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INTRODUCTION

Phylogenetically, crabs (Brachyura) are among themost diverse crustaceans, with representatives in
marine, freshwater, and terrestrial niches, encompassing over 7,000 species in 98 families (Ng et al.,
2008; De Grave et al., 2009). The Gecarcinidae crab family, consist of six genera encompassing
20 species, showing distinct adaptations for a terrestrial lifestyle, with larval development taking
place in the oceans (Hartnoll, 1988; Greenaway, 1999; Ng and Shih, 2015). Interestingly, while the
conquest of terrestrial habitats is reported to encompass long-term adaptations, a much more rapid
process has been reported to occur in terrestrial crabs (Schubart et al., 1998). During this sea to
land transition, animals have developed a number of physiological and anatomical adaptations
associated with gas exchange, salt and water balance, nitrogenous excretion, thermoregulation,
reproduction, feeding, and diet (Bliss and Mantel, 1968; Powers and Bliss, 1983; Greenaway, 1999;
Richardson and Araujo, 2015). The Gecarcoidea genus consists of Gecarcoidea natalis, which is
endemic to Christmas Island and the Cocos (Keeling) Islands while Gecarcoidea lalandii is widely
distributed in the Indo-West pacific region (Lai et al., 2017). Both these species release larvae from
above the water, a behavior speculated to confer protection to the ovigerous females (Liu and Jeng,
2007). Land crabs are considered opportunistic omnivores, feeding on carrion, insects, mammalian
feces, and plant material (Wolcott and Wolcott, 1984; Ortega-Rubio et al., 1997). Nevertheless, the
nature of their habitat has driven some of the species to become more herbivorous, foraging mostly
on leaf litter, vascular plants foliage, seeds, and fruits (Linton and Greenaway, 2007; Wolcott and
O’connor, 2015). This shift was shown to be crucial in promoting the diversification of crustaceans
(Poore et al., 2017).

A dichotomy between terrestrial and marine-based diets is the concentration of long-
chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA) and arachidonic acid (ARA) in the food chain (Hixson
et al., 2015). The importance of this difference is magnified by the reliance of terrestrial
organisms on the aquatic environment for supply of LC-PUFA (Gladyshev et al., 2009).
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Aquatic primary producers and invertebrates, especially
marine species, possess all the necessary enzymes required
to biosynthesize the LC-PUFA from shorter chain fatty acid
substrates. Two classes of enzymes, the fatty acyl desaturase
(Fads) and elongases of very long-chain fatty acid (Elovl),
work together sequentially, inserting a double bond at defined
locations of the fatty acyl backbone and elongating the fatty
acyl chain through addition of two carbon units. Work on
various vertebrate species, mainly on teleost, have elucidated
the complete gamut of Fads and Elovls responsible for the
biosynthesis of EPA/DHA and ARA from linolenic acid (LNA)
and linoleic acid (LA), respectively. Similar corresponding
works on various aquatic invertebrates such as molluscs and
echinoderms have also revealed the presence of Fads and Elovl
orthologs and LC-PUFA biosynthesis activities (Monroig and
Kabeya, 2018). The presence of functional Elovl in crustaceans
were only recently shown in two marine brachyuran crabs (Mah
et al., 2019; Sun et al., 2020; Ting et al., 2020). Given the limited
amount of LC-PUFA in the terrestrial food chain, very little
is known about how terrestrial crustaceans adapt in terms of
LC-PUFA biosynthesis capacity.

Transcriptome reconstruction is a rapid and economical
approach useful for systematic gene models characterization
in species without any genome reference. RNA sequencing via
next-generation sequencing technology is widely used for this
purpose (Grabherr et al., 2011; Mutz et al., 2013). However,
short reads require large computational assembly and are often
insufficient to capture entire end-to-end transcripts, limiting
the accuracy of gene model prediction (Steijger et al., 2013).
The long-read isoform (Iso-Seq) sequencing method (Pacific
Biosciences, PacBio) analyse full-length transcripts as a single
sequence read without the need for further assembly, making it
an ideal for identifying and characterizing novel transcripts and
transcript isoforms (Eid et al., 2009; Roberts et al., 2013; Rhoads
and Au, 2015). This technique was used for transcriptome
analysis in crustacean species such as Litopenaeus vannamei
(Zeng et al., 2018; Wan et al., 2019), Penaeus monodon
(Pootakham et al., 2020), and Scylla paramamosain (Wan et al.,
2019). In consideration of the lack of any terrestrial crab
reference genome, the aim of this study was to apply the
PacBio Iso-Seq technique to profile the transcriptome of G.
lalandii (Decapoda, Brachyura, Gecarcinidae) with the objective
of identifying relevant transcripts for LC-PUFA biosynthesis Fads
and Elovl enzymes. Our study provides the first gene catalogs for
a terrestrial crab species, adding to currently available Brachyura
transcriptome datasets.

DATA DESCRIPTION

Sample Collection and Total RNA
Extraction
G. lalandii sample was collected at Rawa Island, Johor, Malaysia
(2.5204◦N, 103.9760◦E) in June 2018. Three adult male crabs
weighing 120–150 g were sampled. We selected hepatopancreas
tissue to obtain transcript library as hepatopancreas is responsible
for the storage of organic matter and metabolism of nutrients

(Vogt, 1994; Wen et al., 2001; Abol-Munafi et al., 2016). The
tissue was sampled immediately after euthanization, snap-frozen
in liquid nitrogen, and stored at−80 ◦C prior to RNA extraction.
Total RNA was isolated from the tissues of three crabs using
the Qiagen RNeasy mini kit (Qiagen, Germany) following
manufacturer’s recommendations and pooled together for library
preparation. Potential DNA contamination was eliminated by
applying on-column DNase digestion using RNase-Free DNase
Set (Qiagen, Germany). RNA concentration was determined
using a Qubit R© 2.0 Fluorometer (Life Technologies, USA), and
RNA quality was assessed using an Agilent 2,100 Bioanalyzer
(Agilent Technologies, USA). RNA with RNA integrity number
(RIN) value above 9 was used for library construction.

PacBio cDNA Library Preparation and
Sequencing
Sequencing library was prepared according to the PacBio Iso-
Seq protocol. The Clontech SMARTer PCR cDNA Synthesis Kit
with Oligo(dT) primers was used to generate the first and second
cDNA strand from polyAmRNA. Size fractionation and selection
on≤ 4 kb and≥ 4 kb bin were performed using the BluePippinTM

Size selection system (Saga Science, USA). SMRT bell library was
constructed with the PacBio DNA Template Prep Kit 1.0, and
sequencing run was performed on a PacBio Sequel platform.

Iso-Seq Data Analyses
The sequence data was processed through the RS_IsoSeq (version
2) protocol. Reads of insert ROIs (previously known as circular
consensus sequence) were generated from raw subreads using the
SMRT Link (version 5.1) software (Gordon et al., 2015). A total
of 11.43 Gb raw data was generated by 5,821,087 of subreads,
which were classified into 446,716 of ROI reads (Table 1). The
ROIs were classified based on the presence of 5′ and 3′ adapters as
well as the poly(A) tail into full-length and non-full length reads.
Sequences containing both the 5′ and 3′ primers and having a
poly(A) tail signal preceding the 3′ primer were considered to be
full-length (FL) ROIs. ROI reads comprised of 295,220 full-length
non-chimeric transcripts with an average read length of 2,448 bp.
FL ROIs sequences were then passed through the isoform-level
clustering (ICE algorithm). ROI sequences were used to correct
errors in the isoform sequences using the Quiver algorithm. The
Quiver polishing process produced high-quality and low-quality
isoform sequences corresponding to a predicted accuracy of ≥
99% or below, respectively. The isoform-level clustering and final
polishing steps yielded 18,552 and 2,76,668 of high-quality and
low-quality consensus isoforms, respectively. The completeness
of consensus transcripts was assessed by benchmarking universal
single-copy orthologs (BUSCO) (version 3.1.0) (Simão et al.,
2015). Our G. lalandii hepatopancrease transcriptome only
captured 67% of the conserved arthropod genes, likely due to
our sampling from a single tissue (Supplementary Figure 1). The
isoform sequences were mapped to the Portunus trituberculus
reference genome (Tang et al., 2020) (a chromosome-level
genome assembly of Brachyura) using GMAP (version 2015-09-
29) (Wu and Watanabe, 2005). More than 92% of consensus
transcripts were mapped to the P. trituberculus genome
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TABLE 1 | Statistics of G. lalandii Iso-Seq.

Characteristics Value

PacBio Iso-Seq

Number of subreads 5,821,087

Number of reads of insert 446,716

Number of 5’ reads 330,920

Number of 3’ reads 347,798

Number of poly(A) reads 344,455

Number of full-length reads 301,088

Number of full-length non-chimeric (FLNC) reads 295,220

FLNC read length (bp) 2,448

Number of consensus transcripts 173,556

Number of high-quality consensus transcripts 18,552

Number of low-quality consensus transcripts 155,004

Alignment to reference genome

Multi-mapped transcripts (%) 4.45

Uniquely mapped transcripts (%) 86.85

Unaligned transcripts (%) 8.00

Average aligning transcript length (bp) 2,403

Average mismatch frequency (%) 0.182

Transcriptome annotation

Transcripts with NR annotations (%) 89.41

Transcripts with SwissProt annotations (%) 83.75

Transcripts with TrEMBL annotations (%) 88.78

Transcripts with KOG annotations (%) 83.57

Transcripts with GO annotations (%) 86.59

Transcripts with KEGG annotations (%) 86.92

Transcripts with Pfam annotations (%) 84.98

Total annotated transcripts (%) 89.91

and the average transcript length aligning to the genome
was 2,403 bp.

Functional Annotation of Isoforms
The obtained high-quality isoforms were annotated by
conducting a local BLASTx (version 2.7.1) search against the
protein databases, namely the GenBank NCBI non-redundant
protein sequences (NR), SwissProt, TrEMBL, euKaryotic
Ortholog Groups (KOG), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases. The BLAST hits to NR were
processed by functional annotation with BLAST2GO (version
5.1) (Conesa et al., 2005). The coding region prediction of
high-quality isoforms was performed using ANGLE (version
2.2) (Shimizu et al., 2006). Hmmscan (version 3.1b) was used to
search sequence protein domains against the Pfam database.

In general, most of the transcripts (89.91%) exhibited
homology with at least one protein database. Matches to the
specific databases were as follows: 89.41% to NR, 88.78%
to TrEMBL, 86.92% to KEGG, 84.98% to Pfam, 83.75%
to SwissProt, and 83.57% transcripts aligned to the KOG
databases. Further, 86.59 % of transcripts were assigned to
multiple Gene Ontology (GO) classification terms. Among
them, “metabolic process,” “cellular process,” and “response to

stimulus” were the most represented terms in the biological
process (Supplementary Figure 2). In the cellular component,
the majority of the transcripts were represented by “cellular
anatomical entit,” “intracellular,” and “protein-containing
complex.” Within the molecular function category, “catalytic
activity,” “binding,” and “transporter activity” had the highest
number of transcripts. The top hit species distribution of matches
with known sequences indicates that the G. lalandii transcripts
had the highest number of hits to the Eriocheir sinensis, Penaeus
vannamei andMetacarcinus magister (Supplementary Figure 3).

Analyses of Fads and Elovl Orthologs in G.

lalandii
KEGG annotation revealed the presence of several genes
implicated in the polyunsaturated fatty acid biosynthesis pathway
of G. lalandii (Supplementary Figure 4). The transcriptomic
databases for selected crustacean species used for comparative
analyses were downloaded from the NCBI and JGI databases.
The downloaded sequences were analyzed using BLAST for
Fads and Elovl sequences. Fads and Elovl identified were
aligned using MUSCLE in MEGAX (Kumar et al., 2018)
(Supplementary Figures 5–8). Two Elovl elongases were found
in the G. lalandii transcripts with highest BLAST hits matching
Elovl 6 and a putative novel Elovl, respectively. The best fit
model was predicted usingModelFinder (Kalyaanamoorthy et al.,
2017), and phylogenetic tree was built using IQ-TREE (version
1.6.12) based on the predicted model (Nguyen et al., 2015).
Maximum likelihood phylogenetic analysis of Elovl from various
crustacean transcriptomes also placed the two Elovl sequences
in their respective ortholog clusters (Figure 1A). Elovl6, Elovl7,
ElovlA, Elovl B and the putative new Elovl all shared the common
ancestors while the Elovl4 formed a separate clade. To date,
the Elovl4 and Elovl6 have been shown to have in vitro PUFA
elongation capacities in marine brachyuran species (Sun et al.,
2020; Ting et al., 2020). Interestingly, while G. lalandii appear to
have a Elovl6 ortholog, there was no Elovl4.

Sequence alignment analysis was also performed with
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), and
the conserved motif was highlighted. Motif analysis was done
using WebLogo (https://weblogo.berkeley.edu/examples.html),
where the amino acids of histidine boxes were represented
based on their frequency of occurrence. Alignment of the
conserved histidine box in each respective Elovl revealed
the conservation of the LHxxHH motif in all the elongases
(Supplementary Figure 9). Functional characterization of these
elongases for comparison with the marine crab species will yield
insights on the LC-PUFA biosynthesis capacities of brachyuran
living in habitats with different availability of LC-PUFA in the
food chain.

Transcripts of two putative Fads orthologs were also obtained
from G. lalandii (Figures 1B,C). The desaturase 16-like Fads
have been reported in several crustacean species, although
its capacity to desaturate PUFA substrates and participate
in the LC-PUFA biosynthesis pathway remained vague (Wu
et al., 2018; Mah et al., 2019). Another G. lalandii Fads
was clustered alongside 19 Fads or stearyl-CoA desaturase,
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FIGURE 1 | Phylogenetic analyses of crustacean (A) elongase (VT + I + G4, bootstraps value = 1,000), (B) acyl-CoA desaturase 9 (LG + G4, bootstraps value =

1000), and (C) delta-6 desaturase (JTTDCMut + I + G4, bootstraps value = 1000) sequences using IQ-TREE v1.6.12. The different colored boxes were drawn to

facilitate viewing of the different elongase families.
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which has high affinity for saturated fatty acids (Monroig
et al., 2017). Collectively these transcripts will facilitate the
deciphering of LC-PUFA biosynthesis in regard to adaptation to
terrestrial living.

RE-USE POTENTIAL

Here, we present a long-read RNA sequencing dataset of G.
lalandii hepatopancreas that was generated by using the PacBio
platform. Specifically, our analyses exemplify applicability of the
dataset for mining two orthologs of two classes of enzymes
known to work in concert in LC-PUFA biosynthesis, the
elongase and fatty acyl desaturase. This transcript assembly
serves as a resource for gene mining, which will aid in the
functional characterization of various enzymes relevant to the
biosynthetic pathway.
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