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As global warming progresses, heat and hypoxia are gradually becoming important

factors threatening the survival, reproduction, and development of marine organisms.

To determine the effect of heat and hypoxia on Apostichopus japonicus, whole genome

methylation of the respiratory tree was determined under heat, hypoxia, and heat-hypoxia

conditions [designed as heat stress treatment (HT), hypoxia treatment (LO), and heat-

hypoxia combined treatment (HL) groups]. The number of differentially methylated regions

(DMRs) under three treatments was determined based on the Venn diagram. The network

of the DMRs associated with promoters that were co-existed under the three conditions

showed that circadian rhythm was involved based on the Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses. Circadian rhythm-related genes, CRY1a, CRY1b, CLC,

and TIM, decreased in LO and HL groups, while CRY1a, CRY1b, and BMAL1 increased

in the HT group. Bisulfite sequencing PCR (BSP) showed that the methylation levels

of CpG island regions in the promoters of CRY1a and CRY1b were upregulated in HT,

LO, and HL groups, leading to the decreased promoter activity of CRY1a and CRY1b.

RNAi of CRY1a and CRY1b led to increased enzyme activities of two energy-related

enzymes, pyruvate kinase (PK) catalyzing the rate-limiting step in glycolysis, and ATPase

hydrolyzing ATP to ADP, which were also increased under the three tested conditions.

Thus, it was concluded that A. japonicus may respond to the heat, hypoxia, and heat-

hypoxia stresses via the DNAmethylation of heat, hypoxia, and heat-hypoxia stresses via

the DNA methylation of CpG islands of circadian rhythm-related genes, which increased

the activity of energy-related enzymes.
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INTRODUCTION

Heat stress is a negative factor affecting the production and health of cultured animals, endangering
the development of animal husbandry, thus causing serious economic losses and its impacts have
been deteriorated due to global warming (St-Pierre et al., 2003; Quinteiro-Filho et al., 2010). In
practice, heat stress tends to accompany hypoxia stress commonly, and the increased temperature
is always following decreased dissolved oxygen (DO) (Parthasarathy et al., 1992). Therefore, heat
and hypoxia are two related stressors that can threaten the cultured animals alone or in synergy
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(McBryan et al., 2013; Crozier and Hutchings, 2014; Jenny et al.,
2016). Beyond a specific critical temperature, the organisms can
expand their passive caloric range by increasing the anaerobic
metabolic capacity, inducing molecular protective mechanisms
and minimizing metabolic costs through metabolic inhibition
(Pörtner et al., 2017). When organisms are continuously exposed
to heat and hypoxia, the organisms exhibit many physiological
and molecular responses to cope with these stresses, one of
which is heat acclimation (Carter et al., 2005; Hung et al., 2005;
Magalhães et al., 2010).

Heat acclimation is regulated by epigenetic factors from
previous work, such as DNA methylation and histone
methylation (Horowitz, 2016). DNA methylation regulates
cellular response by transferring methyl to the C5 position
of cytosine to form 5-methylcytosine (m5C) with no change
in sequence. DNA sequence can be modified and reversed
by intracellular and extracellular stimuli such as heat,
hypoxia, pollutants, and nutrients (Baylin, 2006; Byun and
Baccarelli, 2014). Previous researches have shown that the DNA
methylation profiles changed under heat stress (Horowitz,
2016). DNA methyltransferases (DNMTs), such as DNMT1 and
DNMT3, have been proven in response to heat stress before
the formation of heat acclimation, indicating a relationship
between methylation modification and heat stress (Dai et al.,
2017, 2018). The pieces of evidence have shown that changes
of CpG methylation profile in HSP70 distal promoter region in
the chicken and high mitochondrial calcium content in Rattus
norvegicusmay respond to heat acclimation (Assayag et al., 2012;
Kisliouk et al., 2017). Data on mitochondrial DNA methylation
in human diseases suggest that DNA methylation may play a
potential role under the harmful environmental stress (Iacobazzi
et al., 2013). Epigenetic-related metabolites produced by
mitochondria play an essential role in processes of epigenetic and
nuclear transcription, such as histone modification, chromatin
remodeling, and nucleosome localization (Shaughnessy et al.,
2014). In general, DNA methylation can help organisms to adapt
to environmental changes through different adjustmentmethods.

Apostichopus japonicus are rich in nutrition and medicinal
value and distributed across the northwest coast of the Pacific
Ocean (Yang et al., 2005; Yuan et al., 2006). The echinoderms
are more sensitive to environmental stress than other marine
organisms, such as ascidians, mollusks, and anthozoans (Riedel
et al., 2012). The heat and hypoxia stresses in summer far
exceeded the optimal conditions for the growth and survival
of A. japonicus, resulting in high mortality (Wang et al., 2015;
Xu et al., 2016). To see the response of A. japonicus through
DNA methylation, the whole-genome DNA methylation of the
respiratory tree of A. japonicus under heat, hypoxia, and heat-
hypoxia stresses were determined. Circadian rhythms drive 24-
h cycles in the physiology and behavior of organisms, and it
enables organisms to synchronize their internal biology with
their external environment to maximize fitness and survival
(Yerushalmi andGreen, 2009;Martinez-Bakker andHelm, 2015).
Many studies have shown that changes in abiotic environmental
conditions, such as heat, hypoxia, and toxic chemicals can affect
circadian rhythms (Pittendrigh and Caldarola, 1973; Lim et al.,
2006; Claudel et al., 2007; Svendsen et al., 2014). In the present

study, the methylation changes of promoters of the circadian
rhythm-related genes under the heat, hypoxia, and combined
stresses, and their probable function were further explored.

MATERIALS AND METHODS

Animals
The A. japonicus in the experiment were collected from the
Shandong Oriental Ocean Technology Co., Ltd., of Yantai, China,
and the A. japonicus is 9.5–11 cm in length and 3.5–4.5 cm in
width with a wet weight of 100 ± 5 g. After being weighed, A.
japonicus were kept at 16 ± 0.4◦C with 5 mg/L DO for a week.
We used 5 mg/L DO because it is the level of DO in seawater
with aeration at 26◦C, which was coincided with the fact that
DO in the living aquarium of the A. japonicus in summer is
maintained at 5–6 mg/L. During acclimation and experiment,
the remaining feed was removed daily. For the stress conditions,
26◦C was used for heat stress and 2 mg/L DO was used for
hypoxia stress, for the fact that the A. japonicus experienced the
limits of temperature at 26◦C and 2 mg/L DO in summer in its
important local living environment of northern Yellow sea and
Bohai sea, as well as the definition of hypoxia by the committee
on Environment and Natural Resources at the National Science
and Technology Council in 2000 (Huang et al., 2012; Liu et al.,
2014; Huo et al., 2019). Then, A. japonicus were divided into
four groups. The standard control (NC) group was maintained in
seawater with 5 mg/L DO at 16◦C. The hypoxia treatment (LO)
group was maintained in seawater with 2 mg/L DO at 16◦C. The
heat stress treatment (HT) group was maintained with 5 mg/L
DO at 26◦C. The heat and hypoxia combined treatment (HL)
group was maintained with 2 mg/L DO at 26◦C.

Under the experimental conditions, the environmental
temperature was gradually increased from 16 to 26◦C at the
rate of approximately 2◦C/h using a 100W heating rod. The
environmental DO level was reduced from 5 to 2 mg/L at the
rate of approximately 1 mg/L/h to simulate environmental stress
via air-N2 gas flow adjustment system, which fills the seawater
with oxygen and nitrogen continuously with real-time DO probe
detection (Cao et al., 2019). The initial time is defined as the time
when the stress group reaches the specified stress condition.

Histology Observation
The respiratory tree, as the unique respiratory organ of A.
japonicus, plays an important role in respiration and metabolism
(Huo et al., 2017). Thus, in this experiment, respiratory tree
was chosen to study the mechanism under heat and hypoxia
stress. The respiratory tree of A. japonicus from each group
(NC, HT, LO, and HL) were collected, which were put into
paraformaldehyde solution, then in 70% ethanol. The samples
were dehydrated in ethanol at a graded series of 70, 75, 85, 95, and
100%, and then embedded in paraffin after rinsing with xylene.
The tissue was cut into 7mm sections and then stained with H&E
(Xu et al., 2015). The tissue sections were observed with light
microscopy (Nikon Corporation, Japan).
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Whole-Genome DNA Methylomics
DNA Extraction and Preparation
After exposure to heat, hypoxia, and heat–hypoxia stress for 48 h,
the respiratory trees of sixA. japonicus from each group (NC, HT,
LO, and HL) were taken and mixed in liquid nitrogen. Genomic
DNA was isolated from A. japonicus respiratory tree using a
TIANamp Genomic DNA kit (Tiangen Biotech, Beijing, China).
DNA quality was detected by 1% agarose gel electrophoresis.

Library Preparation and Quantification
A total of 5.2 µg of genomic DNA was fragmented to 200–250
bp by sonication using a Bioruptor (Diagenode, Belgium), then
the blunt-ending, dA addition to 3′-end, and adaptor ligation.
Bisulfite converted from ligated DNA was treated with EZ
DNA Methylation-Gold Kit (ZYMO Research, CA, USA) which
made the template DNA Illumina HighSeq4000 (BGI, Shenzhen,
China) was used for the sequencing of ligated DNA. Sequence
data have been deposited at the NCBI BioProject database under
accession PRJNA748843.

Methylomic Data Analysis
After sequencing, the raw reads were analyzed by BGI programs
by removing contamination, adaptor sequences, and low-quality
reads to get the clean data. The clean data were mapped to
the genome of A. japonicus by whole genome bisulfite sequence
mapping program (BSMAP), followed by merging the mapping
results and removing the duplication reads (Xi and Li, 2009).
The methylation levels in the NC, HT, LO, and HL groups
were detected by covering each mC by the total reads covering
that cytosine.

Differentially Methylated Region Analysis
The differentially methylated regions (DMRs) were identified
by comparison of the treatment groups and the NC group in
A. japonicus using windows that contained at least five CpG
(CHG or CHH) sites with a two-fold change in methylation
level and Fisher’s test P ≤ 0.05. The degree of difference of
a methyl-cytosine (mCG, mCHG, and mCHH) was calculated
while comparing the methylation level of DMRs in different
groups by CIRCOS (Krzywinski et al., 2009).

The DMR-related genes were mapped to gene ontogeny (GO)
terms in the database for the GO enrichment analysis (http://
www.geneontology.org/) to find the significantly enriched GO
terms by the hypergeometric test. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) identifies significantly enriched
metabolic pathways or signal transduction pathways, and the
calculating formula is the same as that in GO analysis (Kanehisa
et al., 2008).

Bisulfite Treatment of Genomic DNA
Genomic DNA of each group (NC, HT, LO, and HL) was treated
with an EZ DNA methylation GoldTM kit (ZYMO Research,
California, USA), and the unmethylated cytosine (C) in the
sequence was transformed into uracil (U). In the process of PCR
amplification, all uracil (U) was transformed into thymine (T),
and the bisulfite sequencing PCR (BSP) products were sequenced

TABLE 1 | Primers used in this study.

Primers Sequences

PRIMERS FOR BSP

CRY1aproF TTTGGAAGTTTTTTGTATTTTTTG

CRY1aproR AATCACTACTAATAAAAAACCTAATATTAT

CRY1bproF GGTTATTTGAGGGGTTTGTAAAATTA

CRY1bproR CCACAAAAATTCATTAAAAATCATAAAC

CLCproF TATTAGAAGTTTTTGAATATGGTGATTTAG

CLCproR ATTAATCATACCAATCCTCATAAACC

BMAL1exonF TATGAAAAAGGTTTTTAAATAAATTTATAG

BMAL1exonR ATCTTCATATATTACACAACCATCC

PRIMERS FOR RT-PCR

BMAL1-F TTACTGTGCCGAATGCTAATGA

BMAL1-R GGAATCCCAGATGAGTGGAAATA

CRY1a-F CTGGATACATCAGGTGGCTCG

CRY1a-R ACTGGGCAGAAACAGGACGG

CRY1b-F TCGGCTGTCTTTCATCGC

CRY1b-R TCCCTCTGCCCATCTTTTC

CLC-F TTACTGTGCCGAATGCTAATGA

CLC-R GGAATCCCAGATGAGTGGAAATA

TIM-F TCAGTGCGTTTCTGTCTCCC

TIM-R CTGGCATTCGCTTCGGT

β-actin-F CCATTCAACCCTAAAGCCAACA

β-actin-R ACACACCGTCTCCTGAGTCCAT

to determine whether the CpG site was methylated. All the
primers used for BSP are shown in Table 1.

Methylation Modification and Double
Luciferase Experiment
To study the effect of methylation level in promoter
region on the promoter activity, the CpG free vector was
used as described previously (Klug and Rehli, 2006). All
the primers used for plasmid construction are shown in
Table 1. The sequence of all methylation sites of putative
cryptochrome-1a (CRY1a) was screened by BSP and
was further used to construct the recombinant plasmid
CpGCRY1apro-1. The sequence of all the methylation sites
of putative cryptochrome-1b (CRY1b) and the sequence of
84 methylation sites were screened by BSP and were further
used to construct the recombinant plasmid CpGCRY1bpro-
1 and CpGCRY1bpro-2, respectively. CpGCRY1apro-1,
CpGCRY1bpro-1, and CpGCRY1bpro-2 were separately
transfected into EPC cells and tested for the promoter activities
using the dual luciferase test to the protocol of the CpG
Methyltransferase (M.SssI) kit (Thermo Fisher Scientific,
MA, USA).

Real-Time Quantitative PCR
The respiratory trees of A. japonicus from each group (NC,
HT, LO, and HL) were taken with three biological replicates
after exposure to stress for 0, 6, and 18 h. After that,
RNA was extracted to detect the expression of circadian
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rhythm-related genes. Total RNA was isolated from respiratory
trees with the Trizol total RNA Kit (Takara Bio, Dalian,
China) and treated with DNase I (Sigma, NY, USA) to
remove genomic DNA. The concentration was detected via
Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA).
According to the TaKaRa M-MLV RTase cDNA synthesis
kit, 1 µg of RNA was used for cDNA synthesis (TaKaRa
Bio, Dalian, China). The β-actin of A. japonicus was used
as the internal standard. All the primers used for real-
time quantitative PCR (qRT-PCR) are shown in Table 1. The
baseline was set automatically by the software to maintain
consistency. The expression levels of the circadian rhythm-
related genes were determined by the 2−11CT method
(Livak and Schmittgen, 2001).

Enzyme Activity Measurement
Considering the fact that pyruvate kinase (PK) is the rate-
limiting enzyme catalyzing the final step in glycolysis, converting
phosphoenolpyruvate (PEP) to pyruvate while phosphorylating
ADP to produce ATP and ATPase is a kind of enzyme that
catalyzes the hydrolysis of ATP to ADP, the enzyme activities
of PK and ATPase were measured because both of which
could reflect the energy metabolism of the organism (Lunt
and Vander Heiden, 2011). ATPase and PK enzyme activities
were measured in the A. japonicus collected from groups of
NC, HT, LO, and HL. After 24 h of treatment under heat,
hypoxia, and heat-hypoxia stress, the respiratory tree was
quickly placed into liquid nitrogen, and the cell lysate was
obtained after grinding. The BCA Protein Assay Kit detected
the protein concentration. PK activity and ATPase activity
were detected using the pyruvate kinase assay kit and the
ATPase assay kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China).

To see if the CRY1a and CRY1b gene were involved, dsRNA
CRY1a and dsRNA CRY1b were applied. The dsRNA was
obtained using theMEGAscriptTM T7 Transcription Kit (Thermo
Fisher Scientific, MA, USA) by primers whose production
was about 500 bp, with the T7 promoter sequence added in
the forward primer. The designed fragment did not overlap
with the quantitative verification fragment. In the study, 50
µl CRY1a dsRNA or CRY1b dsRNA were injected into A.
japonicus using a 1ml syringe. The expressions of CRY1a
and CRY1b after interference were performed to verify its
success interference rate. The A. japonicus were divided into
the CRY1a interference group and CRY1b interference group.
After interference, the enzyme activity of ATPase and PK was
measured after 24 h of treatment under heat, hypoxia, and heat–
hypoxia stresses.

Statistical Analysis
Statistical analysis was performed using the two-tailed Student’s
t-test. One-way ANOVAwas applied to determine the differences
between the control and the experimental groups. Any
significant difference relative to the control for each time
point was indicated using ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001.

RESULTS

Changes in the Morphology of the
Respiratory Tree Under Standard Control
(NC), Heat Stress Treatment (HT), Hypoxia
Treatment (LO), and Heat-Hypoxia
Combined Treatment (HL) Groups
When the A. japonicus was reared in seawater in the groups
of heat stress treatment (HT), hypoxia treatment (LO), and
heat-hypoxia combined treatment (HL), the morphology
of the respiratory tree changed dramatically. Using light
microscopy, the structural changes in the respiratory tree
were observed (Figure 1A). The size of the muscular layer
marked the overall outline of the respiratory tree. In the
standard control (NC) group, the thickness of connective
tissue was high, and the dendritic lining epithelium
was well-distributed and well-organized. The atrophy of
connective tissue and dendritic lining epithelium was
observed in all three groups. The thickness of connective
tissue decreased, and the degeneration of connective tissue
was the most obvious in HL group among all the three
treatment groups. The dendritic lining epithelium and the
dendritic lining epithelium, distributing on the inner side
of connective tissue, continued to be shrinking in all three
treatment groups.

Genome-wide DNA Methylation Patterns of
A. japonicus
To further understand the molecular mechanism after the
heat, hypoxia, and heat-hypoxia stresses, the genome-wide
DNA methylation patterns of A. japonicus were investigated.
Approximately 4% of all genomic C sites were methylated.
Methylation in the DNA of A. japonicus was found to exist in
three sequence sites: CG, CHG, and CHH (where H is A, C,
or T), and 25.522% CG, 0.585% CHG, and 0.597% CHH was
methylated in the mapping reads. A higher rate of methylated
sites was present in the structure gene regions of internal exon
and internal introns. Among all the regions, the average level
of methylation in promoter regions was the lowest (Figure 1B).
The DNA methylation in the other three treatment groups
(HT, LO, and HL) showed the same characterization in the
control sample.

DMR Analysis
DMRs were detected to characterize the differences in whole-
genome DNA methylation levels among NC and HT, LO, and
HL groups, respectively. A total of 43,929, 39,820, and 43,901
DMRs were separately identified in the three treatment groups
compared with the NC group, which were mainly related to
the methylation of CG sites (Table 2). DMRs could be divided
into two contents, one kind located inside the structural gene
regions (named DMRs associated with genes), and another kind
located inside the promoter region (named DMRs associated
with promoters). Approximately 19% of DMRs were identified as
DMRs associated with the gene, and 8% of DMRs were identified
as DMRs associated with the promoter (Figure 1C).
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FIGURE 1 | (A) Tissue section of the respiratory tree in A. japonicus under heat stress (26◦C, 5 mg/L DO), hypoxia stress (16◦C, 2 mg/L DO), heat–hypoxia stress

(26◦C, 2 mg/L DO), and NC group (16◦C, 5 mg/L DO) for 24 h. ct, connective tissue; le: lining epithelium; ml, muscular layer. Scale bar 500µm. (B) Canonical DNA

methylation profiles of the entire transcriptional units of the NC group. (C) Pie chart proportion of DMR corresponding genes, promoters, and other regions. (D) Venn

diagram of the DMRs in the NC, HT, LO, and HL groups.

The DMRs associated with genes and DMRs associated with
promoters were analyzed by GO and KEGG. The GO analysis
showed that DMRs associated with genes or promoters were
significantly enriched in the biological process of cellular process,
metabolic process, cellular component of membrane, membrane
part and molecular function of binding, and catalytic activity

in all the three groups of HT, LO, and HL (Figure 2). Kyoto
Encyclopedia of Genes and Genomes analysis showed that these
DMRs associated with promoters were enriched in a notch
signaling pathway and circadian rhythm in the groups of HT,
LO, and HL (Figure 3A). The DMRs associated with genes
were significantly enriched in ubiquitin-mediated proteolysis,
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lysosome, and other glycan degradation in the groups of HT
and HL, while significantly enriched in apoptosis and fatty acid
metabolism in the groups of LO (Figure 3B).

Through the analysis of the Venn diagram of the DMRs in
the groups of NC, HT, LO, and HL, 3,872 DMRs associated with
genes and 1,019 DMRs associated with promoters were identified
in all of the three treatments groups simultaneously (Figure 1D).
Then, further analysis of the network of signal pathways of the
3,872 DMRs associated with genes and 1,019 DMRs associated
with promoters were performed through KEGG enrichment
(Figures 4, 5). The network of DMRs associated with genes was
enriched in a big category, such as endocrine resistance, Th1
and Th2 cell differentiation, thyroid hormone signaling pathway,
and dorso-ventral axis formation, which may take functions
with notch signaling pathway. The network of DMRs associated
with promoters was mainly enriched into two categories. One
category consisted of the notch signaling pathway and the
mRNA surveillance pathway. The other category consisted
of the circadian rhythm, the calcium signaling pathway, the
oxytocin signaling pathway, and the apelin signaling pathway.
The circadian rhythm was first enriched in KEGG in all the
treatment groups of DMRs associated with promoters from the
results above. The circadian rhythm was further enriched in the
network of signal pathways via the KEGG enrichment of DMRs
in all of the three treatments groups simultaneously selected
from the Venn diagram. In addition, circadian rhythm took the
functions as a center and regulated peripheral signaling pathways
in the network of DMRs associated with promoters. So, circadian
rhythm was chosen for further study.

Relative Expression of Circadian
Rhythm-Related Genes Under Heat and
Hypoxia
Five circadian rhythms-related genes were identified from
the genome of A. japonicus: CRY1a, CRY1b, Putative aryl
hydrocarbon receptor nuclear translocator like 1 (BMAL1),
Clock (CLC), and Timeless (TIM). The expression of circadian
rhythm-related genes was studied after heat, hypoxia, and heat–
hypoxia stress for 0, 6, and 18 h (Figure 6A). At the HT
group, BMAL1 increased significantly and peaked at 6 h (6.88-
fold of the control, P < 0.01). The expressions of CRY1a and
CRY1b reached peaked at 18 h (2.56- and 2.63-fold, respectively,
P < 0.05). There was no significant difference in CLC and
TIM. In the LO group, the expression of CRY1a decreased
continuously and reached the lowest level at 18 h (0.55-fold
of the control, P < 0.05). However, the expression of CRY1b,
CLC, and TIM decreased at 18 h, while BMAL1 had no
changes. The expressions of CRY1a, CRY1b, BMAL1, CLC,
and TIM were significantly decreased in the group of HL (P
< 0.05).

Methylation of the Promoters of Rhythmic
Genes
Among the five circadian rhythms-related genes, CRY1a, CRY1b,
andCLC, BMAL1 possessed hypermethylated CpG island regions
when identified through the whole genome DNA methylomics.
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FIGURE 2 | (A) Gene ontogeny (GO) assignments of DMRs associated promoters of HT, LO, and HL groups compared with NC group. (B) GO assignments of DMRs

associated genes of HT, LO, and HL groups compared with NC group. The abscissa represents the number of genes or promoters associated with methylation, and

the ordinate represents the GO terms. Different colors represent the three GO terms, such as cell components, biological processes, and molecular functions.

There are four high CpG islands as follows: CRY1a promoter
region (site 299378–site 299529), CRY1b promoter region (site
52083–site 52112), CLC promoter region (site 3142–site 3218),
and BMAL1 exon 1 region (site 280973–site 281011). The
methylation sites of CRY1a, CRY1b, BMAL1, and CLC in these
regions were identified under heat, hypoxia, and heat–hypoxia
stresses (Figure 7A). The methylation level of CRY1a CpG island
region showed significant differences under heat, hypoxia, and
heat–hypoxia stresses compared with the group of NC. The
probability of methylation was 30% in the HT group and about

10% in the LO group, and 10% HL group compared with the
control group. The probability of methylation of CRY1b CpG
island region did not change, except for the methylation of site
84 significantly increased in the group of HT, LO, and HL, with
about 30% probability of occurrence. The methylation level of
BMAL1 and CLC did not change significantly compared with the
NC group. The results of the dual-luciferase assay showed that
when CpGCRY1apro-1 or CpGCRY1bpro-1 was methylated, the
promoter activity containing the CpG island region decreased
significantly (P < 0.05, Figure 7B). In addition, the activity of
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FIGURE 3 | (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DMRs associated promoters of HT, LO, and HL groups compared with NC

group. (B) KEGG pathway analysis of DMRs associated genes of HT, LO, and HL group compared with NC group. The abscissa represents the proportion of the

number of DMRs belonging to a specific KEGG pathway to the whole number of differentially expressed genes, and the ordinate represents the specific KEGG

pathway.

CpGCRY1bpro-1 and CpGCRY1bpro-2 decreased to a similar
extent after methylation.

Function of CRY1a and CRY1b Under Heat,
Hypoxia, and Heat–Hypoxia Stress
The response of aquatic species to heat and hypoxia is to
enter a state of low metabolism, reduce metabolic rate, suspend
development and reproduction, and survive in the critical
ecological changes. The activities of two enzymes, PK and
ATPase, which dominated the energy levels, were detected under
the three tested conditions (Figure 6B). Compared with the
enzyme activity of the normal A. japonicus in the NC group
(39.4 U/mgprot), the PK activity in the HT group and HL
group increased significantly (P < 0.05), but there was no
significant difference in the LO group (P > 0.05). Compared
with the ATPase activity of A. japonicus in the NC group (102.3

U/mgprot), the ATPase activity increased significantly in the HT
group (141.3 U/mgprot, P < 0.001). In comparison, it decreased
in the LO group (66.1 U/mgprot, P > 0.05), and there was no
significant difference in the ATPase activity in the HL group.

To see if CRY1a and CRY1b were involved in the energy
generation, CRY1a and CRY1b were interfered in vivo. The PK
activity in the interference groups was significantly increased
under all three conditions (P < 0.001). In the CRY1a interference
group, the highest PK activity was found in the HT group
(84.5 U/mgprot), followed by the HL and LO groups. In the

CRY1b interference group, the highest PK activity was found

in the HL group (122.4 U/mgprot), followed by the HT group

and LO group. The PK activity in the dsRNA CRY1b group
was higher than that in the dsRNA CRY1a group. Compared
with the control group, the ATPase activity of the interference
groups was also significantly increased (P < 0.001). Among the
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FIGURE 4 | Network of signal pathways via the KEGG enrichment of DMRs associated genes in all of the three treatments groups simultaneously selected from Venn

diagram.

CRY1a interference groups, ATPase activity was highest in the
HT group (883.6 U/mgprot). Among the CRY1b interference
groups, ATPase activity was highest in the HL group (874.3
U/mgprot) (Figure 6B).

DISCUSSION

From the results of the respiratory tree became smaller and
shrunk with small diffuse debris suffering from heat and hypoxia

stress, it suggested that the respiratory tree was sensitive to heat
and hypoxia, and can well-reflect the changes of environmental
stress on the respiratory tree (Huo et al., 2018). After analyzing
various methylation patterns (CG, CHG, and CHH) of whole-
genome DNA in the respiratory tree of A. japonicus, most
DNA methylation occurred at CpG sites, which was consistent
with the methylation happened in mammals (Lister et al.,
2011; Tomizawa et al., 2011; Ziller et al., 2011). It was shown
that 19% of DMRs associated with genes and 8% of DMRs
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FIGURE 5 | Network of signal pathways via the KEGG enrichment of DMRs associated promoters in all of the three treatments groups simultaneously selected from

the Venn diagram.

associated with promoters might significantly influence the
gene expression. DMRs localized in the internal sequence of
the gene, such as internal exon and internal introns, which
may affect gene expression via changes in chromatin structure
or transcription efficiency (Lorincz et al., 2004; Klose and

Bird, 2006; Suzuki and Bird, 2008). DMRs located in promoter
regions which were detected in this study, the activity of
CpG regions in promoters of CRY1a and CRY1b decreased
modified by in vitro methylation. There are two explanations
for the mechanism of DNA methylation maintaining promoter
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FIGURE 6 | (A) The relative expression of genes of circadian rhythm under heat stress, hypoxia stress, and heat–hypoxia stress. (B) The relative expression of CRY1a

and CRY1b after interference and relative activity of PK and ATPase under heat stress, hypoxia stress, and heat–hypoxia stress for 24 h and the interference groups of

dsRNA CRY1a and dsRNA CRY1b under heat stress, hypoxia stress, and heat–hypoxia stress for 24 h.

FIGURE 7 | (A) Methylation sites of CRY1a, CRY1b, BMAL1, and CLC under heat stress, hypoxia stress, and heat–hypoxia stress. The histogram represents the

proportion of methylation and unmethylation, black represents methylation and white represents unmethylation. Dot graph: each row represents a single clone, 10

replicates. Each dot represents a CpG dinucleotide, the white dot represents unmethylated CpG, and the black dot represents methylated CpG. (B) Promoter activity

of CRY1a, CRY1b, CpGCRY1apro-1, and CpGCRY1bpro-1 selected all methylated sequences from (A), and CpGCRY1bpro-2 selected the methylation sequence at

site 84 from (A) (the sequence was screened by repeated experiments).
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silencing. First, methylation changes chromatin structure and
inhibits transcription factors and co-transcription factors,
thereby reducing the gene expression. Second, DNA methylation
can recruit methyl binding proteins (MSPs) to inhibit chromatin
state through interaction-maintained promoter silencing
(Campanero et al., 2000; Joulie et al., 2010; Deaton and Bird,
2011). The results of GO and KEGG of DNA methylation status
of promoter and gene regions showed that notch signaling
pathway, Th1-Th2 pathway, apelin pathways, and circadian
rhythm were enriched, which were all regulated by circadian
rhythm (Arjona and Sarkar, 2006; Henley et al., 2009; Cai et al.,
2018).

Furthermore, Li discovered Klf2 and Egr1 exerted the
effects through a clock gene-controlled process through genome
sequence analysis under heat and hypoxia stress (Li et al., 2018).
It indicated that circadian rhythm might act as a manager to
regulate numerous signaling pathways in response to heat and
hypoxia in A. japonicus. Although global DNA methylation
has been analyzed in the respiratory tree of A. japonicus by
Guo (Guo et al., 2013) and Zhao (Zhao et al., 2015), only
the differences in overall DNA methylation levels between the
respiratory tree and other tissues were discussed without defined
pathways analysis. This study is the first to systematically explore
the DNA methylation under heat, hypoxia, and simultaneous
heat–hypoxia stresses.

In this study, the expression of CRY1a, CRY1b, BMAL1,
CLC, and TIM in HT, LO, and HL groups suggested that
circadian rhythm may play an important role in A. japonicus
response to environmental stressors. The expressions of CRY1a
and CRY1b increased in the group of HT, which were consistent
with the study that heat upregulated the expression of CRY
(Ji et al., 2018) but were inversely proportional to the results
of DNA methylation inhibiting the activity of CpG regions in
our experiment. In comparison, decreased expression of CRY1a
and CRY1b in the groups of LO and HL were consistent with
results of DNAmethylation inhibiting the activity of CpG regions
in our experiment. Studies have shown no correlation between
promoter DNA methylation and transcriptional activity of some
genes (Grimm et al., 2013; Vucic et al., 2014; Yoo et al., 2015).
Additionally, we only selected 200 bp CpG island regions for
promoter activity detection, which cannot represent the whole
promoter activity.

Moreover, promoter DNA methylation can also be involved
in regulating the expression of other distal genes (Bell et al.,
2011; Yoo et al., 2015). Then we compared the stress conditions
of the HT group and groups LO and HL. The cause of this
phenomenon may be hypoxia stress. The study showed that
hypoxia stress increased HIF-1 α, which decreased CRY content
to some extent (Dimova et al., 2019). The circadian rhythms may
be destroyed in extremely harsh environments, such as heat–
hypoxia. Therefore, DNA methylation is not a single negative
regulatory relationship with gene expression, and we need to
further study the mechanism of methylation modification on
gene expression of CRY1a and CRY1b.

To study the relationship between circadian rhythm and
energy metabolism, PK and ATPase enzyme activities in groups

of NC,HT, LO, andHLwere detected, which were consistent with
the expressions of CRY1a and CRY1b. The expression level and
enzyme activity increased in the HT group while decreasing in
LO and HL groups. In addition, the activity of PK and ATPase
increased significantly after interfering with CRY1a and CRY1b,
which suggests that CRY1a and CRY1b may inhibit PK activity
and ATPase to some extent. As lower basal metabolic rate in
heat acclimation organisms, circadian rhythm may contribute to
the formation of heat acclimation by regulating the metabolizing
enzyme activity. Studies have shown that heat stress delays the
circadian rhythm of subsequent activities for several hours under
constant temperature and dark conditions, compared with flies
without heat stress (Sidote et al., 1998). It is suggested that heat
may cause the rhythm delay of CRY1a and CRY1b, leading to
dynamically change in activities of PK and ATPase to satisfy the
energy demand of the body or a result of metabolic compensation
(Lemos et al., 2003).

In general, this study provided a comprehensive analysis of
DNA methylation in A. japonicus, and circadian rhythm was
determined to be involved in response to the heat, hypoxia,
and heat–hypoxia stresses via DNA methylation. Therefore, the
results of this study might provide new clues for deciphering the
response of A. japonicus to the global warming signals via the
circadian rhythm and methylation modification.
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