te Urewera Forest
and the Whanganui River or Te Awa Tupua are defined as legal
entities with “all the rights, powers, duties, and liabilities of a legal
person” (Te Urewera Act, 2014; Te Awa Tupua, 2017). A Rights
of Nature approach could be applied to the oceans (David, 2017;
Harden-Davies et al., 2020) alongside the precautionary principle
and sustainable development concepts. A legal instrument that
grants rights to an ocean is years away from being formulated
and implemented, but the concept behind it is one of holistic
and coherent rather than fragmented protection. If applied to
the deep sea in the ABNJ, a Rights of Nature framework would
recognise the ocean as a rights-bearing subject, rather than an
object to be owned, controlled and exploited (Borras, 2016).

DISCUSSION

The multifarious issues surrounding deep seabed mining have
no doubt contributed to the many different opinions between -
and within - groups of stakeholders that include scientists,
industry contractors, civil society, governments, investors and
regulators. Reconciling the perspectives of such diverse groups
will be extremely challenging and some may be unhappy with the
outcome. What is certain, however, is that to prevent biodiversity
loss and minimise stressors that impede marine ecosystem
functioning and the ecosystem services that benefit humanity,
ocean protection must be prioritised. Doubts that UN SDG14
may not be met fully by 2030 are of great concern - one estimate
is that US$174.52 billion per year will be needed to be spent on,
for example, conservation and research to achieve this one goal
(Johansen and Vestvik, 2020).

But the future contains hope. Proposals from within the
academic community to enhance regulations and protection
measures are encouraging and include: establishing a coherent

deep ocean observation system (Levin et al, 2019, 2020a;
Jones et al, 2020); evaluating the part played by the ISA
in regulatory actions and enforcing EIAs (Clark et al., 2020;
Jones et al, 2020; Levin et al, 2020a); establishing legally
binding MPA networks in the ABN]J (O’Leary et al., 2020); and
questioning whether corporations are meeting human rights
obligations under UNCLOS (Bernaz and Pietropaoli, 2020).
A United Nations Intergovernmental Conference is negotiating
an international legally binding instrument under UNCLOS
on the conservation and sustainable use of marine biological
diversity of areas beyond national jurisdiction (United Nations,
2017) which is expected to provide inter alia a mechanism for
establishing a representative network of MPAs in the ABNJ.

In its Pathways to the 2050 Vision for Biodiversity, The
Convention of Biological Diversity sets out Eight Transitions to
Living in Harmony with Nature, including the target that, “by
2050, biodiversity is valued, conserved, restored and wisely used,
maintaining ecosystem services, sustaining a healthy planet and
delivering benefits essential for all people” (Secretariat of the
Convention on Biological Diversity, 2020).

We have an opportunity to refocus our approach towards
nature. A true transition from ownership to guardianship of
the natural world could include a Rights of Nature approach
to the ocean, rather than only considering the benefits that
it may deliver to a small percentage of the global population.
As currently projected, any profits from deep-sea mining will
predominantly benefit a handful of corporations in the world’s
richest countries, rather than less well-developed States.

SDG 12 aims to ensure sustainable consumption and
production patterns, which is essential if the world is to achieve
the other UN SDGs (Bengtsson, 2018). In the context of deep-sea
mining, we suggest as a practical first step a conversation between
all stakeholders to assess future demand for minerals required
to transition to a low-carbon economy. A full appreciation
of the many uncertainties and indeterminacies attached to
projected demand for relevant metals could help to inform
conversations between stakeholders. Realigning and refocusing
research on product design to enhance the sustainability and
lifespan of future technologies may enable a richer suite of
options in the future. Policy mechanisms, such as those related
to urban design in the sphere of public transport (including
vehicle sharing), together with incentives to promote consumer
awareness and behaviour change will be important to achieve a
sustainable transition.

Once started, deep-sea mining is likely to be impossible
to stop. Once lost, biodiversity will be impossible to restore.
In writing this Perspective we have outlined the need to
avoid mining the deep sea to prevent biodiversity loss and
associated ecosystem services. Our case study focuses specifically
on uncertainties related to future EV battery technologies and
transport infrastructure and challenges the perceived demand
for deep sea minerals. More broadly, however, recognising and
adopting a Rights of Nature approach could help ensure a
thriving natural world for generations and a more sustainable
future for humanity in protecting those rights. The ongoing
COVID-19 pandemic has highlighted how declining ecosystem
integrity has contributed to human health and economic risk
on a global scale. The pandemic may also have contributed
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to a reassessment of social values, promoting an awareness
and willingness to fundamentally change behaviour towards the
protection of natural systems. We have an opportunity to refocus
our approach to managing and living sustainably within natural
ecosystems and by replacing a sense of ownership and dominance
to one of harmony and belonging.
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