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Satellite-derived estimates of ocean color variables are available for several decades now

and allow performing studies of the long-term changes occurred in an ecosystem. A daily,

gap-free analysis of chlorophyll (CHL) and suspended particulate matter (SPM, indicative

of light availability in the subsurface) at 1 km resolution over the Greater North Sea during

the period 1998–2020 is presented. Interannual changes are described, with maximum

average CHL values increasing during the period 1998–2008, a slightly decreasing trend

in 2009–2017 and an stagnation in recent years. The typical spring bloom is observed to

happen earlier each year, with about 1 month difference between 1998 and 2020. The

duration of the bloom (time between onset and offset) appears also to be increasing with

time, but the average CHL value during the spring bloom does not show a clear trend.

The causes for earlier spring blooms are still unclear, although a rising water temperature

can partially explain them through enhanced phytoplankton cell division rates or through

increased water column stratification. SPM values during winter months (prior to the

development of the spring bloom) do not exhibit a clear trend over the same period,

although slightly higher SPM values are observed in recent years. The influence of sea

surface temperature in the spring bloom timing appears to be dominant over the influence

of SPM concentration, according to our results. The number of satellites available over

the years for producing CHL and SPM in this work has an influence in the total amount

of available data before interpolation. The amount of missing data has an influence in the

total variability that is retained in the final dataset, and our results suggest that at least

three satellites would be needed for a good representation of ocean color variability.

Keywords: spring bloom phenology, remote sensing, ocean color, chlorophyll, suspended particle matter, North

Sea, DINEOF

KEYPOINTS

- Analysis of 23 years (1998–2020) of daily satellite-based chlorophyll and suspended particulate
matter products in the Greater North Sea using DINEOF (Data Interpolating Empirical
Orthogonal Functions).

- Description of changes in spring bloom phenology, with earlier blooms observed through time.
- The number of satellites used to obtain the data has an influence on retained variance, with at
least 3 satellites needed for a correct representation of variability.
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1. INTRODUCTION

The North Sea is a semi-enclosed shallow shelf sea in
northwestern Europe, and it is one of the most productive
seas in the world (Ducrotoy et al., 2000). It is surrounded
by heavily populated countries with important industrial and
agricultural activities, resulting in large quantities of nutrients
and pollutants being added to the North Sea through riverine
inputs (Ducrotoy et al., 2000). As a result, the North Sea has
suffered from eutrophication issues during several decades (e.g.,
Desmit et al., 2020; Xu et al., 2020; Friedland et al., 2021).
Despite de-eutrophication policies implemented since the 1990s,
such as the EU Marine Strategy Framework Directive (MSFD)
which aims at reaching a Good Environmental Status (GES)
in European waters, the North Sea still receives relatively high
nutrient inputs (nitrogen and phosphorous, Van der Zande
et al., 2019b). This results in intense phytoplankton blooms
occurring every year between March and October, with the
southern parts of the North Sea, shallower and more affected
by industrial and agricultural activities, presenting more intense
blooms (Lancelot et al., 2005; Rousseau et al., 2013; Desmit et al.,
2015, 2020). Phytoplankton blooms are at the basis of the marine
food web, driving biogeochemical cycles, producing oxygen and
acting as a carbon pump (Xu et al., 2020). Phytoplankton
spatial and temporal dynamics can be influenced by several
factors, including the availability of nutrients and light, water
temperature, and grazing (Capuzzo et al., 2017; Xu et al., 2020).

Spring bloom onset in the open ocean typically occurs when
turbulent mixing decays, causing convection to stop (Ferrari
et al., 2015). On well-mixed environments, spring bloom onsets
typically when the upper mixed layer is shallower than a given
critical depth (Huisman et al., 1999). Some studies point out
to a shift in the timing of the spring bloom in the North
Sea to earlier dates in recent years (e.g., Desmit et al., 2020).
While the causes for this are not completely understood, Hunter-
Cevera et al. (2016) point to temperature-induced changes in
phytoplankton cell-division rates as a possible cause. Increasing
temperature trends observed in the North Sea (Høyer and
Karagali, 2016) can therefore contribute to earlier phytoplankton
blooms. Chlorophyll concentration (CHL) is used as a proxy
for phytoplankton concentration, and Suspended Particulate
Matter (SPM) is directly related to the amount of light that is
available for primary producers (Capuzzo et al., 2015). Ocean
color properties have been routinely measured from satellite for
several decades (e.g., Sathyendranath et al., 2019), which allows
for long-term studies. In order to assess the changes that have
occurred in CHL and SPM in the North Sea, long-time series
of daily data must be used (Philippart et al., 2010). Considering
different hydrodynamic regions can also help understand how
physical properties like currents and stratification influence the
distribution of CHL and SPM (Capuzzo et al., 2017).

Interannual changes in CHL and SPM have been studied in
the North Sea by several authors (e.g., Fettweis et al., 2007, 2014;
Philippart et al., 2010; Capuzzo et al., 2015; Desmit et al., 2020)
using in situ and/or satellite data. In situ data are sparse and long
term series are very difficult to maintain. On the other hand,
satellite data are affected by the presence of clouds or quality

flagging (e.g., low sun angle in higher latitudes) that limit the
amount of measurements. Gap-free estimates are needed when
assessing long-term changes in the total concentration of CHL
and SPM in coastal waters, for example in support of the MSFD
in European waters. CHL time series are therefore used as an
indicator for eutrophication (Ferreira et al., 2011), and satellite-
derived gap-free CHL offer the temporal and spatial coverage
necessary for such monitoring activities (Van der Zande et al.,
2019b).

DINEOF (Data Interpolating Empirical Orthogonal
Functions, Beckers and Rixen, 2003; Alvera-Azcárate et al.,
2005) is an EOF-based technique that is used to interpolate
missing data (due, for example, to the presence of clouds) in
satellite data sets. It has been used in numerous works, with
ocean color variables (e.g., Sirjacobs et al., 2011; Alvera-Azcárate
et al., 2015), sea surface temperature (Alvera-Azcárate et al.,
2005) or sea surface salinity (Alvera-Azcárate et al., 2015) among
others and has shown to be reliable even with high amounts of
missing data (e.g., Alvera-Azcárate et al., 2005, 2009).

The main objective of this work is to assess the spatial and
temporal dynamics of CHL and SPM of the Greater North
Sea over a period of 23 years (1998 to 2020) using a gap-free
high spatial (1 km) and temporal (daily) satellite dataset. This
analysis covers a wide area and the gap-free analysis allows
for a better estimation of changes in CHL and SPM both in
time and space. The spatial and temporal variability of these
reconstructed variables will be assessed, with special attention to
the timing of the spring bloom and how it has changed over the
period of study. The dataset is composed of a varying number of
satellite sensors, providing us with insight on the influence of the
number of available satellites in the variability retained in the final
product. Section 2 describes the satellite data used, the domain of
study, and the reconstruction approach using DINEOF. Section 3
contains a brief description of the reconstruction results and the
EOF basis obtained. Section 4 discusses the timing of the spring
bloom onset and how it has changed over the considered period.
Conclusions are provided in section 5.

2. MATERIALS AND METHODS

2.1. Study Area
The domain of study is shown in Figure 1, and covers the
North Sea and the easternmost part of the North Atlantic
Ocean, from 48◦N to 66◦N and from 8◦W to 12◦E. The
bathymetry in this region is very varied, from the shallow
plains of the southern part of the North Sea, with depths
of less than 50 m, to depths of more than 3,000 m north
of the Faroe Islands. Within the shallow parts of the North
Sea, the Norwegian channel surrounding Norway reaches up
to 700 m. In the center of the North Sea, the Dogger
bank is a shallow sandbank that extends over several tens of
kilometers and is a productive fishing ground (e.g., Kröncke,
2011).

Circulation in the North Sea is mainly cyclonic, under
the influence of prevailing westerly winds (Winther and
Johannessen, 2006; Sündermann and Pohlmann, 2011). The
main water inflow pathways are located at the northern part
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of the domain between the British Isles (mainly Shetland)
and Norway, and in a lesser degree through the English
Channel. Water also flows directly from the Atlantic Ocean
toward the Baltic Sea through the Norwegian Channel.
Tides are mainly semi-diurnal and follow also a cyclonic
path in the North Sea (Sündermann and Pohlmann,
2011; Vindenes et al., 2018). The strong tidal currents
result in strong mixing, specially in the shallower parts
of the southern North Sea (Sündermann and Pohlmann,
2011).

2.2. Satellite Data
Generating reliable satellite estimates of CHL in optically
complex coastal waters is still challenging. Many algorithms
exist and give quite different performances for different
optical conditions. For this reason, we applied the approach
of Lavigne et al. (2021) who defined the limits of applicability
of three popular and complementary algorithms: (1) the OC4
blue-green band ratio algorithm (O’Reilly et al., 1998) which
was designed for open ocean waters; (2) the OC5 algorithm
(Gohin et al., 2002) which is based on look-up tables and
corrects OC4 overestimation in moderately turbid waters;
and (3) a near infrared-red (NIR-red) band ratio algorithm
(Gons et al., 2002) designed for high turbid waters. This
approach allows automatic pixel-based switching between
the most appropriate algorithms for a certain water type.
Additionally, the neural-net approach FUB-WEW (Free
University of Berlin Water processor, Fub v4.01, Schroeder
et al., 2007) was used for the Kattegat region due to its high
color dissolved organic matter concentration. Source products
were obtained from publicly accessible archives: the Copernicus
Marine Environment Monitoring Service (CMEMS), European
Space Agency (i.e., ODESA) and other data providers (i.e.,
IFREMER). More details can be found in Van der Zande
et al. (2019b). The SPM products were generated by applying
the approach of Nechad et al. (2010) to the OC-CCI Remote
Sensing Reflectance (Rrs) product obtained from CMEMS
(OCEANCOLOUR_ATL_OPTICS_L3_REP_OBSERVATIONS
_009_066, CMEMS data portal). All daily satellite products
were generated with a spatial resolution of approximately 1 km,
resulting in a matrix of 1913× 1639 pixels in space for each day.
The winter months December and January were excluded from
the analysis as no ocean color products were available over a
large part of the Greater North Sea due to low sun angle which
complicates atmospheric correction procedures.

2.3. DINEOF
The CHL and SPM datasets were reconstructed using DINEOF
(Data Interpolating Empirical Orthogonal Functions, Beckers
and Rixen, 2003; Alvera-Azcárate et al., 2005). DINEOF
calculates the expected value for the missing data based on the
spatio-temporal information contained in the dataset, using a
series of EOFmodes. EOFs provide an efficient way of calculating
the main modes of variability of a dataset, in order of increasing
explained variance (von Storch and Zwiers, 1999). However,
EOFs should not be directly calculated on uncomplete data,
and DINEOF provides a way to overcome this and provide

an estimate for the missing data at the same time. DINEOF
calculates an EOF basis from the initial gappy data, by initiating
the missing data to the average value of the matrix as first
guess. As the matrix is demeaned to work with anomalies for
the EOF decomposition, the initial missing data are in fact
initialized with a value of zero. Using this matrix with zero
at the missing locations, the first EOF (i.e., the main mode)
is calculated. The missing data values are then recalculated
using the EOF basis, obtaining an improved guess for those
values. The process is iterated until convergence is reached
for the missing data values. The number of EOF modes is
increased (first one EOF, then the two first EOFs, and so on).
Normally there can be as many EOF modes as the temporal
size of the matrix being reconstructed (considering time as
the smallest dimension, which is typically the case in satellite
datasets). However, higher order EOFs contain a very small
fraction of the total variability and may contain also noise
and other transient errors, so in order to avoid retaining that
information in the final product and to keep the computing time
reasonable, only a truncated EOF series is used. The optimal
number of EOFs that are retained for the final reconstruction
of the missing data is determined by cross-validation: about
2-3% of valid data (i.e., not missing) are marked as missing
data, and at each step DINEOF calculates the error between the
initial data and the expected value provided by the EOF basis.
The cross-validation data are taken in the form of clouds (as
explained in Beckers et al., 2006) to better represent the nature of
missing data in satellite images. DINEOF has been used in many
previous works, and can be applied to variables like sea surface
temperature and winds (Alvera-Azcárate et al., 2007), sea surface
salinity (Alvera-Azcárate et al., 2016), chlorophyll (Huynh et al.,
2020), etc.

Images with more than 98% of missing data were removed
prior to the DINEOF reconstruction, which effectively removes
mostly data from December and January. After removal of these
images, there is still a very high amount of missing data, specially
at high latitudes. As an example, the percentage of missing data
for years 1998 and 2018 is shown in Figure 2. The percentage
of missing data in 2018 is lower than in 1998 because of the
availability of more satellite systems and sensors in recent years,
namely MODIS, VIIRS and Sentinel-3 for recent years compared
to only SeaWiFS in 1998 to 2002. The temporal distribution of
the percentage of missing data (panel a of Figure 2) shows lower
amounts of missing data during summer months, although on
average there is always at least 60% of the domain with no data.
Such a high amount of missing data makes it impractical to
quantify the inter-annual variability with high confidence, and
therefore an interpolation to reconstruct these gaps is necessary.

Given the large size of the domain and the long time series
that is being used in this work, each year has been reconstructed
separately. Because December and January are not included in
the analysis due to their high percentage of missing data, there
is no continuity problem between each year. Making a separate
analysis for each year also ensures that the EOF basis used for
the reconstruction is not dominated by the main seasonal cycle.
The data are transformed using a natural logarithm before the
DINEOF analysis to ensure a distribution closer to a normal one.

Frontiers in Marine Science | www.frontiersin.org 3 September 2021 | Volume 8 | Article 707632

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Alvera-Azcárate et al. 23-Year North Sea DINEOF Reconstruction

FIGURE 1 | Domain of study with bathymetry (in m). The contours in the northwest part of the domain correspond to the 1,000, 2,000, and 3,000 m depth. DB

shows the location of the Dogger Bank.

2.4. Determination of Spring Bloom Onset
Date
In order to assess the timing of the spring bloom in the North
Sea and if this timing has changed through the years, we have
used a threshold method following (Brody et al., 2013). The
median of the North Sea CHL concentration is determined
for every year and the date on which the concentration of
CHL first reaches a value 5% above this median is chosen
as the date the spring bloom starts. Other suggested methods
in Brody et al. (2013), like the maximum rate of change

in CHL growth, reflect the moment in which the bloom
is already well underway and not in its starting phase. A
30-day Gaussian filtered time series is used to avoid short-
term variations influencing in the calculation of the spring
bloom timing.

3. DINEOF RESULTS

In this section the main results obtained with DINEOF are
presented. The reconstruction for each year has a different
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FIGURE 2 | Percentage of missing data in the domain of study. (A) Spatially averaged percentage of missing data in the initial time series (black) and with a 30-day

Gaussian low-pass filter (blue). (B) Temporal average of the percentage of missing data for 1998 (year with the highest average percentage of missing data). (C)

Temporal average of the percentage of missing data for 2018 (year with the lowest average percentage of missing data).

number of optimal EOFs depending on factors like the
available data, the cloud coverage and the structures that are
observed in the initial data (i.e., when no clouds or other
missing data obscure them). For example, in the reconstruction
of the CHL dataset in 1998 (the year with the maximum
percentage of missing data), 5 EOFs were found optimal to
reconstruct the missing data by DINEOF. For 2004, with
a low percentage of missing data, 13 EOFs were found as
optimal by DINEOF. For the SPM reconstructions, the minimum
number of EOFs retained was 5 (for 2008) and the maximum
was 19 (for 2009).

3.1. Validation
The multi-year dataset (both the original cloudy data and the
DINEOF reconstruction) have been used in the frame of the EU-
funded JMP-EUNOSAT project (Joint Monitoring Programme
of the Eutrophication of the North Sea with Satellite data), to
assess the use of satellite data to monitor the eutrophication in

the North Sea with the help of satellite data, and a thorough
validation has been realized in that project (Van der Zande
et al., 2019a). The quality of the DINEOF reconstruction has
been therefore assessed in the frame of the JMP-EUNOSAT
project. The satellite-based CHL observations were compared to
in situ observations collected in national monitoring programs.
Differences between in situ and satellite CHL observations
were quantified based on direct match ups within the in situ
data archive. Considering all available data, the uncertainty is
estimated with the Mean Absolute Difference (MAD) resulting
in a value of 1.89 µg/l, which corresponds to a Mean Absolute
Percentage Difference (MAPD) of 45.26%. The satellite products
tend to overestimate CHL values when CHL is less than
1µg/l resulting in a slope of 0.64 and a relative high scatter
(r2 = 0.60) around the 1:1 line for higher CHL values.
Validation of the DINEOF gap-filled products was performed
with daily match up study using Dutch monitoring data ranging
from clear to very turbid water conditions. Dutch monitoring
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data consisted of ship-based water samples collected between
1998 and 2016 in the Dutch coastal zone available at https://
waterinfo.rws.nl/. Only surface samples (maximum depth of
3 m) analyzed using the HPLC method were accepted. The
match-up analysis between the daily satellite CHL products and
available in-situ CHL observations was performed following the
approach of Bailey and Werdell (2006) allowing a maximum
time difference of 2 hours. Applying the DINEOF technique
results in a significant increase of available match ups (from
216 to 755) without strongly changing the correlation statistics
(MAD original: 2.47 µg/l; MAD DINEOF: 2.83 µg/l, Figure 3)
showing the potential of this approach to improve satellite-
based observations for regions where satellite data availability
is limited.

3.2. Example of Short-Term and
Small-Scale Variability
An example of the reconstructed CHL data is shown in Figure 4,
with a sequence of 5 days in May 2018 (with 5-day intervals
to avoid showing too similar images). This sequence has been
chosen because a CHL bloom is happening in the northernmost
part of the domain, and the currents have advected the CHL
which serves as a tracer for mesoscale eddies. These eddies are
partially visible in the initial data, and the reconstruction is able
to retain that kind of variability, even in a part of the domain
that has a very large amount of missing data. In the central part
of the North Sea, between Scotland and Norway, an elongated
bloom is seen, which fades with time. This feature is also retained
in the DINEOF reconstruction. Only one every 5 days is shown
in Figure 4 for clarity, but intermediate dates also contributed
to the final reconstruction and the shaping of the meso- and
small-scale variability.

The same dates are also shown for SPM in Figure 5. Large
SPM concentrations are found in the shallower regions in the
southern half of the domain, which seem to decrease with time.
The variability in the northern part of the domain is not as clearly
observed in the initial SPM but the reconstruction seems to retain
these scales as well. A high SPM concentration feature develops
south of the Faroe Islands and in general we can appreciate that
the concentration of SPM increases in the northern part of the
domain during these days. The spatial and temporal variability
retained by the DINEOF reconstruction is similar to what is
observed in the initial data.

3.3. EOF Modes
The EOF modes that are provided by DINEOF have also been
inspected for CHL (Figure 6) and SPM (Figure 7). In general,
the first three modes display the same general patterns for all
years, with obviously differences in small-scale patterns and
intensity. As an illustration of the patterns represented in these
modes, Figure 6 shows the first 4 EOF spatial and temporal
modes in 2008 for CHL. The first EOF mode contains the
seasonal variability due mainly to the spring bloom, as indicated
by the first temporal mode showing a maximum in spring.
The first spatial EOF mode has a larger amplitude along the
coastal regions. The second EOF mode still shows a signal at
the beginning of the year, indicating the CHL activity linked to

the spring bloom, although this time in the center region of the
North Sea. The third EOF appears to show the activity linked
to blooms at higher latitudes, occurring for example around the
Faroe Islands and peaking later in the year in the months of
July and August. The fourth EOF is also included to show the
smaller spatial and temporal variability included in the higher
order modes.

For SPM we only show the first 2 modes, as the higher order
ones include small-scale variability and are therefore much more
variable from year to year. Figure 7 shows the SPM spatial and
temporal modes for 2008. The first spatial mode shows a larger
amplitude in the southern coastal regions, which are shallower
and receive large riverine discharges. The plume of the Thames
river is also clearly seen, with high SPM values reaching several
hundreds of km from its source. Maximum values, as expected,
are found during the winter months (Figure 7). The second EOF
mode highlights the central region of the North Sea, with higher
SPM values again in winter. The southern coastal zones and the
open sea waters in the north show a similar amplitude which
peaks during summer months.

Given the high amount of data being analyzed, the correlation
between the different EOF modes for the CHL data were
also calculated. The aim was to examine in which years the
CHL patterns are more similar to each other and which years
the patterns of CHL are more different. Figure 8 shows the
correlation between each year and all other years, for the first
CHL EOF mode. The correlation matrix shows a diagonal with
a correlation of 1 (correlation of each year CHL to itself),
and symmetric values off the diagonal, with higher values for
years with stronger correlation between them. The correlation
between the first mode among all years is high (always higher
than 0.8), as expected, since this mode shows the seasonal
cycle as seen for example in Figure 6. However, we can also
observe that there is a higher correlation among specific periods:
the 1998–2001 period, the 2002–2012 period, the 2013–2016
period and the 2017–2020 period. As shown in Figure 2,
the number of satellites used to compute the CHL data has
been different through time, and this has an influence in the
amount of missing data. The clusters of correlation shown in
Figure 8 correspond well to changes in the total number of
satellites available. Figure 8 also shows in the bottom panel
the percentage of variability explained by the EOFs used in
the DINEOF reconstruction, and this also reflects the changes
in the number of satellites: analyses in years with one or two
satellites have lower retained explained variability than years
with three satellites. A similar result was observed in the first
SPM EOF (not shown). This result seems to suggest that the
availability of at least three ocean color satellites, providing
better data coverage, results in improved representation of the
variability by interpolation techniques, and sets up a target on the
minimal requirements for a correct measurement of the ocean
color variability.

3.4. Interannual Variability
A spatial average of the daily CHL and SPM products over
the whole domain has been performed to assess interannual
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FIGURE 3 | Scatterplots of in situ and satellite CHL observations for the Netherlands using the JMP-EUNOSAT CHL archive, without (left) and with DINEOF

interpolation (right). The relationship between both data sets are described by the Mean Absolute Difference (MAD), Mean Absolute Percentage Error (MAPD). The

determination coefficient (r2) and the slope characterizes the regression (adapted from Van der Zande et al., 2019b).

FIGURE 4 | Example of CHL (µg/l) on 15, 20, 25, and 30 May 2018 for the initial data (top) and corresponding DINEOF reconstruction (bottom).

variability, and the time series has been filtered using a 30-
day Gaussian low-pass filter (Figure 9). A large interannual
variability in the average CHL value as well as in the strength

of the spring peak can be observed. The reasons for this
interannual variability are numerous, including variations in
water temperature, water turbidity and nutrient availability
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FIGURE 5 | Example of SPM (mg/l) on 15, 20, 25, and 30 May 2018 for the initial data (top) and corresponding DINEOF reconstruction (bottom).

(Desmit et al., 2020). The European Marine Strategy Framework
Directive (MSFD), implemented in 2008, requires the European
member states to achieve Good Environmental Status (GES),
limiting for example the amount of nutrients that are shed to the
rivers by agricultural activities. One of the consequences of this
limitation in nutrients would be a decrease in the eutrophication
of the North Sea, and in Figure 9 (top panel) it can indeed be
observed that the average CHL concentration has decreased since
2008, with a stagnation, and even a slight increase, in recent years
(2017–2020). Friedland et al. (2021) observed a decrease in CHL
levels in the North Sea during the 2005–2012 period using an
ensemble model simulation, and attributed this to a decrease in
nutrient load from rivers into the North Sea. The highest CHL
concentration in the average satellite time series of Figure 9 was
reached in the spring bloom of 2008 (with 2.46 µg/l). The lowest
concentration of CHL during the spring bloom in this same
figure is observed in 2017 with 1.5 µg/l.

SPM time series (Figure 9, middle panel) shows a large
variability in the winter values (with the time series starting in
February of each year), when SPM reaches its highest values.
Years like 2002, 2008, and 2014 show very high winter SPM
concentrations, and in general the winter SPM average values
have been higher in the periods 2002–2008 and 2014–2020 than
in the rest of the time series. Minimum values are reached during
summer months (Figure 9), when mixing and resuspension

decreases. The interannual variability of the minimum values is
not as high as the variability observed in maximum values.

4. SPRING BLOOM ONSET

Following the threshold method described in section 2.4, we
have calculated the date on which spring bloom starts each year.
The dates of the spring bloom onset are shown in Figure 10.
Despite interannual variability, there is a clear tendency at sooner
spring bloom onset dates in recent years, i.e., the spring bloom
appears to start on earlier dates. The trend toward earlier dates
is significant with a p-value of 4.13e-05. A similar finding was
already observed by Desmit et al. (2020) although their study
was limited to the southern North Sea and used in situ data (i.e.,
the spatial extension was smaller). The date of the spring bloom
onset has decreased 1.5 days per year in average over the studied
period. The reasons for a change on the date of spring bloom
onset can be varied. In the North Sea, as in the global ocean,
water temperature has been increasing over the last decades as
a result of climate change. For example, Desmit et al. (2020)
reported an increase of the sea surface temperature in the North
Sea of ∼ 0.035◦C yr−1 using in situ data from 1971 to 2014,
and Høyer and Karagali (2016) found a 0.037◦C yr−1 increment
for the North Sea from 1982 to 2012 using a reanalysis product.
Using CMEMS “European North West Shelf/Iberia Biscay Irish
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FIGURE 6 | First four spatial CHL EOF modes for 2008 (top two rows) and first four temporal CHL EOF modes for 2008 (bottom two rows).
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FIGURE 7 | First two spatial SPM EOF modes for 2008 (top) and first two temporal SPM EOF modes for 2008 (bottom).

Seas - High Resolution L4 Sea Surface Temperature Reprocessed”
Sea Surface Temperature (SST) satellite product, the daily average
SST over the domain of study was calculated for the years 1998–
2019 (last year available for this product at the moment of
access), as shown in Figure 9. A warming of 0.31◦C has been
calculated from 1998 to 2019, or 0.015◦C yr−1. This value differs
from the others found in the references mentioned, but this
difference can be attributed to the different spatial domains,
periods considered and products used. All results however point
at an increasing water temperature in the North Sea over the
last decades. If nutrients are not limited, higher temperatures
can accelerate phytoplankton cell division rates (e.g., Edwards
et al., 2016; Hunter-Cevera et al., 2016), contributing to earlier
blooms. The effect of rising temperature must be accompanied
by a stratification of the water column to favor earlier blooms.

The time of the spring bloom ending was also calculated
following the opposite criterion as for the onset, i.e., the date
on which the concentration of CHL first goes below the yearly

median plus 5%. This is used to assess the duration of the
spring bloom (time between onset and offset). While there is
a high year-to-year variability in the duration of the spring
bloom (Figure 11), a tendency toward longer blooms can be
observed in more recent years, although this trend is not
statistically significant. The years with longer bloom periods
typically have a slow growing or weaning periods, as in 2013 and
2004, respectively (examples shown in Figure 11), causing the
bloom period to be longer. Longer spring bloom periods do not
mean higher CHL peaks or stronger blooms, and no significant
correlation has been found between the strength of the peak
(calculated as the difference between the maximum CHL value
attained each year and the median value) and the duration of
the bloom.

The average CHL concentration between the onset and offset
of the bloom (Figure 12 top panel) shows increasing values
during the period 1998–2008 and then a decreasing trend. Values
in the 2017–2020 period are similar to what was observed during
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FIGURE 8 | (Top) Correlation between each year first EOF CHL mode and all the other years. (Bottom) Percentage of explained variance retained in the DINEOF

interpolated dataset.

the early 2000s. Therefore, having spring blooms earlier in the
year does not impact the average amount of CHL during the
bloom. The amount of SPMduring the winter months (February-
March, as January is not used in our analysis because of the low
availability of data) does not show a significant trend, but values
appear in general to be higher during recent years. Studies of
the influence of water clarity on phytoplankton growth reveal
different results depending on the region. Several works (e.g.,
Capuzzo et al., 2015; Opdal et al., 2019; Wilson and Heath,
2019) found that light availability for phytoplankton growth has
decreased on average in the North Sea during the XXth century
through an increment of SPM. Philippart et al. (2013) on the
other hand have found no significant increase or decrease of
turbidity over four decades in theWadden Sea (southeastern part
of the North Sea). Our results do not show a clear trend in the
average SPM concentration over the Greater North Sea over the
period of study, so we cannot conclude that light availability has
had an influence in the spring bloom onset date.

The time of maximum CHL concentration during each year
bloom period has been also calculated (Figure 12 bottom panel).
As the date of spring bloom onset has shifted to earlier dates,
we could expect a similar shift in the peak of the bloom. While
we can observe a general decrease in Figure 12 the variability
is also high, specially during 2002–2013. The maximum CHL

concentration during recent years (2014–2020) is reached 1–2
weeks earlier than what was observed in the early 2000s. While
the linear trend over all the years is not significant (p = 0.07), it
would be worth revisiting this when more data become available,
to determine if there is a shift in the date when the spring bloom
reaches its maximum.

The data presented show that the spring bloom in the Greater
North Sea has shifted to earlier dates during the last 23 years,
with the maximum CHL value probably occurring also in earlier
dates. Bloom duration shows high variability but appears to
have become longer, but the average amount of CHL during
the spring bloom period does not show a clear trend over
time, indicating that the blooms have not become stronger nor
weaker due to the shift in time. From all the analyses shown
in Figures 10–12, only the date on which the spring bloom
starts each year (i.e., Figure 10) shows a statistically significant
trend. SPM values during winter months show also higher values
during more recent years, although there is a lot of variability in
these data. Higher SPM would imply lower CHL or later spring
bloom onset dates as more turbid waters hinder light availability
for primary producers. We therefore suggest that the role of
increasing water temperature has had a stronger effect in spring
bloom onset date than SPM concentration. However, given the
large size of the domain of study, multiple factors are probably
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FIGURE 9 | (Top) CHL Spatial average over the whole domain of Figure 1 during the 23 years of the study. (Middle) SPM averaged over the same region. Data from

December-January is not plotted. (Bottom) SST spatial average over the whole domain. The thin black line shows the 1-yr running mean. Different colors for each

year are used to ease comparison between variables for a given year. This color scheme is used in other multi-year figures in this work to ease comparison.

FIGURE 10 | Date on which the CHL concentration reaches the annual median value for the first time each year. The solid black line shows a linear fit to the dates,

with r = 0.75 and a p-value of 4.1267e-05.
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FIGURE 11 | Top: spring bloom duration in days for each year of the study. Middle and bottom rows, the domain-averaged CHL (in blue) and SPM (in red) with a

30-day low pass filter. The dates at which the bloom starts and ends (black dots) as determined by the median threshold method. Years 2000, 2004, 2013, and 2014

are given as examples.

responsible for the observed change in spring bloom onset date,
with the relative influence of each factor probably varying in
each region.

5. CONCLUSIONS

We have performed a daily, gap-free reconstruction of
chlorophyll (CHL) and suspended particulate matter (SPM) in
the Greater North Sea region over the period 1998 to 2020 with a
spatial resolution of 1 km. Missing data have been reconstructed
using DINEOF (Data Interpolating Empirical Orthogonal
Functions). The mesoscale variability observed in the initial,
gappy data (eddies, fronts, Thames river plume) are retained
in the final datasets, demonstrating the high resolution of the
reconstructed data. Both the initial and reconstructed data were

validated in Van der Zande et al. (2019b) and showed a correct
level of accuracy. The EOF modes used for the reconstruction
show that, in general, the southern part of the domain has the
largest variability. This is due in part to the shallower depths, and
the largely urbanized coasts of this region which result in more
nutrients reaching the coastal waters through river run-off.

The interannual variability was observed to be high, with
changes in year-to-year CHL and SPM annual cycle, as well as
their maximum and minimum values. Maximum CHL values
obtained during the spring bloom have increased during the
period 1998–2008, and show a decrease during 2008–2017. The
maximumCHL appears to be slightly increasing again during the
period 2017–2020.

This work has shown that the start date of the spring bloom
occurs earlier every year in the North Sea, with starting dates in
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FIGURE 12 | (Top) Average CHL during the spring bloom period each year. (Middle) Average SPM during February and March. (Bottom) Time at which the

maximum CHL concentration is reached each year.

2020 about 1 month earlier than in 1998. Earlier spring bloom
dates have been described in the southern part of the North Sea
using in situ data (Desmit et al., 2020), and our study has shown
this trend on a global scale covering the Greater North Sea, using
satellite data. Increasing water temperatures can explain at least
in part this trend, although it remains unclear what the role of
the SPM has been. The SPM average concentration in February-
March each year does not show a clear trend that could help
explain the earlier dates of the spring bloom.

Another major conclusion of this work is related to the use of
a variable number of satellites in long-term ocean color analyses,
and the impact of this number in the final product. The number
of satellites used to compute CHL and SPM has an impact in
the amount of explained variance by the EOF modes used in
DINEOF, as more satellites provide also a better spatio-temporal

coverage of all scales of variability. In order to retain a large
amount of the initial variability, at least three satellites measuring
ocean color are required. Periods with only 1 or 2 satellites
showed a lower amount of percentage of retained variance in
the final, interpolated product. This result sets up a target on the
minimal number of satellites that would be needed for a correct
measurement of the ocean color variability, specially in zones
with a high amount of clouds and other sources of missing data.

Analysis of long time series of CHL and SPM data are
necessary to understand the impact of human activities on
the ecosystem. Using gap-free satellite data at high spatial
resolution is necessary to resolve the small-scale variability
that contributes to the net variations of CHL and SPM, and
our DINEOF analysis of these variables has been shown to
provide enough detail to resolve these structures. Due to the
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large size of the domain of study, with shallow waters in
the southern, highly populated region, an open connection
to the Atlantic Ocean to the North, and the opening to
the Baltic sea to the East, the factors influencing spring
bloom phenology can be also multiple. Future work should
address the changes observed in sub-regions of the North Sea,
like the Southern North Sea, the Norwegian channel or the
Faroe Islands.
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