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10 Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland, 11 Department of Separation Science, LUT School
of Engineering Science, LUT University, Mikkeli, Finland, 12 Latvian State Institute of Wood Chemistry, Riga, Latvia,
13 Department of Environmental Sciences, University of Latvia, Riga, Latvia, 14 Institute of Biomedical Sciences Abel Salazar,
University of Porto, Porto, Portugal, 15 ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and
Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany, 16 Rudolfs Cimdins Riga
Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Riga, Latvia, 17 Baltic Biomaterials Centre of Excellence, Riga Technical
University, Riga, Latvia, 18 Ege University Application and Research Center for Testing and Analysis (EGE MATAL), İzmir,
Turkey, 19 Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden, 20 Institute
of Environmental Sciences, Bogazici University, Istanbul, Turkey, 21 Waste Laboratory, University of Muhammadiyah Malang,
Malang, Indonesia, 22 Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies,
Jelgava, Latvia, 23 Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National
and Kapodistrian University of Athens, Athens, Greece, 24 Department of Urban Studies/Environmental Science, Malmö
University, Malmö, Sweden, 25 Marine Research Institute, Klaipėda University, Klaipėda, Lithuania, 26 Estonian Marine
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Biomass is defined as organic matter from living organisms represented in all kingdoms.
It is recognized to be an excellent source of proteins, polysaccharides and lipids and,
as such, embodies a tailored feedstock for new products and processes to apply
in green industries. The industrial processes focused on the valorization of terrestrial
biomass are well established, but marine sources still represent an untapped resource.
Oceans and seas occupy over 70% of the Earth’s surface and are used intensively
in worldwide economies through the fishery industry, as logistical routes, for mining
ores and exploitation of fossil fuels, among others. All these activities produce waste.
The other source of unused biomass derives from the beach wrack or washed-
ashore organic material, especially in highly eutrophicated marine ecosystems. The
development of high-added-value products from these side streams has been given
priority in recent years due to the detection of a broad range of biopolymers, multiple
nutrients and functional compounds that could find applications for human consumption
or use in livestock/pet food, pharmaceutical and other industries. This review comprises
a broad thematic approach in marine waste valorization, addressing the main
achievements in marine biotechnology for advancing the circular economy, ranging
from bioremediation applications for pollution treatment to energy and valorization for
biomedical applications. It also includes a broad overview of the valorization of side
streams in three selected case study areas: Norway, Scotland, and the Baltic Sea.

Keywords: marine waste, marine industrial by-products, marine biopolymers, marine biomass, waste
valorization, circular economy, blue biotechnology, beach wrack

INTRODUCTION

Marine biomass represents a biotechnological resource with
great diversity in composition and functional properties due to
various bioactive compounds, from polyphenols and peptides
to polysaccharides. Considering the shortage of terrestrial
resources, the constantly increasing and aging population, there
is an urgent need to propose alternative sources of food
and novel medicine. There is a growing consumer awareness
regarding the relationship between diet and health, resulting
in elevated demand for new fish products with enhanced
nutritional and functional properties (Al Khawli et al., 2019).
Moreover, according to the World Health Organization (2021),
musculoskeletal conditions are the main contributors that cause
disability, thus personalized solutions, methods and materials
for tissue regeneration are widely studied. Although often
overlooked, marine waste can represent a practical alternative
resource to address multiple societal challenges (Chubarenko
et al., 2021). This review discusses mainly the state-of-the-art
of valorization potential of two sources of marine wastes, (i)
marine industries biowaste (focusing on fishery and aquaculture
industries), as well as (ii) beach wrack. Indeed, the exploitation
of marine biomass and valorization of seafood by-products
either directly or by the extraction of biopolymers seems to
be a promising alternative, leading to more environmentally
sustainable uses of marine resources and higher economic

benefits, in line with the circular economy and blue bioeconomy
concepts. The realization of such developments is hampered by
the lack of appropriate regulatory frames to enable the use of
waste and by-products and to ensure the safety, quality, and
acceptability of the product.

Beach Wrack
Beach-cast sea wrack or simply beach wrack is an organic material
consisting of seagrass or seaweed biomass (Macreadie et al.,
2017), various marine invertebrates, as well as human-made
litter, mostly plastics (Oliveira et al., 2020), which accumulates
on beaches due to the action of waves, tides, and aperiodical
water level fluctuations (Suursaar et al., 2014). Despite the
natural origin of most of this material and its significant
ecological role (Dugan et al., 2003; Orr et al., 2005; Defeo et al.,
2009; Nordstrom et al., 2011), beach wrack often becomes a
social amenity (Kirkman and Kendrick, 1997; Macreadie et al.,
2017) and/or presents environmental issues, if accumulated in
excessive amounts (McGwynne et al., 1988; Macreadie et al.,
2017). Anthropogenic pressure, such as shoreline reconfiguration
(Macreadie et al., 2017), eutrophication (Risén et al., 2017)
and climate change (Macreadie et al., 2011), stimulate the
accumulation of wrack onshore and multiply the negative
impacts on the environment as mentioned above. Likewise,
marine eutrophication and climate change do not only affect
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the accumulation of sea wrack and its degradation, but this
may be exacerbated in return by the products of aerobic
decomposition as well. It is estimated that the annual global
carbon flux from seagrass wrack to the atmosphere is between
1.31 and 19.04 Tg C/yr (Liu et al., 2019). Coordinated collection
and valorization of beach wrack could be an intervention to
mitigate the eutrophication processes by lowering the nutrient
concentrations from the sea as well as lowering the nitrogen
to phosphorus ratio. The collection and processing of beach
wrack is in line with the European Union (EU) waste law
(Regulation, 2008/98/EC), where its recycling is a priority.
Importantly, the collection and removal of near-shore beach
wrack is associated with estimated costs between 6 and 120 €
per ton of disposed wrack or 38 € per meter of beach and
an additional 85 € per ton for material drying (Mossbauer
et al., 2012; Barbot et al., 2016). Hence, new value chains and
business models should be developed to change the perspective
of beach wrack from a cost-intensive to a profitable activity.
Traditionally, this biomass was either composted (also with
fresh-terrestrial green waste, thus contributing to the blue-green
innovations) and utilized as a biofertilizer or for biomethane
production (Barbot et al., 2016; Weinberger et al., 2020;
Borchert et al., 2021). However, there are still unexploited
opportunities to maximize its valorization potential in other
industries, thus maintaining the circularity of financial and
biological resources.

By-Products From Fishery and
Aquaculture
According to the Food and Agriculture Organization (FAO), in
2018, about 88% of 179 million tons of total fish production was
utilized for direct human consumption, while the remaining 12%
was used for non-food purposes (FAO, 2020). Until now, all by-
products of fish processing, estimated at up to 75% of the raw
material (Rustad et al., 2011), were discarded or used directly as
feed, in silage or fertilizers. Such fishery waste includes fish or by-
catch species, having low or no commercial value, undersized or
damaged commercial species, species of commercial value caught
in insufficient amount to warrant a sale, as well as unused fish
tissues, including fins, heads, skin and viscera (WRAP, 2012;
Caruso, 2016). Nowadays, there is an increasing trend of using
these by-products as materials to produce fishmeal and fish oil
(currently estimated at 25–35%) (FAO, 2020). Moreover, other
aquatic organisms, such as shellfish, seaweeds and aquatic plants,
are being increasingly used in experimental projects for the
production of food, feed, pharmaceutical and cosmetic products,
as well as to produce biomaterials, biofuels and to improve the
efficiency of water treatment (Barbot et al., 2016; Nisticò, 2017;
Poblete-Castro et al., 2020). Nevertheless, the world’s fisheries
discards are still high, exceeding 10%, equivalent to 9.1 million
tons of the total production of marine fishery catch (as per 2014
data) and around 5.2 million tons/yr in the European Union
(Pérez Roda et al., 2019). In fisheries and aquaculture combined,
it is estimated that 35% of the global harvest is either lost or
wasted every year (FAO, 2020). Therefore, additional valorization

approaches are needed to minimize the amounts of discards and
maintain the circularity of resources.

Since January 2019, discards at sea have become an illegal
practice in the waters of the EU, increasing the need for a
complete valorization of all landed fishery waste, both for large-
scale and small fisheries operators. This creates a sociological and
environmental imperative for the reduction of these discards and
utilization of fishery waste as a potential resource (Rustad et al.,
2011; Caruso, 2016). Regulatory frameworks, capacity building,
services, infrastructure, as well as physical access to markets
are therefore needed to reduce fish loss and waste. The above-
mentioned measures can also contribute to improving resource
sustainability and food security (FAO, 2020). Furthermore, the
need for responsible fisheries and aquaculture practices to help
preserve aquatic biodiversity has driven the search for alternative
valorization routes for fish waste streams, such as heads, guts,
skins, scales, and bones.

General Processing Aspects
When processing beach wrack or fishery by-products, it is
crucial to start their processing as early as possible to minimize
physical, chemical, and microbial degradation. To preserve the
raw materials for as long as possible, chilling, freezing or
acidification using organic acids is performed (Rustad et al.,
2011). In general, by-products from side streams or waste
can be valorized as they are, using appropriate extraction,
purification and downstream processing methods (Figure 1).
Alternative methods, such as hydrolysis, ensilaging, fermentation
and gelation (surimi production from the fish protein fraction)
with food-grade enzymes and/or microorganisms have been
optimized for extraction and production of concentrated marine
oils, functional protein food ingredients and products, as well
as pharmaceutical-grade biopolymers and textiles (Kim, 2013;
Lopez-Caballero et al., 2014). These methods are easily used to
a wide range of industrial applications in the food, nutraceutical
or biomedical sectors. This valorization approach favors the
circular economy concept, providing an immediate solution
for the reuse or recycling of materials. Biobased production
of biopolymers can then be coupled with either sourcing the
producer organism and its growth in bioreactors or microbial
production in heterologous systems to guarantee a sustainable
supply of the biopolymers. For example, hyaluronic acid
production was demonstrated in Bacillus subtilis, Lactococcus
lactis, and Pichia pastoris (de Oliveira et al., 2016; Badri
et al., 2019). However, there are still challenges to successfully
produce biopolymers using microorganisms, namely the complex
regulatory mechanisms and in vivo polymerization. Nevertheless,
fine-tuning of the expression of endogenous or heterologous
genes has now advanced using molecular techniques, applying
inducible and/or controllable genetic switches, such as CRISPR-
Cas tools.

The remainder of this article is structured as follows. Section
“Direct valorization of marine waste biomass” describes the
alternatives for direct utilization of marine waste biomass.
Section “Valorization of marine biopolymers” presents the
potential applications of biopolymers from waste biomass, while
the overarching European strategies are depicted in Section

Frontiers in Marine Science | www.frontiersin.org 3 October 2021 | Volume 8 | Article 723333

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-723333 October 13, 2021 Time: 15:8 # 4

Rudovica et al. Marine Waste Valorization

FIGURE 1 | The options for utilization of side-stream marine by-products: simple production or combination of bio-based production and growth of producer
species or production in heterologous systems, guaranteeing a sustainable sourcing (in case of bio-based production) or a sustainable supply (in case of the
complex process of production) of marine biopolymers.

“Valorization of marine biomass as a European strategy.” Finally,
Section “Case studies” describes selected case studies in Norway,
Scotland and the Baltic Sea. These Northern European solutions
could serve to provide future transfer of knowledge action plans
toward Southern Europe and beyond.

DIRECT VALORIZATION OF MARINE
WASTE BIOMASS

Biosorbents
The basic definition of biosorption is the removal of various
contaminants using materials of biological origin (biomass). It
is a process typically independent of energy, employing dead or
waste biomass of low cost. Most biological waste materials can
be efficiently and directly used as readily available biosorbents for
removal of organic and inorganic pollutants and radionuclides
from e.g., residual waters (de Freitas et al., 2019; Silva et al.,
2019; Beni and Esmaeili, 2020; Fawzy and Gomaa, 2020; Magesh
et al., 2020; Ubando et al., 2021; Table 1). Biosorption of
pollutants on biosorbents usually includes several mechanisms
based on the presence of appropriate functional groups (e.g.,
hydroxyl, carboxyl, amino, phosphate, sulfate, amide, imidazole,
thiol, acetamide, etc.), which can interact with target pollutants.
The adsorption efficiency can be increased through appropriate
physical or chemical treatments (Bulgariu and Bulgariu, 2016;
Safarik et al., 2018). The exhausted biosorbents have to be
appropriately treated, including regeneration and reuse of
biosorbents in multiple biosorption cycles. The totally exhausted
biosorbents can then be used as fertilizers for soil remediation, or
to form biochar through pyrolysis (Bãdescu et al., 2018). On the
contrary, bioaccumulation employs living (micro-) organisms,
and appropriate nutrients must be added continuously. Most
pollutants are accumulated inside the cell, and thus the

possibility of regeneration and repeated use is very limited
(Beni and Esmaeili, 2020).

Seagrasses, macroalgae, as well as microalgae, have been
extensively studied as biosorbents for the removal of various
aquatic pollutants (e.g., metal ions, dyes, etc.) (Table 1). The
algal cell wall is composed of polysaccharides (e.g., alginate),
which have multiple functional groups that act as binding sites
for metals and other pollutants. Brown algae, in particular, are
very efficient biosorbents for the removal of different metal ions
from water due to their unique features, such as high alginate
content, higher uptake capacities, and their unlimited availability
in the oceans (Davis et al., 2003). The biosorption capacity of
algae for specific metals depends on several factors, such as
the number of binding sites in the algae, the sites’ accessibility,
the availability of the site and affinity between the binding site
and the metal (Davis et al., 2003). For example, Saldarriaga-
Hernandez et al. (2020) reviewed the bioremediation potential
of Sargassum sp. in a circular economy approach. Brown marine
macroalgae as natural cation exchangers for the removal of toxic
metals were also reviewed (Figueira et al., 2000; Davis et al.,
2003; Bilal et al., 2018; Mazur et al., 2018). He and Chen (2014)
published a comprehensive review of heavy metal biosorption by
algal biomass and discussed materials, performances, chemistry
and modeling simulation tools. Biomass from marine macroalgae
and seagrasses can be obtained in large quantities at a low
price, provided that their harvesting is sustainable and does not
affect the ecosystem balance in coastal areas. Different species
of marine algae have been used to remove various metal ions,
colorants (dyes) and other pollutants from water (Sheng et al.,
2007; Bhatnagar et al., 2012; Aytas et al., 2014; Navarro et al.,
2014; Rathod et al., 2014; Vijayaraghavan et al., 2015; Jerold
and Sivasubramanian, 2016; Ungureanu et al., 2016; Mokhtar
et al., 2017; Vigneshpriya et al., 2017; Arumugam et al., 2018;
Kishore Kumar et al., 2018; Silva et al., 2019; Bouzikri et al., 2020;
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TABLE 1 | Potential of marine biomass to act as biosorbents of organic and inorganic pollutants.

Type of marine
biomass

Taxonomy Target pollutant References

Heavy metals

Algae Enteromorpha prolifera (magnetically
modified)
Cladophora sericea

Cobalt, Nickel

Antimony

Zhong et al., 2020
Ungureanu et al., 2016
Ungureanu et al., 2016

Chlorella vulgaris Cadmium Cheng et al., 2017

Sargassum sp. Lead, Copper, Cadmium, Nickel, Zinc,
Cobalt, Mercury

Davis et al., 2003; Sheng et al., 2007; He and
Chen, 2014; Saldarriaga-Hernandez et al., 2020

Sargassum cinereum Lead Kishore Kumar et al., 2018

Sargassum
filipendula

Silver, Cadmium, Chromium, Copper,
Nickel, Zinc

Cardoso et al., 2017

Padina pavonia Uranium, Lead Aytas et al., 2014; He and Chen, 2014

Pelvetia canaliculata Nickel Bhatnagar et al., 2012

Ulva fasciata Chromium, Copper He and Chen, 2014; Shobier et al., 2020

Ulva intestinalis Mercury Fabre et al., 2020

Ulva lactuca Mercury, Cadmium He and Chen, 2014; Fabre et al., 2020

Ulva rigida Antimony Ungureanu et al., 2016

Ulva rigida Arsenic, Selenium Filote et al., 2017

Crab shell Clistocoeloma sinensis Lead, Zinc Zhou et al., 2016

Cancer pagurus Mercury Rae et al., 2009

Shrimp shell Farfantepenaeus aztecus Nickel Hernández-Estévez and Cristiani-Urbina, 2014

Industrial dyes

Algae Bifurcaria bifurcata Reactive Blue 19, Methylene Blue Bouzikri et al., 2020

Caulerpa lentillifera Astrazon R© Blue R© FGRL, Astrazon Red
GTLN

Marungrueng and Pavasant, 2007

Cymopolia barbata (magnetically
modified)
Cystoseira barbata (magnetically
modified)
Euchema spinosum

Safranin O

Methylene Blue

Methylene Blue

Mullerova et al., 2019

Ozudogru et al., 2016

Mokhtar et al., 2017

Kappaphycus alverezii Methylene Blue Vijayaraghavan et al., 2015

Nizamuddina zanardini Acid Black 1 Esmaeli et al., 2013

Sargassum sp. Anionic dyes, Methylene Blue,
Malachite Green, Acid Black

Saldarriaga-Hernandez et al., 2020

Sargassum horneri
(magnetically modified)

Sargassum swartzii

Acridine orange, Crystal violet,
Malachite Green, Methylene Blue,
Safranin O
Malachite Green

Angelova et al., 2016

Jerold and Sivasubramanian, 2016

Sargassum wightii Brilliant Green Vigneshpriya et al., 2017

Seagrass

Crab shell

Posidonia oceanica (magnetically
modified)

Penaeus indicus

Acridine Orange, Bismarck Brown Y,
Brilliant Green, Crystal Violet, Methylene
Blue, Nile Blue A, Safranin O
Acid Blue 25

Safarik et al., 2016a

Daneshvar et al., 2014

Inorganic nutrients

Algae Gracilaria birdiae Nitrates, phosphates Marinho-Soriano et al., 2009

Kappaphycus alverezii Phosphates Rathod et al., 2014

Organic compounds

Algae Chlorella vulgaris Tetracycline de Godos et al., 2012

Chlorella pyrenoidosa Progesterone, Norgestrel, Triclosan Wang et al., 2013; Peng et al., 2014

Lessonia nigrescens Sulfamethoxazole Navarro et al., 2014

Macrocystis integrifolia Sulfacetamide Navarro et al., 2014

Synechocystis sp. Paracetamol Escapa et al., 2017

Coração et al., 2020; Fabre et al., 2020; Safarik et al., 2020a,b;
Shobier et al., 2020; Table 1). Also, waste macroalgae biomass
obtained after selected industrial processes can be employed

for the same purposes (Safarik et al., 2018; Santos et al., 2018).
Several commercially available biosorbents, such as Alga
SORBTM, Bio-recovery Systems Inc., and B.V. Sorbex use marine
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algae. Despite the ease of the algal biosorption process, the
technology is not yet recognized, and it requires further research
and development efforts at a larger scale using industrial effluents.

Some studies attempted to modify algae to enhance their
biosorption (Volesky, 2003), but this has not been considered
favorable since it may increase the cost, both for the
treatment onside and of the polluted biosorbent afterward,
without always improving the sorption capacity. Moreover,
active sorption sites are sometimes destroyed due to chemical
treatment, resulting in lower biosorption than the untreated algal
biosorbent. Despite these discouraging drawbacks, research is
still progressing to modify specific properties of biosorbents to
increase the biosorption capacities or simplify their recovery.
An interesting strategy employs magnetic modification to
obtain smart biomaterials, exhibiting several types of responses
to an external magnetic field. Such materials can be easily
and selectively separated from desired environments using
permanent magnets, electromagnets or appropriate magnetic
separators (Kanjilal and Bhattacharjee, 2018; Safarik et al., 2018;
Hassan et al., 2020). Thus, magnetically responsive marine-
derived biosorbents can find significant applications, especially
for removing various inorganic and organic pollutants from
wastewater. Several procedures can be employed for magnetic
modification of marine-based biomass. Usually, magnetic iron
oxide nano- and microparticles (Laurent et al., 2008) are used as
magnetic labels for marine biomass modification (Safarik et al.,
2016b, 2018, 2020a,b). Magnetically modified Sargassum horneri
biomass was employed to remove several organic dyes (Angelova
et al., 2016), while Sargassum swartzii modified with nanoscale
zero-valence iron particles was used for crystal violet biosorption
(Jerold et al., 2017). The brown alga Cystoseira barbata coated
with magnetite particles was used for the removal of methylene
blue from aqueous solution (Ozudogru et al., 2016), while
the tropical marine green calcareous alga Cymopolia barbata,
magnetically modified with microwave-synthesized iron oxide
nano- and microparticles, was used for the removal of safranin
O (Mullerova et al., 2019). The marine seagrass Posidonia
oceanica was magnetically modified using three procedures and
subsequently used to remove seven water-soluble organic dyes
(Safarik et al., 2016a; Table 1).

Biochar is an intensively studied carbon-based material
produced by pyrolysis of biomass in the absence of oxygen.
The study of Macreadie et al. (2017) provided clear evidence
that the conversion of beach wrack to biochar could be
a viable environmental solution for dealing with unwanted
wrack, offsetting carbon emissions and providing a commercially
valuable product for agriculture and wastewater and its sludge
treatment. The use of macroalgae biomass for biochar (charcoal)
production, with energy co-generation potential, provides a
value-driven model to sequester carbon and recycle nutrients
(Bird et al., 2011). In specific cases, macroalgal biomass can be
used as biochar and magnetic biochar precursor, as shown in
several cases using brown or green macroalgae (Jung et al., 2016;
Son et al., 2018a,b; Foroutan et al., 2019; Jung et al., 2019; Yang
et al., 2019). The prepared magnetic biochars were employed as
efficient adsorbents of acetylsalicylic acid, water-soluble organic
dyes and copper ions (Jung et al., 2019).

Biofuels
Almost 80% of the world’s energy supply is provided by
fossil fuels (Balachandar et al., 2013). Energy demands are
increasing worldwide due to industrialization, population growth
and modernization, leading to the over exploitation of limited
available natural fossil fuel reserves (Kumar and Thakur, 2018;
Kumar et al., 2020). These fuels represent a significant threat to
the environment due to their greenhouse gases (GHG) emissions,
which are the main cause of global warming. This stimulates
the research on bioenergy production from biomass (Kumar
and Thakur, 2018; Karkal and Kudre, 2020). Biofuel and related
technologies are considered renewable alternatives to fossil-based
fuels due to their sustainable features to overcome the global
energy demand (Klavins et al., 2018). As biomass production
can be quite expensive to meet the energy needs alone, energy
production from waste biomass with the biorefinery approach is
alternatively used. Waste biorefineries are attracting significant
interest worldwide as sustainable waste management solutions
(Khoo et al., 2019). In this case, both required energy needs
are met, and a solution to the waste management problem
is found in the circular economy context (Tuck et al., 2012;
Ahrens et al., 2017).

Production of the first-generation of biofuels is mainly based
on the biomass of terrestrial plants, such as corn, soybean,
sugar cane, palm oil, among others (Chen et al., 2017; Yu and
Tsang, 2017; Shuba and Kifle, 2018). However, their utilization
also creates ecosystem damage, water shortage and food vs.
fuel debate. Considering the problems related to the first-
generation of biofuels, the second- and the third- generations
have become alternative options, which are respectively
produced from waste materials (plant and agricultural waste,
municipal sludge) and microorganisms, without disrupting the
environment and natural resources (Kumar et al., 2016, 2018;
Shuba and Kifle, 2018).

The incorporation of wastewater treatment with microalgae
for biofuel production has both environmental and economic
benefits. In this process, microalgae are used as biosorbents
before biofuel production. Different conversion technologies
are used for the production of biofuels (Figure 2), such as
biochemical – anaerobic digestion (biogas) and fermentation
(bioethanol), and chemical conversion – extraction and
transesterification (biodiesel) (Chen et al., 2015; Sikarwar et al.,
2017; Kumar et al., 2020). In addition, several non-fermentation
options for the production of energy from macroalgae are
available, including direct combustion (heat energy), gasification
(syngas for heat and power generation, liquefaction and
production of hydrogen) and pyrolysis (production of liquid
bio-oil, syngas and charcoal) (Bruhn et al., 2011; Luo and Zhou,
2012; Rowbotham et al., 2012).

Torrefaction, also known as destructive drying and slow
pyrolysis, is a mild pyrolytic process that recently received wide
attention from the scientific community, as both a method
of pre-treatment and upgrade of low-quality fuels (Chew and
Doshi, 2011; Chen et al., 2015), as well as for the production
of biochar. This process may be organized at scales ranging
from extensive industrial facilities down to the individual farms
(Lehmann and Joseph, 2009) and even at the domestic level
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FIGURE 2 | Schematic overview of conversion of algal biomass into economically significant products – biofuels, indicating the major converters, conversion ways
and processes (Sikarwar et al., 2017; Kumar et al., 2020).

(Whitman and Lehmann, 2009), making it applicable to various
socioeconomic situations.

Table 2 summarizes the most important algal biofuels, their
production mechanisms and applications. Sustainability is the
most important issue for biofuel production. Hence, currently,
algae, especially microalgae are the most promising source for
biofuels due to their availability and continuous supply. In
addition, different biofuel production techniques can be applied
depending on the type of algae and biofuel. Thus, the use
of algae can still be regarded as a viable option for the next
generation of biofuels.

Fertilizers and Soil Improvers
Beach wrack can be utilized as a biofertilizer for the cultivation
and growth of plants. Nowadays, biofertilizers are preferred over
chemical fertilizers due to their environmentally friendly and
cost-effective nature. Biofertilizers contain microorganisms that
can fix nitrogen, solubilize phosphate and promote plant growth.
The shells of many bivalves, e.g., blue mussels and oysters,
are rich in CaCO3, a mineral currently mined from limestone,
representing a widely exploited resource for many industrial
applications in agriculture, as a biofilter medium for wastewater
treatment, or even cement production (Oso et al., 2011; Yao
et al., 2014; Morris et al., 2019; Scialla et al., 2020). In Galicia
(Spain), the second global largest aquaculture producer of blue
mussels (Mytilus galloprovincialis), their shells are commonly
used in agriculture for liming the acidified soil (Morris et al.,
2019) or for the absorption of heavy metals (e.g., arsenic) to
reduce soil pollution (Osorio-López et al., 2014). Marine organic
waste, such as seagrasses washed ashore, can also be considered
as an alternative and sustainable fertilizer source because of its
content of essential macro- and microelements (Bãdescu et al.,
2017; Emadodin et al., 2020). Algae contain regulatory macro-
and micronutrients, plant hormones such as cytokines, auxins,
gibberellins and betaines that can increase plant growth, as
well as vitamins, amino acids and metabolites with antibacterial

and antifungal activity, which improve productivity. However,
the low concentration of phosphorus, the presence of litter
or toxic materials in the biomass, especially if the sampling
area is subjected to high levels of anthropogenic pressure, can
be of concern for using beach wrack as fertilizer (Villares
et al., 2016). The salinity of seaweed leachates can be another
obstacle; thus, applying it at appropriate rates and leaching of
salts before the application can be crucial to obtain an optimal
beneficial effect on plant root development. Although already
applied in practice, the use of marine algae as biofertilizers is
an ongoing field of research. One of the remaining research
questions is to understand what role fertilizers from seaweed
play in marginal coastal conditions by stimulating the growth of
terrestrial plants or for the provision of specific nutrient elements.
As an example, beer barley, grown in Scotland, is traditionally
fertilized with seaweed and is known for the ability to cope
with marginal, high pH soils without inorganic fertilizer addition
(Brown et al., 2020).

Biochar has demonstrated applications as a soil enhancer,
capable of improving water holding capacity, nutrient status and
microbial ecology of many soils (Lehmann et al., 2006; Lehmann
and Joseph, 2009; Thies and Rillig, 2012). Bird et al. (2011)
showed that macroalgal biochar has properties that provide direct
nutrient benefits to soils and stimulate crop productivity and
are especially useful for application on acidic soils. In contrast
to bioenergy, in which all CO2 that is fixed in the biomass by
photosynthesis is returned to the atmosphere quickly as fossil
carbon emissions are offset, biochar has the potential for more
significant impact on climate through its enhancement of the
productivity of infertile soils and its effects on soil GHG fluxes
(Woolf et al., 2010).

Feed
For decades, fishery waste has largely been used in fishmeal
production (due to its high protein and lipid contents), but
this application is no longer considered the only option.
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TABLE 2 | The main algal biofuels and their use.

Type of biofuel Content Process Extraction
protocol

Potential algae Application References

Biodiesel Mixture of fatty acid
alkyl esters. All the
algal lipid contents
are extracted from
the biomass

Transesterification These extracted
lipid contents are
majorly composed
of triglycerides,
which react with
alcohol to produce
fatty acid methyl
esters (FAMEs).

Scenedesmus
dimorphus,
Nannochloropsis
sp., Chlorella
vulgaris

Recently FAME is
mixed in
petro-diesel in a
specific proportion
(max 20%) and is
directly used in the
diesel engines
without any engine
modifications

Chisti, 2007;
Adeniyi et al., 2018

Bioethanol Algae store high
amounts of
carbohydrates
mainly glucose,
galactose, and
mannitol

Hydrolysis followed
by fermentation of
sugars

Liquefaction is
carried out to
increase the
efficiency of the
produced ethanol.

Eucheuma
spinosum

The production of
bioethanol for fuel
from algae waste
could be quite
efficient as the
industrial waste of
Eucheuma
spinosum can be
converted into
bioethanol with an
efficiency of 75%.

Chen et al., 2015;
Khan et al., 2018;
Alfonsín et al., 2019

Biogas Algal biomass Methane and
carbon dioxide

Anaerobically
digested to convert
its organic contents
into bio-gas.

Ulva lactuca,
Chlorella
minutissima

Domestic as well as
industrial purposes

Cirne et al., 2007;
Koçer and
Özçimen, 2018

Bio-oil Algal biomass Thermal cracking
Pyrolysis

Thermal cracking is
carried out to
extract the lipid
contents from the
biomass at a very
low calorific power
range.
Pyrolysis is the
conversion of algal
biomass into bio-oil
in the absence of
oxygen.

Desmodesmus sp.,
Gelidium
sesquipedale

Conversion into
liquid fuel (bio-oil)

Chaiwong et al.,
2013; Gang et al.,
2017

Vázquez et al. (2019a,b) described alternative processes to
valorize fish discards and produce fish mince, gelatins, oils
and fish protein hydrolysates to be used as aquaculture feed
ingredients. Wastes generated from the industrial processing
of various fish species can also be turned into peptones (water-
soluble products of partial hydrolysis of proteins to be used as
a liquid medium for growing bacteria) (Vázquez et al., 2020).
Mussel meat is rich in protein, lipids, carbohydrates, minerals
and carotenoid pigments (Grienke et al., 2014) with potential
application as food/feed supplements, preservation agents and
enzymes. Seaweeds were traditionally used for animal feeding,
either as aquaculture or cattle feed (Araújo et al., 2021). The
interest in their use as feed was increased after the 1960s when
Norway started producing seaweed meal from kelp (Makkar
et al., 2016). Nowadays, they are still used as additional feed
for free-range ruminants grazing on beach cast seaweeds in the
coastal areas (Bay-Larsen et al., 2016). Brown seaweeds are more
often used as feed because of their large size and ease of harvesting
(Makkar et al., 2016). Seaweeds can supply the rumen with high
amounts of rumen-degradable protein or can be used as a source
of digestible bypass protein (Tayyab et al., 2016; Molina-Alcaide

et al., 2017). In remote regions, like the Arctic, seaweeds are
considered as local protein sources for sustainable sheep farming
to replace imported soya (Bay-Larsen et al., 2018). However, the
latest research highlights the challenges when applying seaweed
proteins in animal feed (Novoa-Garrido et al., 2017; Özkan
Gülzari et al., 2019; Emblemsvåg et al., 2020; Koesling et al.,
2021; Krogdahl et al., 2021). Some seaweed species, for example,
Asparagopsis taxiformis, have antimethanogenic activity on
fermentation and can inhibit methanogenesis in the rumen at
very low inclusion levels (Machado et al., 2016). Hence, the most
appropriate method for processing such seaweeds and feeding to
livestock in systems with variable feed quality and content has
not been determined yet (Kinley et al., 2016).

Seaweeds tend to accumulate heavy metals (e.g., arsenic) or
iodine. Consequently, using polluted beach wrack for feeding
could negatively affect animal health. The decomposition and
pollution, together with variable and undefined composition,
may make beach wrack unsuitable for feed, and considerable
sorting and cleaning may be required. Moreover, to have a
continuous supply for feeding purposes, industrial cultivation of
algae might be considered.
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Additional Direct Valorization of Side
Streams
Shells can be further exploited as a useful source for the
production of biocomposites (Gigante et al., 2020), bio-based
insulation material in environmentally responsive building
solutions (Martínez-García et al., 2020) or even as a substitute for
concrete components to reduce the dependency on conventional
natural materials and to decrease the emission of GHG (El
Biriane and Barbachi, 2020). Furthermore, seashells can be
used as a calcium source to produce bioactive materials in
tissue engineering, such as hydroxyapatite, which is the main
inorganic phase of the bone (Hart, 2020; Hembrick-Holloman
et al., 2020). Finally, direct human patch applications (fish skin
grafts) of high ω-3 rich fish skins, like cod or tilapia, are
also used for tissue regeneration in chronic or trauma wounds
(Lima-Junior et al., 2019).

VALORIZATION OF MARINE
BIOPOLYMERS

The valorization of side stream biopolymers into useful
compounds can have positive environmental, economic, social
and technical added values, contributing to the circular economy
development. Marine polysaccharides that are present in various
marine organisms have the broadest valorization potential. The
molecular structure of marine polysaccharides is characterized
by long molecular chains of repeating monosaccharide units
linked together by glycosidic bonds (Nitta and Numata, 2013).
Serving mostly as energy storage and with structural functions,
they are derived from various marine resources, including
crustaceans and marine algae (Raveendran et al., 2013). Marine
polysaccharides are characterized by outstanding chemical and
structural diversity, and due to their biocompatibility and
biodegradability, they have been used as a material of choice
in numerous biomedical applications (Table 3). Exhibiting a
wide range of bioactivities (such as anticoagulant, antioxidant,
antimicrobial, anticancer, immunomodulatory, or antiviral), they
are ideal candidates as low-cost, renewable, non-toxic and
abundant biomaterials for the development of novel biosystems,
such as 3D scaffolds, nanofibers, membranes, hydrogels, and
bioinks for tissue engineering, drug delivery and wound dressing
applications (Manivasagan et al., 2017).

The major source of marine polysaccharides are algae, with
carrageenans mainly present in red algae, alginates and fucoidans
in brown algae and ulvans in green algae, ranging from 4
to 76% dry weight (Kraan, 2012). ι-Carrageenan, a sulfated
polysaccharide from red seaweed, has been approved by FDA, as
Carragelose R©, for the treatment of viral and respiratory diseases
(Lu et al., 2021). Moreover, many crustacean shells (e.g., those
of shrimps) are composed of chitin, a nitrogen-containing linear
polysaccharide with wide industrial use, for example, in drug
delivery, cosmetics and food. Chitin is regarded as the second
most abundant polysaccharide in nature, after cellulose, used
for the commercial production of chitosan, a water-soluble
derivative obtained by demineralization, deproteinization, and
decolourization of chitin (Jiménez-Gómez and Cecilia, 2020).

Novel Materials for Biomedical
Applications
The extraordinary biocompatibility, non-antigenicity, chelating
ability and bioavailability of marine biopolymers make them
suitable materials for biomedical applications. Due to the
broad spectrum of reported bioactivities exhibited by marine
polysaccharides, they are ideal candidates for novel biomedical
systems and have been utilized in various formulations for drug
delivery, wound healing and tissue engineering applications. The
interest of the biomedical sector in marine polysaccharides is
steadily increasing not only because of their natural origin and
their unique biological and physicochemical properties, but also
due to their stability, safety and high availability at a relatively
low cost (Venkatesan et al., 2017; Choi and Ben-Nissan, 2019;
Rahmati et al., 2019; Bilal and Iqbal, 2020).

In the pharmaceutical sector, marine polysaccharides have
been used as binders, stabilizers, thickeners, matrix materials,
emulsifiers, and suspending agents (Figure 3). Over the years,
they have been utilized in various formulations, such as
gels and hydrogels, micro/nanoparticles (MPs/NPs), films and
membranes, nanofibers, as well as 3D porous structures, serving
as drug release modifiers, bioadhesives, coatings, wound dressing
materials and tissue engineering scaffolds for various biomedical
applications (Ruocco et al., 2016; Vanparijs et al., 2017;
Joshi et al., 2019).

Mussel byssus contains high levels of collagen, another widely
used raw material (Rodríguez et al., 2017). Collagen extracted
from fishery resources is seen as a very promising direction
of biotechnological valorization as it is available to a great
extent, lacks toxicity and the sociocultural barriers are absent.
Mussels easily attach to wet substrates or rocks in wave-battered
seashores thanks to adhesive proteins and amino acids (e.g., 3,4-
dihydroxyphenylalanine, DOPA). This fact has fueled research
on mussel-inspired multifunctional coatings and bioadhesives for
use on various surfaces (Lee et al., 2007; Shin et al., 2020). Shell
extract of scallop (Pecten maximus) has been shown to stimulate
the biosynthesis of extracellular matrix and both type I and type II
collagen biosynthesis in primary cells, pointing out their potential
in dermatology and cosmetic sectors (Latire et al., 2014).

Gels and Hydrogels
In the biomedical field, gels and hydrogels are recognized as
promising biomaterials for drug delivery, tissue engineering,
biosensors, self-healing and hemostasis systems due to
their highly porous structure, tunable biodegradability and
biocompatibility (Venkatesan et al., 2015; Chai et al., 2017).
Hydrogels are gels that consist of hydrophilic polymer chains
arranged in a 3D cross-linked network. This polymeric network
can be controlled and easily manipulated for inclusion and,
subsequently, the modified diffusion of various active ingredients
(Domalik-Pyzik et al., 2019). Hydrogel scaffolds possess the
ability to swell without dissolving in biological fluids; however,
due to the fragility of their gel matrix, the need for novel and more
stable hydrogel systems is still high (Hoare and Kohane, 2008).

In this respect, carrageenans possess enormous water
retaining capacity and gelling properties and have been widely
exploited to develop bio-hydrogels (Oun and Rhim, 2017).
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TABLE 3 | The main marine biopolymers and their use.

Biopolymer Structure Function Extraction protocol Application References

Cellulose Linear homo-polysaccharide of
D-glucose units connected by
(1,4)-β-glycosidic linkages

The main structural component of
the cell walls in higher plants and
many seaweeds

Sequential extraction based on three steps:
(1) initial Soxhlet extraction to remove lipidic
compounds and pigments using organic
solvents, (2) mild acid treatment (usually
known as bleaching) to remove lignin and
some hemicelluloses and (3) basic
treatment to eliminate hemicelluloses

Paper industry, food packaging,
and pharmaceutical applications

Abdollahi et al.,
2013a;
Ramamoorthy
et al., 2015; Trache
et al., 2016; Khalil
et al., 2017

Agar Mixture of the linear polysaccharide
agarose and agaropectin

Structural components of the cell
walls in several red seaweeds, such
as Gelidium and Gracilaria spp.

Application of alkaline pre-treatments,
followed by high-temperature and
high-pressure extraction treatments,
high-temperature filtration and several
freeze-thawing cycles. Alternative extraction
protocols, based on simplified heating
treatments or using ultrasound-assisted
methods, have been recently explored for
the production of less purified agar-based
extracts. These less purified agar-based
extracts show similar rheological behavior
to the pure agar, but they form softer gels

One of the phycocolloids more
widely used in the microbiology
field, as well as in the food industry
as gelling agent and stabilizing
agent for food products

Chemat et al.,
2017;
Flórez-Fernández
et al., 2017;
Martínez-Sanz
et al., 2019, 2020b

Carrageenan Backbone of disaccharide
repeating units of alternating
α-1,3-linked D-galactopyranosyl
and β-1,4-linked
D-galactopyranosyl groups with
3,6-anhydrogalactose residues

Present in the cell walls and the
intercellular matrix of some red
seaweeds of the class
Rhodophyceae

Before extraction, the seaweeds are
washed for removal of impurities and in
some cases are subjected to pre-treatment
with organic solvents for de-colorization.
The extraction process involves the
application of physical separation methods,
followed by alkaline treatments at high
temperatures, removal of insoluble residues
through filtration and filtrate concentration

Used in various biomedical
applications owing to their
anticancer, immunomodulatory,
anticoagulant and
antihyperlipidemic properties.
Additionally, they find applications in
the pharmaceutical and cosmetic
industries. They are also widely
used in the food industry due to
their good texturizing properties
(thickening and/or gelling capacity)

Fan et al., 2008;
Manivasagan et al.,
2017; Rahmati
et al., 2019

Alginate Linear anionic polysaccharides,
forming a block copolymer of
β-1,4-D-mannuronic acid
(M-blocks) and α-L-guluronic acid
(G-blocks) in which the uronic
blocks are organized in a
heteropolymeric (alternating M and
G residues) or homopolymeric
(consecutive M or G residues)
arrangement

Found in the cell walls from some
brown algae (such as Ascophyllum
nodosum, Laminaria spp., Lessonia
and Macrocystis, among others)
and brown seaweeds of the class
Phaeophyceae

Pre-treatment step is usually employed to
remove pigments and lipids using various
solvents and solvent mixtures. The
pre-treated seaweed may be further
exposed to vacuum or freeze-drying
methods. Seaweeds are then treated with
hot aqueous, acidic or salt solutions at
increased temperatures and for extended
time periods, followed by precipitation

Wound healing and other
biomedical applications

Goh et al., 2012;
Abdollahi et al.,
2013b; Sirviö et al.,
2014; Varaprasad
et al., 2020

(Continued)
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TABLE 3 | (Continued)

Biopolymer Structure Function Extraction protocol Application References

Fucoidans α-1,3-fucopyranose residues or
alternating α-1,3- and linked α-1,4-
fucopyranosyls

Structural components in the cell
walls, especially those from the
families Fucaceae and
Laminariaceae

Under acidic conditions, alginate is
removed as water-insoluble alginic acid,
leaving a rather pure fucoidan extract.
Subsequently, the extracted fucoidan is
precipitated by the addition of high volumes
of alcohol or cationic surfactants, such as
hexadecyltrimethylammonium bromide
(Cetavlon R©) at low temperatures (4◦C)

Due to their non-toxic nature, in
conjunction with their antioxidant,
antiinflammatory, anticoagulant,
antithrombotic and antitumor
properties, fucoidans have been
used in drug delivery and other
biomedical applications

Mautner, 1954;
Karunanithi et al.,
2016; Dobrinčić
et al., 2020;
Jönsson et al.,
2020

Ulvans Charged anionic sulphated
polysaccharides composed mainly
of L-rhamnose, D-xylose,
D-glucose, and D-glucuronic and
iduronic acids

8–35% of the dry weight in green
seaweeds from the class Ulvales

Extraction with hot water and subsequent
precipitation with ethanol

Texture modifiers in the food
industry, antioxidant,
immunomodulation, antiviral,
antihyperlipidemic and anticancer
pharmaceutical applications

Lahaye and Robic,
2007; Toskas et al.,
2012; Kikionis
et al., 2015;
Tziveleka et al.,
2020

Chitin, chitosan Chitin: linear polysaccharide
consisting of β-1,4- linked 2-amino-
2-deoxy-β-D-glucopyranose.
Chitosan: polycationic linear
polysaccharide consisting of
β-1,4-linked N-acetyl-2
amino-2-deoxy-D-glucose
(N-acetylglucosamine) and
2-amino-2-deoxy-D-glucose
(glucosamine) residues

Crustacean exoskeletons, such as
crabs and shrimps, also found in
squid, corals, sponges, fungi and
yeasts

Chitin is commercially extracted chemically
or enzymatically from crab and shrimp
shells. Chitosan is commercially obtained
from chitin involving chemical methods,
using corrosive acidic and basic solutions,
which have adverse environmental effects

Applications in the biomedical field
due to antimicrobial, anticoagulant
and wound-healing properties, food
packaging

Kumar, 2000; Fan
et al., 2008; Ifuku
et al., 2009; Danti
et al., 2019; Yadav
et al., 2019

Laminarin Low molecular weight β-glucan Main storage polysaccharide in
some brown species (especially
those from the Laminariaceae
family

Hot water extraction Natural health product, due to the
antitumor, anti-inflammatory,
anticoagulant, and antioxidant
activity

Guiry and Blunden,
1991; Kadam et al.,
2015

Proteins – collagen
and gelatin

Collagen: three helical α-chains are
tightly packed together, forming a
final superhelix with a hydrophobic
core.
Gelatin is a partially hydrolyzed form
of collagen

Structural protein derived from fish
skin and bones and marine
invertebrates

Bioconversion of fish skin may include
extraction by acid-alkaline hydrolysis,
enzymatic hydrolysis and fermentation,
using microorganisms or ultrasonic
treatment without changing the molecule
and enzymatic action

Pharmaceutical/cosmeceutical,
nutraceutical and food packaging
industries due to their
biocompatibility and easy
biodegradability. Antihypertensive,
antioxidant, antimicrobial,
neuroprotective,
antihyperglycaemic, and antiaging
properties

Liu et al., 2015;
Huang et al., 2016;
León-López et al.,
2019
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FIGURE 3 | Examples of marine polysaccharides and their applicability for biomedical purposes (Ruocco et al., 2016; Joshi et al., 2019).

Alginate hydrogels have been widely used for wound dressing
applications and other biomedical applications (Galli et al.,
2018; Liao et al., 2018). When cross-linked with natural
or synthetic components, they form soft or stiff gels with
different physicochemical properties depending on the alginate
mannuronic acid:guluronic acid ratio, the material composition
and the degree of cross-linking (Gharazi et al., 2018). Chitosan-
based hydrogels have been modified with catechol, hydrocaffeic
acid, and poly(ethylene glycol) to enhance the bioadhesive,
mechanical and antibacterial properties. The developed hydrogel
patches and injectable gels can be used as soft tissue engineering
materials (Du et al., 2020; Kim et al., 2020; Zheng et al., 2020).

Polymeric Micro- and Nanoparticles
In recent years, various delivery systems have attracted
significant attention in the drug delivery sector. Owing to
the benefits provided by their small sizes, the application of
natural origin MPs/NPs has emerged as a very promising
approach for targeted drug delivery. Polymeric MPs/NPs can
be fabricated through different methods, such as polyelectrolyte
complexation, emulsification and ionic gelation, exhibiting many
advantages, such as improved drug solubility, distribution
and bioavailability (Chifiriuc and Grumezescu, 2016). Due to
their adjustable size and surface characteristics, they can be
used as novel carriers for the controlled delivery of active
pharmaceutical ingredients with improved pharmacokinetics and
pharmacodynamics (Nikam et al., 2014; Manivasagan and Oh,
2016). Several studies have shown the collagen applications
as a carrier in different drug delivery systems (Gu et al.,
2019), having remarkable abilities and being the focus of
extensive research efforts. In particular, collagens from a
variety of marine sources have been used to produce micro
(diameters between 0.1 and 100 µm) and nano (1–100 nm) bio-
based drug delivery systems and are attractive and promising
for applications in biomedical and pharmaceutical industries.
Marine polysaccharides have been explored to design polymeric
MPs/NPs, mainly because of their ionic nature. Oppositely
charged polysaccharides can interact with ions, resulting
in complex polyelectrolyte structures that can encapsulate
various active compounds. The release of the embedded

compounds from the complex can be controlled and achieved
through various mechanisms, such as charge interactions, ion
exchange mechanisms, polymer degradation or dissolution of the
polyelectrolyte matrix (Venkatesan et al., 2016).

Numerous studies on the preparation of marine polymer-
based nanoparticles have been reported over the years for
targeted drug delivery (Bilal and Iqbal, 2020). In a recent report,
hybrid alginate/chitosan nanoparticles were investigated for the
in vitro release of lovastatin as promising new drug carriers
(Thai et al., 2020). Ulvan/lysozyme nanoparticles have exhibited
enhanced antibacterial activity against Staphylococcus aureus,
while at the same time highlighting the potential of ulvan for
the preparation of peptide/protein delivery systems (Tziveleka
et al., 2018). The use of carrageenan in MPs/NPs-based drug
delivery systems for various biomedical applications has also
been actively explored. Insulin-loaded lectin-functionalized
carboxymethylated κ-carrageenan microparticles were produced
by ionic gelation technique, and their potential use as an
improved carrier for the oral delivery of insulin was evaluated
(Leong et al., 2011). Oral administration of the lectin-
functionalized insulin-carrageenan microparticles (diameter
1273 ± 201 µm) in diabetic rats resulted in a sustained release
of the insulin in the intestinal region and a prolonged duration
of the hypoglycaemic effect, confirming their therapeutic
efficacy. κ-Carrageenan extracted from the red algae Eucheuma
cottonii was utilized to encapsulate the poorly soluble coenzyme
Q10 (CoQ10) using the spray drying technique. The CoQ10-
κ-carrageenan microparticles were shown to represent an
efficient model to increase the water solubility of coenzyme
Q10, creating a new water-based product for the food industry
to be used either as a main ingredient or as an enriched
additive (Chan et al., 2016). Microparticles synthesized using
carrageenan with a different number of sulfate groups κ, ι, and
λ, were prepared by microemulsion polymerization/crosslinking
and were shown to include a wide range of particle sizes
(0.5–100 µm). The particles and their modified forms were
found to have broad biomedical applicability due to their drug
delivery capability, antimicrobial activity, anticancer, high
blood clotting effect, good biocompatibility, and cell viability
(Sahiner et al., 2017).
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Despite being one of the most widespread natural
polysaccharides, chitin was for a long time considered as
an intractable polymer due to its lack of solubility in common
solvents, which limits its processing and practical use (Rinaudo,
2006). Recent studies have mainly focused on chitin NPs
(Mincea et al., 2012; Zeng et al., 2012) and their applications
in different fields. In nature, chitin occurs as micro/nanofibrils
that form a composite together with proteins, pigments and
calcium carbonate and has a structural role in the exoskeleton of
crustaceans and insects (Chen et al., 2008). The unique properties
of chitin NPs, such as their renewable and biodegradable
characteristics, small size, low density, chemical stability,
biological activity, biocompatibility and no cytotoxicity, make
them excellent candidates for use in an extensive range of
medical applications, nanocomposite fields, water treatment,
cosmetics, electronics devices, etc. (Zeng et al., 2012). Several
applications of chitin NPs have been developed during the last
years in different fields; however, the application in the fields
of materials science and health are the most predominant.
The addition of nanochitin as a filler in the production of
biocomposites enhances the physicochemical properties of the
material in addition to its antifungal properties (Salaberria
et al., 2014, 2015a,b; Herrera et al., 2017). Its biological activity
and non-cytotoxicity have promoted the use of nanochitin for
health care and medical applications, such as scaffold and tissue
regeneration (Zubillaga et al., 2018; Danti et al., 2019; Smirnova
et al., 2019; Zubillaga et al., 2020), drug and cosmetics (Mellou
et al., 2019; Coltelli et al., 2020).

Chitosan, obtained from chitin available in the exoskeleton
of crustaceans, is a cationic polymer described as an
excellent material to design drug delivery systems due to its
biocompatibility, biodegradability and non-toxicity. Chitosan
NPs have a wide array of applications with excellent oral
bioavailability for different biomolecules, such as hydrophobic
drugs, nucleic acids, proteins and polysaccharides, retaining their
bioactivity, improving stability and enhancing the therapeutic
effect (Lang et al., 2020). Moreover, chitosan has mucoadhesive
properties and a broad spectrum of bioactivities, namely
antioxidant, anti-inflammatory and antimicrobial (Chan et al.,
2016; Hafsa et al., 2016), which increase its potential interest
for oral drug delivery applications. Chitosan NPs can be
produced using different methods, although the most widely
described ones are ionotropic gelation and polyelectrolyte
complexation. These methods are simple, do not include organic
solvents and provide an excellent opportunity to deliver large
amounts of nanomaterial into desired products (Divya and
Jisha, 2018). Other marine-derived polysaccharides, such as
fucoidan, alginate, ulvan, carrageenan, and laminarin, commonly
isolated from seaweeds, also have specific and interesting
individual properties explored for potential application in
drug delivery systems (Venkatesan et al., 2016). These natural
anionic polymers can be used to produce NPs of different size,
charge and shape for drug delivery applications using methods
as emulsion, ionic gelation and polyelectrolyte complexing
(Cardoso et al., 2016; Venkatesan et al., 2016). NPs made of
marine polysaccharides have been exploited for oral delivery
of active pharmaceutical drugs due to their increased stability

and resistance to degradation under acidic gastrointestinal
conditions leading to improved intestinal drug absorption.
Insulin-loaded chitosan-alginate-pentasodium tripolyphosphate
(TPP) NPs were produced by ionic gelation. The delivery by
nasal administration in rabbits of this hybrid formulation
showed enhanced systemic absorption demonstrating its
potential in increasing nasal insulin absorption (Goycoolea et al.,
2009). Fucoidan-chitosan NPs have been widely described as
promising for application as carriers in oral drug delivery systems
(Barbosa et al., 2019b). NPs resulting from the encapsulation of
curcumin by O-carboxymethyl chitosan-fucoidan were shown
to have lower toxicity in mouse fibroblasts when compared
with the free form and to be efficiently internalized by Caco-2
cells, demonstrating its potential application for oral drug
delivery (Huang et al., 2016). Chitosan-fucoidan NPs containing
berberine were developed and shown by in vitro testing in Caco-2
cells/RAW264.7 cells co-culture to restore the barrier function
in inflammatory and injured intestinal epithelial (Wu et al.,
2014). Also, quercetin loaded fucoidan-chitosan NPs developed
for application as a functional food were shown to be stable
with controlled drug release under simulated gastrointestinal
environment, while maintaining intense antioxidant activity
(Barbosa et al., 2019a). Based on the known anticoagulation
activity of fucoidan, NPs of chitosan-fucoidan were prepared to
encapsulate red ginseng extract and improve its antithrombotic
activity and physicochemical properties. Nanoencapsulation
improved the ginsenoside solubility and decreased the effect of
platelet aggregation in vitro. In vitro studies in the rat model
also demonstrated that the NPs caused a significant reduction in
thrombus formation when compared with the free red ginseng
extract (Kim et al., 2016).

Production of chitosan-fucoidan NPs for pulmonary delivery
of the antibiotic chitogentamicin has been described, and
results indicate the improvement of antimicrobial efficacy and
elimination of systemic toxicity when compared with the
intravenous antibiotic administration, with great potential for
pneumonia treatment (Huang et al., 2016). Marine-derived
drug delivery systems based on chitosan-fucoidan NPs have
been recently developed for drug delivery in cancer treatment.
Gemcitabine-loaded NPs showed increased toxicity for human
breast cancer cells without increasing toxic effects on endothelial
cells when compared with free gemcitabine (Oliveira et al.,
2018). Piperlongumine is a new class of pro-oxidant drugs
with the potential for cancer-specific therapy. Encapsulation of
this hydrophobic drug into chitosan-fucoidan NPs increased its
solubility and bioavailability, enhancing its anticancer efficacy
(Choi et al., 2019).

Studies on the production and application of marine collagen
as drug delivery systems for biomedical or as supplements for the
food industry are also available in the literature. A MPs protein
delivery system was developed using an emulsification-gelation-
solvent extraction method and a polymeric matrix of marine
collagen extracted from the jellyfish Catostylus tagi. This collagen
MPs system (median particle size 9.5 µm) showed promising
and versatile results for the controlled release of therapeutic
proteins with retained biological activity (Calejo et al., 2012).
Collagen from a marine sponge (Porifera, Dictyoceratida) was
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used to produce a bio-based dressing for topical drug delivery
able to absorb the excess wound exudate and at the same
time release the drug regulating the healing process (Langasco
et al., 2017). Also, collagen extracted from the marine sponge
Chondrosia reniformis was used to develop collagen microspheres
for dermal delivery of all-trans-retinol (Swatschek et al., 2002).
Although the retinol loaded MPs showed a broad size distribution
(ranging from 126 ± 2.9 nm to 2179 ± 42 nm), the dermal
penetration of retinol-hydrogel-collagen MPs formulations was
two-fold higher than when compared to retinol formulations
without the MPs. NPs, produced with C. reniformis collagen
(size 123 ± 5.5 nm), loaded with 17ß-estradiol-hemihydrate,
for application in hormone replacement therapy, were shown
to be a promising transdermal drug carrier system of estradiol
with enhanced bioavailability, prolonged drug release and
increased estradiol absorption compared to a commercial gel
(Nicklas et al., 2009).

Marine collagen peptides obtained from Synodontidae fish
scales were used to develop alginate NPs, loaded with collagen
peptide chelated calcium (diameters approximately 400 nm). This
in vivo study demonstrated that the core-shell NPs were able
to improve calcium absorption and prevent calcium deficiency
in rats treated with this novel biphasic material that could
represent an improved calcium supplement for the food industry
(Guo et al., 2015).

Polymeric Nanofibers
During the past years, polymeric nanofibers have gained
considerable interest due to their unique properties, such as
high surface-to-volume area, high and controlled porosity and
mechanical flexibility (Kenry and Lim, 2017; Al-Enizi et al.,
2018; Cheng et al., 2018). Marine biopolymers, due to their
biocompatibility and biodegradability, are considered ideal
candidates for the development of multifunctional non-wovens.
Exhibiting high encapsulation efficacy and architectural analogy
to the natural extracellular matrix, they can be easily produced
through the electrospinning technique, which is the most widely
used method for the production of polymeric nanofibers with
tailor-made properties (Teo and Ramakrishna, 2006; Greiner
and Wendorff, 2007; Bhardwaj and Kundu, 2010). Various
natural and synthetic polymers can be utilized in nanofibrous
matrices, incorporating numerous active agents for different
biomedical applications.

In most cases, marine polysaccharides, often lacking chain
entanglement, have been utilized in combination with other
synthetic or natural biopolymers into hybrid polymeric
nanofibrous systems that offer the advantageous properties
of the combined ingredients (Zhao et al., 2016). Numerous
synthetic polymers, such as polycaprolactone, polyethylene
oxide, polyvinyl alcohol (Zia et al., 2017), polylactic acid and
cellulose acetate, have been used in the development of such
hybrid marine polymer-based electrospun patches. Various
nanofibrous scaffolds of alginate, fucoidans, ulvan, chitosan and
chitin and other biopolymers (e.g., gelatin, cellulose, hyaluronic
acid, collagen and their derivatives) have been developed,
exhibiting great potential in tissue regeneration, wound healing
and controlled drug delivery (Kikionis et al., 2015; Mendes et al.,

2017; Augustine et al., 2020). As a recent example, metformin-
loaded polycaprolactone/chitosan nanofibrous patches were
reported as potential guided bone regeneration membranes
(Zhu et al., 2020), while in another work, electrospun alginate
nanofibrous dressings loaded with the aqueous extract of Pinus
halepensis bark displayed significant in vivo anti-inflammatory
activity in mice (Kotroni et al., 2019).

Membranes and Films
While various membranes and films have been developed from
marine biopolymers as wound healing or tissue engineering
systems, it is alginate that has been most widely used in wound
dressings, either alone or combined with other biomaterials.
Due to its gelling and fluid-absorption ability, alginate can
promote the skin recovery process, maintaining a physiological
moist wound environment. It can be easily cross-linked via
electrostatic, ionic interactions, covalent-like bonding, redox
reactions and coordination with various metals and oppositely
charged polysaccharides. The cation interaction of its guluronate
blocks with calcium electrolyte into an egg-box-like structure
(Goh et al., 2012) has been employed for various wound healing
applications. Furthermore, its combination with other positively
charged biopolymers, like chitosan in polyelectrolyte forms, has
been shown to increase the mechanical stability of the wound
dressing materials. In a similar approach, aiming to develop
scaffolds for cell cultivation, anionic ulvan and cationic chitosan
have been combined to form novel supramolecular structures of
stabilized membranes through electrostatic interactions, showing
excellent attachment and proliferation of 7F2 osteoblasts (Toskas
et al., 2012). As mentioned before, chitosan has been used
in many wound dressing and tissue engineering applications,
dressing films and membranes (Khan et al., 2020).

3D Structures
In recent years, 3D bioprinting has risen as a versatile tool
in regenerative medicine. Therefore, the demand for suitable
bioink materials with good printability, biocompatibility and
mechanical integrity is apparent. Marine biopolymers, due
to their chemical structures and biological functionalities,
satisfy most requirements of 3D bioprinting. 3D bioprinting
regenerative medicine techniques for human tissue and
organ engineering and biofabrication currently apply to
4% chitosan, 10% gelatin, and 26% collagen from a marine
origin in bioink formulations for cellular laying/encapsulation
(Zhang et al., 2019). Marine polysaccharide hydrogels are
naturally derived bioinks, demonstrating low immune response,
sufficient biological cues and excellent biocompatibility for
tissue engineering applications. Among various marine-
origin macromolecules, alginate, carrageenan and chitosan
have been widely used as hydrogels in 3D bioprinting for
regenerative medicine, such as tissue repair and regeneration
during recent years (Zhang et al., 2019). For example, the
excellent biocompatibility and the thermogelation properties
of κ-carrageenan and alginate have been used to fabricate
the cell-laden scaffolds on alginate/carrageenan hydrogels in
3D bioprinting (Kim et al., 2019). In another approach, cells
encapsulated within chitosan-based hydrogels demonstrated
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the printability and applicability of chitosan as a bioink for 3D
bioprinting in bone tissue engineering (Demirtaş et al., 2017).

The freeze-drying technique has also been applied for the
fabrication of 3D porous scaffolds. Freeze-dried scaffolds can
be produced by removing the frozen solvent of a polymeric
solution under vacuum, leaving empty spaces (pores) in the
formed polymeric scaffold. The architectural characteristics of
the produced scaffolds may be tuned by changing the freezing
conditions, the polymer solution concentration and the polymer
and solvent type (Reys et al., 2017). In this respect, chitosan
freeze-dried sponge-like structures were obtained, exhibiting
blood absorbing capacity suitable for haemostasis (Kavitha
Sankar et al., 2017). Recently, the preparation of ulvan/gelatin
hybrid sponge-like scaffolds was reported, exhibiting efficient
mesenchymal stem cell adhesion and proliferation for bone tissue
engineering applications (Tziveleka et al., 2020).

Novel Materials for Bio-Based Food
Packaging
More than 380 million metric tons of plastics are produced
worldwide (Ritchie and Roser, 2018). In Europe, 40% of
produced plastic is used in packaging. Despite the tremendous
benefits of using plastics for packaging, their single-use feature
results in an enormous stream of waste with a significantly
negative impact on the environment. Synthetic plastics are
petroleum-based, hence consuming large amounts of fossil fuels
for their production. Moreover, they are not biodegradable and,
thus, after disposal, they can accumulate in natural ecosystems
for up to several thousands of years. Consequently, more
than 5 trillion plastic particles weighing over 250,000 tons
are estimated to be floating in Earth’s oceans (Eriksen et al.,
2014), posing a major threat to the trophic chain. Only 14%
of plastic packaging is currently recycled (Ellen MacArthur
Foundation, 2016), and there is a clear consensus that the
industry needs to shift to biodegradable plastics from renewable
resources (i.e., biopolymers) for a long-term solution to the
current situation (Oliveira et al., 2020). Biopolyesters, such
as polylactic acid (PLA), polyhydroxyalkanoates (PHAs)
and thermoplastic starch, can be used for food packaging
due to their relatively good processability using industrial
techniques such as extrusion or thermoforming. However, their
properties are still far from synthetic polymers (especially
in terms of thermal resistance, barrier and mechanical
performance), and their production costs are too high to
compete on the market. Moreover, the raw materials typically
used to produce biopolymers originate from land crops,
whose primary use is the food sector. In this context, the
packaging industry is looking for alternative biopolymers
with enhanced properties that can be extracted from cheaper,
sustainable resources. Given its abundance and interesting
composition, marine biomass has received great intererest is
being focused on marine biomass as one of the most promising
alternative sources for the extraction of biopolymers for food
packaging applications.

The structural polysaccharides found in the cell walls from
seaweeds, such as cellulose and phycocolloids (Table 3), have

excellent properties, which make them promising candidates for
the development of bio-based and sustainable food packaging.
Cellulose from land biomass has been widely used to produce
food packaging materials and applied as a filler to improve
the properties of other biopolymers (Ramamoorthy et al.,
2015; Trache et al., 2016). In parallel, several recent studies
have reported on the outstanding properties of cellulose
extracted from marine biomass (Bettaieb et al., 2015; Khalil
et al., 2017; Benito-González et al., 2018; Martínez-Sanz et al.,
2020a). One particularly interesting approach, given the circular
economy policies that are being promoted by the governing
bodies, is the valorization of marine waste biomass. For
instance, the residues generated after the accumulation of
leaves from the seagrass Posidonia oceanica, found in the
Mediterranean shores and the industrial waste produced after
extraction of agar from red seaweeds have been used to extract
cellulosic fractions with different degrees of purity (Benito-
González et al., 2018; Benito-González et al., 2019a; Martínez-
Sanz et al., 2020a). These cellulosic fractions can be used
to produce films, employing a green method based on the
production of aqueous suspensions. Even though the properties
of the films may vary depending on the biomass source,
commonly, the presence of other non-cellulosic components
in the less purified fractions may improve the performance of
the films (Benito-González et al., 2019a; Martínez-Sanz et al.,
2020a). This is particularly interesting since high-performance
cellulose-based packaging films could be produced utilizing
simplified and more sustainable methods, thus reducing the
production costs and the environmental impact. These cellulosic
fractions can also be used as fillers to improve the properties
of other biopolymers. One recent work has reported the
capacity of cellulosic fractions from P. oceanica to produce
biopolymeric films with improved mechanical and barrier
performance, as well as with better stability upon storage
when incorporated into thermoplastic starch by melt mixing
(Benito-González et al., 2019b).

Cellulose from marine biomass can also be used in a
particular type of structure known as aerogels. Aerogels are
lightweight and highly porous structures, which present excellent
sorption capacity and can be used in food packaging as
absorbent pads (for fresh products such as meat and fish)
and as components for the incorporation and sustained release
of bioactive compounds in smart packaging, amongst others.
Their high specific surface makes them also ideal materials for
catalysis and other advanced applications. Many studies have
reported the production of cellulose-based aerogels (Nguyen
et al., 2014; Feng et al., 2015; Buchtová et al., 2019); however, the
preparation methods are often quite complex, involving several
steps (disruption of cellulose crystalline structure, gelation,
cellulose regeneration, solvent exchange and a final drying step
through supercritical CO2 or freeze-drying). Moreover, due to the
highly hydrophilic characteristic of cellulose, hydrophobization
treatments are usually required to improve the water-resistance
of the aerogels. A simple freeze-drying method has been
recently reported to yield high-performance aerogels from
cellulosic fractions derived from aquatic biomass, and a very
simple strategy has been developed for hydrophobization of
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cellulosic aerogels, making them stable in aqueous solutions
(Fontes-Candia et al., 2019; Benito-González et al., 2020;
Martínez-Sanz et al., 2020a,b). These materials display a highly
porous structure, especially when using less purified cellulosic
fractions, conferring a great sorption capacity when soaked in
hydrophilic and/or hydrophobic liquids. This has been exploited
to develop bioactive aerogels, incorporating an antioxidant
extract that could be released upon contact with meat, thus
reducing the oxidation processes taking place upon storage
(Fontes-Candia et al., 2019).

Although cellulose is, without a doubt, the most widely
exploited marine biomass biopolymer for the development
of food packaging, other structural polysaccharides such as
phycocolloids are currently being studied. In particular, agar
(Sousa and Gonçalves, 2015; Malagurski et al., 2017; Martínez-
Sanz et al., 2019), carrageenans (Choi et al., 2005; Vu and
Won, 2014; Farhan and Hani, 2017) and alginate (Abdollahi
et al., 2013a,b; Sirviö et al., 2014; Senturk Parreidt et al., 2018)
have excellent potential for the production of food packaging
films with interesting properties. The main disadvantages
of phycocolloid films are their excessive rigidity (which is
counteracted with the addition of plasticizing agents) and their
low resistance to high relative humidity conditions (which
can be improved by incorporating more hydrophobic fillers).
Interestingly, less purified agar-based extracts have been shown
to overcome these issues due to the positive effect of other
compounds remaining from the native seaweeds, such as proteins
and minerals (Martínez-Sanz et al., 2019). These phycocolloids
can be used to produce porous aerogels (Quignard et al., 2008;
Gonçalves et al., 2016; Manzocco et al., 2017), but similarly
to cellulose, complex preparation methods are often required.
Further research needs to be carried out to look for alternative
manufacturing processes and to identify strategies to adjust
the properties of the obtained aerogels to the requirements of
different food packaging applications.

Even though there are no studies reported on marine collagen
as an alternative food packaging material, there are some
studies on bovine/porcine collagen that has already been tested
to produce edible films for protection and extension of food
products, such as sausages casings (Suurs and Barbut, 2020).
Moreover, the addition of chitosan to gelatin films of cuttlefish
skin improves the thermal stability of the polymer network and
increases the antioxidant and antimicrobial activity against some
Gram-positive and Gram-negative bacteria, which is a useful
property in packaging production (Hajji et al., 2021). However,
there are some restrains in a broad application of collagen as
packaging material, as it is sensitive to moisture. Gelatin based
packaging coatings have also been explored, but various additives
(lysozyme, chitosan, chitin, essential oils, among others) need
to be applied to achieve the desired properties (antimicrobial,
antioxidative) (Chawla et al., 2021).

Use in the Leather Industry
Among the solutions for reducing fish waste, one potential option
is utilizing fish skin to produce exotic leathers for accessories
such as bags, gloves, or shoes. The valorization of any animal
skin into leather materials involves tanning, a process that alters

the skin protein structure, transforming the biodegradable skin
into durable and flexible leather. Saranya et al. (2020) explored
the potential of fish waste to produce fish oil, which could be
used as a fat-liquoring agent in leather processing, and the results
were better compared to those of a traditional commercial fat-
liquoring agent. Thus, the fish oil fat-liquor produced from fish
waste can be regarded as an eco-friendly alternative to lubricate
leather as it allows to substantially reduce the sludge disposal
issues in the tannery industry and reduce waste in the fisheries
sector. To satisfy the trends for greener production, bio-tanning
processes are being sought that replace chromium with plant-
based tannins or the re-use of tanning floats, which can reduce
the water consumption in the process up to 90%. An example of
successful valorization of fish skin into leather is the Moroccan
company SeaSkin, using a plant-based coloring system and a
dry tanning process, thus reducing 95% of water in the process.
Another valorization example is the use of salmon skin in leather
straps for watches by the Norwegian company Berg Watches, in
collaboration with the Icelandic Nordic Fishleather.

Use in Food/Feed Industries
Proteins are a highly valuable resource, present in several raw
materials from plant and animal origin, available in different
amounts and with the primary dietary function to provide
essential amino acids and tissue building material to the human
and animal body. Proteins of marine origin demonstrated
higher quality due to high amounts of all essential amino
acids (Abdul-Hamid et al., 2002; Prihanto et al., 2019). Several
studies have also proven that the quality, digestibility and
bioavailability of the essential amino acids in marine protein
concentrates increase after food-grade hydrolysis processing
(Faber et al., 2010; Kim, 2013). Marine protein hydrolysates can
also contribute the necessary amounts of bioactive peptides with
antioxidative, antihypertensive, metal-chelating, antimicrobial
and anti-inflammatory/immunomodulatory properties to the
human diet (Kim, 2013; Abdelhedi et al., 2018; Ediriweera et al.,
2019).

Marine polysaccharides (e.g., alginates, carrageenans, agar),
as well as gelatin, are used in food and feed industries as
gelling agents, stabilizers and/or emulsifiers. Their addition can
change the product’s viscosity, which impacts the transport
of volatile components and affects flavor release (Liu et al.,
2015). As an excellent source of proteins, lipids, vitamins and
minerals, by-products as fish skin, viscera and blood, as well as
crustacean and bivalve shells, are used in the pharmaceutical and
agriculture industry and innovative food processing technologies
(Beaulieu et al., 2013).

Use in Bioremediation
Several marine polysaccharides have also found useful
applications in bioremediation, either as adsorbents of
organic and inorganic pollutants or as suitable biopolymers
for the immobilization of microbial species with relevant
catabolic properties. For instance, chitosan and alginate-
based membranes have shown to be highly efficient in the
retention of industrial dyes and heavy metals, such as mercury,
lead or nickel (Ngah et al., 2010), as well as in the removal
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of priority organic pollutants, including pesticides (Moraes
et al., 2013), pharmaceutical drugs (Vassalini et al., 2020),
phenolic compounds and other industry-borne pollutants
(Vidal and Moraes, 2019; Vassalini et al., 2020). In fact, several
membrane composites, containing these biopolymers, are now
being regarded as suitable replacements of current adsorption
technologies (e.g., activated carbon) for implementation in
treatment plants, depuring industrial effluents (Vidal and
Moraes, 2019). On the other hand, several marine biopolymers,
including alginate, cellulose and chitosan, have also been widely
used for the encapsulation of living cells for many purposes
in biotechnology, including bioremediation (Wang et al.,
2019). Cellular immobilization is of additional significance
in bioremediation strategies that rely on the application
of degrading microorganisms to the affected sites (i.e.,
bioaugmentation), as it maximizes cellular viability and
stabilizes the metabolic performance, allowing to achieve
productive biodegradation in biomes that often showcase
inhospitable conditions for microbial development (e.g., extreme
pH levels, low nutrient availability). For such ends, alginate
beads, cellulose nanofibers or chitosan NPs have served as
suitable microbial interfaces to facilitate the bioremediation
of various organic pollutants and to mitigate the nutrient
load of wastewaters (Eroglu et al., 2012; Sathishkumar et al.,
2014; Khanpour-Alikelayeh et al., 2021), while also bearing
minimal environmental impacts due to their biocompatibility
and biodegradability.

VALORIZATION OF MARINE BIOMASS
AS A EUROPEAN STRATEGY

The circular economy and bioeconomy are high on the
EU policy making agenda. On the one hand, the Circular
Economy Action Plan aims at reducing raw materials and
associated environmental pressures, while on the other hand, the
Bioeconomy Strategy promotes the exploitation of biomaterials
in a sustainable manner. However, the development of novel
products demands investment into the optimization of technical
procedures, a clear cost-benefit and supply sustainability. That
was also recognized by the European Commission that started
to support this with new funding opportunities for research
and innovation in the field of circular economy within marine
biotechnology (Table 4). The first international EU-funded
projects focused on exploiting marine organisms. They were
financed within Framework Programme 7 - FP7 (2007-2013)
and were mainly dedicated to innovative bioprospecting of
marine microorganisms and the discovery of high value-added
bioactive compounds. Some of these projects investigated
the extraction and application potential of marine-derived
biopolymers (polysaccharides, proteins, enzymes, among others)
in the pharmaceutical, cosmeceutical and medical industries.
Two projects within the EU FP7 SME (N-CHITOPACK and
SEABIOPLAST) were financed for bioplastic production
and food packaging from fish waste and seaweed biomass.
At the end of FP7, an ERA-NET was launched for marine
biotechnology (ERA-MBT) that funded 21 projects, from

which eight were focused on marine biopolymers from a broad
range of marine (micro)organisms (bacteria, cyanobacteria,
macroalgae, shellfish, crustacean, fish). Polysaccharides, but
mostly chitin, chitosan, alginate and laminarin, were the most
investigated polymers within ERA-MBT funded projects. H2020
Framework Programme (2014–2020) proceeded with funding
projects for marine biomass exploitation for new products.
Two projects (PULMO and GoJelly) were focused on jellyfish
biomass utilization (usually by-catch) for different applications,
from which protein extraction (mainly collagen) was used
in cosmeceutical, nutraceutical, medical and agricultural
applications. A Public-Private Partnership between the EU and
the Bio-based Industries Consortium was established under
H2020 called Bio-Based Industries Joint Undertaking (BBI
JU). The aim is to reduce Europe’s dependency on fossil-based
products and to meet EU climate change goals that would
result in greener and eco-friendlier growth. BBI JU funded
two projects that foster a cost-effective marine biomass supply
(micro- and macro- algae, aquaculture and fisheries side streams)
and scale-up the production process of ingredients for further
application. On the regional level, INTERREG Programmes also
identified marine biomass (mostly seaweed, such as the Interreg
Germany-Denmark project FucoSan on fucoidan) as a valuable
feedstock for new value chains and biopolymer extraction.

CASE STUDIES

Valorization of side streams (marine and terrestrial ones) could
help transition to a more circular economy, where waste is
minimized, and resources are used more efficiently by creating
new value chains. This strategy is also stated in the EU Action
Plan for the Circular Economy (COM/2015/0614), and there
have been significant financial contributions to develop new,
sustainable value chains, covering marine, and terrestrial sources.
This section presents some of these value chains, categorized
by geopolitical location: Norway, Scotland, and the Baltic Sea.
Norway and Scotland are presented due to their traditional
link with fisheries and aquaculture. Both countries have been
introducing seaweed aquaculture in the past years, and the
valorization potential of this side stream is also presented. Finally,
we present the Baltic Sea, which has enormous potential for the
valorization of beach wrack (Figure 4).

Status and Utilization of Marine Residual
Raw Material in Norway
In Europe, Norway is the major producer of seafood and
generates large quantities of residual raw material. Thus, ensuring
sustainable harvesting and utilization of the marine resources is
at the Norwegian governance strategic forefront (Ween et al.,
2018; Ministry of Trade, Industry and Fisheries, 2019). Therefore,
advances in the utilization of residual raw materials have been
surveyed over several years under the Norwegian Seafood
Research Fund (FHF) and earlier through the RUBIN Foundation
(Recycling and Utilization of Organic By-Products in Norway).
The surveys have given the industry players a better overview of
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TABLE 4 | Overview of the EU funded international projects on marine biotechnology.

Project Focused on Targeted industry Website

Biopolymers Organisms

BLUEandGREEN
(EU H2020,
Twinning)

Broad Broad Boosting scientific
excellence and innovation
capacity

http://blueandgreen.ciimar.up.pt/

ALGAE4A-B (EU
H2020-MSCA-
RISE)

Polysaccharides, proteins,
enzymes, antioxidants

Microalgae Cosmetic and Aquaculture
industry

http://www.algae4ab.eu/

SEABIOTECH (EU
FP7 KBBE)

Polymers Bacteria, microalgae,
cyanobacteria

Pharmaceutical, cosmetic,
functional food and
industrial chemistry

http://spider.science.strath.ac.uk/
seabiotech/

MACRO CASCADE
(EU H2020)

Alginate, protein, laminarin,
fucoidan, mannitol

Macroalgae Feed, food,
pharmaceuticals,
cosmetics

https://www.macrocascade.eu/

GOJELLY (EU
H2020)

Collagen, proteins Jellyfish Cosmetics, food, feed,
fertilizer, nutraceuticals

https://gojelly.eu/

PULMO (EU H2020
MSCA)

Peptides, collagen and
gelatin, oligosaccharides,
enzymes

Jellyfish Nutraceutical and
pharmaceutical

https://cordis.europa.eu/project/
id/708698

BIOSEA (EU H2020
BBI JU)

Lipids, protein,
carbohydrates

Microalgae and macroalgae Food, feed, and cosmetic http://biosea-project.eu/

AQUABIOPRO-FIT
(EU H2020 BBI JU)

Proteins and bioactive
compounds

Aquaculture, fisheries, and
agricultural side streams

Feed and nutritional
supplement food products

https:
//www.aquabioprofit.eu/index.cfm

DISCARDLESS (EU
H2020)

Fish pulp production,
protein hydrolysate
production and fish meal/oil
production

Fish discard/by-catch Food, feed, agriculture,
energy, textile industry

http://www.discardless.eu/

OCEAN
MEDICINES (EU
MSCA RISE)

Bioactive compounds Microorganisms Anticancer or antiinfective https://cordis.europa.eu/project/
id/690944

N-CHITOPACK (EU
FP7 SME)

Chitin Fish waste industry Biodegradable material for
food packaging

https://cordis.europa.eu/project/
id/315233

SEABIOPLAST (EU
FP7 SME)

Polysaccharides Seaweed Bioplastic production https://cordis.europa.eu/project/
id/606032

MARPLAST (EU
ERA NET
ERA-MBT)

Polyhydroxyalkanoates Bacteria Biodegradable bioplastic http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/public/
marplast_ProjectdescriptionERA-
MBTCall2.pdf

NOVOFEED (EU
ERA NET
ERA-MBT)

Peptides Fish Novel feed ingredients http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/public/
Novofeed_ProjectdescriptionERA-
MBTCall2.pdf

BLUETEETH (EU
ERA NET
ERA-MBT)

Biopolymers Crustacean by-products
and waste fraction

Periodontal disease http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/public/
blueteeth_ProjectdescriptionERA-
MBTCall2.pdf

CYANOBESITY (EU
ERA NET
ERA-MBT)

Broad Cyanobacteria Nutraceutical, obesity https://cyanobesity.ciimar.up.pt/

SEAREFINARY (EU
ERA NET
ERA-MBT)

Phlorotannins, fucoidan,
and laminarin

Macroalgae Nutraceutical, food industry http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/
public/SeaRefinary Project
description ERA-MBT Call 1.pdf

MAR3BIO (EU ERA
NET ERA-MBT)

Alginate and chitosan Macroalgae and
crustaceans

Materials, cosmeceuticals,
nutraceuticals,
pharmaceuticals

http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/public/
Mar3BioProjectdescriptionERA-
MBTCall1.pdf

(Continued)
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TABLE 4 | (Continued)

Project Focused on Targeted industry Website

Biopolymers Organisms

BLUESHELL (EU
ERA NET
ERA-MBT)

Proteins/peptides, unusual
fatty acids, pigments, and
chitin

Shellfish by-products Functional foods
development, food safety
applications and plant
health applications

http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/
public/BlueShell_
ProjectdescriptionERA-
MBTCall2.pdf

CHITOWOUND (EU
ERA NET
ERA-MBT)

Chitin/chitosan Crustacean seafood
processing industry

Wound healing applications http://www.marinebiotech.eu/
sites/marinebiotech.eu/files/
public/CHITOWOUND_
ProjectdescriptionCOFASP%
26ERA-MBTCall.pdf

PRE-SW-GROW
(INTERREG NPA)

Broad Seaweed Feed, fertilizer; promote
innovation

https://keep.eu/projects/20058/

BIOTECMAR
(INTERREG Atlantic
Area)

Protein, chitin, chitosan, oil,
pigments,

Seaweed, crustacean,
mussels

Broad https://keep.eu/projects/5925/

SUBMARINER
(INTERREG Baltic
Sea)

Broad Broad Broad https://www.submariner-
network.eu/

FUCOSAN
(INTERREG
Germany Denmark)

Fucoidan Brown algae Medicine, cosmetics https://www.fucosan.eu/en/
project

GRASS (INTERREG
Baltic Sea Region)

Broad Macroalgae Food industry, packaging,
fertilizer

https://www.submariner-
network.eu/grass

BIOCARB-4-FOOD Phycocolloids, cellulose Seaweed, phycocolloids
industry waste

Food industry, packaging https://biooekonomie.uni-
hohenheim.de/en/biocarb4food

the flow of goods and the possibilities for increased growth and
value creation in the seafood sector.

The residual raw materials are defined as the non-primary
products obtained from marine raw materials, which are fish
and shellfish (crustaceans and molluscs), and seaweeds farmed
and caught under Norwegian quotas in Norwegian waters.
Opportunities and challenges of three specific sectors of marine
waste (fish, shellfish, and seaweed waste) are presented in Table 5,
as well as discussed in subparagraphs below.

Norwegian Fish and Shellfish Production Waste for
Added Value Products
In Norway, most of the residual raw material from fish and
shellfish is currently used, making an important contribution
to value creation in the fisheries and aquaculture industry
(Johansen et al., 2019). In 2020, about 861,000 tons (85%)
of the available residual raw material was utilized to produce
various products (Myhre et al., 2021). Large volumes are
utilized to varying extents between the different sectors,
from 62% in the shellfish industry to almost 100% in the
pelagic sector. Norway is currently the largest producer of
Atlantic salmon, yielding 93% of total Norwegian aquaculture
production (FAO, 2016). In the aquaculture sector, there are
strict rules for processing and handling waste in production,
and in principle, all biological material is processed. The
only fraction that is not being economically exploited is the
blood from the slaughter process, for which there is still
no usable technology. While in the other marine production
sectors (e.g., fisheries), there are large seasonal fluctuations

that give variation in access to residual raw material, the
residues from the aquaculture industry arise as a relatively
steady stream throughout the year. The growth in salmon
aquaculture production and the increased use of recirculating
aquaculture system (RAS) technology has led to an increased
focus on the exploitation of solid waste (feed spill and
faeces) from Norwegian aquaculture (Brod et al., 2017; Estevez
et al., 2019; Meriac, 2019). The sludge from most land-based
aquaculture and smolt production is commonly used for biogas
production, and the remaining fraction after biogas production
is used as a soil enhancer (Aas and Åsgård, 2017). The
production of bioenergy from silage of dead fish from the
Norwegian aquaculture industry has increased significantly in
recent years. However, in open sea cages, no technology for
sludge collection currently exists, and unless resource-efficient
solutions like integrated multi-trophic aquaculture (IMTA) are
applied, valuable resources are lost. Recently there has also
been an increasing focus on producing organic fertilizers from
fish waste from captured fish, promoting the recycling of
nutrients from the sea and back to terrestrial environments
(Ahuja et al., 2020).

Products based on marine residues are mainly used for the
feed market (69%), direct and indirect human consumption
(13%) and energy/biogas (19%) (SINTEF Ocean and Kontali
Analyse, 2020; Myhre et al., 2021). Most marine residues from
the production of pelagic fish and aquaculture are used as
silage, fishmeal, fish oil and fish protein concentrate. The feed
market is the most important application when it comes to
volume. Consumer products also include flavorings in foods
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FIGURE 4 | Monthly beach wrack growth production potential in the Baltic Sea by assessing macroalgal biomass amounts.

(extracts) and ingredients for functional food. Other products, for
example, cosmetics, nutraceuticals and pharmaceutical products,
are produced to a very modest extent from Norwegian based raw
material (Pleym et al., 2019).

Norwegian Seaweed Production Waste for Added
Value Products
In 2017, over 32.6 million tons of brown, red and green seaweed
were produced from capture and aquaculture worldwide, with
an annual increase of around 7% in the last 10 years and an
average value of 400 USD/ton DW (dry weight) (Buschmann
et al., 2017), mainly from the aquaculture sector. On the contrary,
the European seaweed industry is mainly based on harvesting
of natural resources, as the aquaculture of seaweed is still on
the experimental and pilot-scale levels. The European seaweed
capture has been stable with around 270,000 tons since 1960, in
which Norway contributed with an average of 59.6% (FAO, 2021).
Norwegian products from wild-harvested seaweed vary from
meal or extracts to highly technological pharmaceutical products.
The Norwegian seaweed industry has a long history and relies
mostly on the wild harvest of two species: Laminaria hyperborea
for alginates production and Ascophyllum nodosum for meal
and extracts used for agricultural/horticultural and food or feed
supplement purposes. The total harvest of A. nodosum and

L. hyperborea combined in 2019 was 149,876 tons, with a first-
hand value of 4.06 million EUR. Minor amounts of other seaweed
species such as Ulva sp., Himanthalia elongata, Vertebrata lanosa,
Palmaria palmata are harvested by hand and sold as a whole,
locally to restaurants or directly to the consumer and result in
almost no waste.

During the harvesting of A. nodosum, by-catches, mostly
composed of Fucus species, are occasional and separated
manually and processed further, mostly as seaweed extracts for
agricultural use. During the A. nodosum biomass processing,
low quantities of waste are produced. For example, gravel and
sand are removed from the seaweed using high-pressure air
and up to 82% of the moisture is removed by drying the wet
biomass directly in a drum. After processing of A. nodosum
into meal, 50% of the meal is further processed into extracts,
together with fresh seaweed. The remaining material after
extraction is used as fertilizer by local farmers (∼750 tons/yr).
On the contrary, the industrial exploitation of L. hyperborea
generates more waste. Alginates can constitute up to 40% of
the dry weight of L. hyperborea (Gunn.) and are extracted
in over a hundred different qualities for a broad range of
applications. The factory DuPont is licensed for the production
of 6,000 tons of alginate and has permission to release the liquid
product containing stone dust and kelp dry matter into the
seawater, while alginate dust is released to the air. Filtration
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TABLE 5 | Summary of marine waste utilization in Norway.

Source Opportunities Challenges

Fish waste 85% of the available fish waste was utilized in 2020; the feed
market is the most important application in terms of volume.
The potential for increased utilization of fish waste is related to
the whitefish fishery (cod, haddock, and pollock). Several
ongoing research projects have particular focus on utilization for
higher added-value products/ingredients like nutraceuticals and
pharmaceutical products; bio functional peptides, enzymes,
collagen, etc. (www.legasea.no).

Large seasonal fluctuations in fisheries and consequently an
unstable access to residual raw material, lack of technological
solutions for storage and processing onboard the fishing
vessels, economic incentives, infrastructure for new processing
methods, documentation, regulations and market
authorizations for new marine ingredients or products.

Shellfish and crustacean waste Main consumed shellfish/crustaceans include shrimp, krill, and
crabs. The main composition of this type of waste is, as in most
of the other countries, of 70% heads and 30% shells. A high
amount of nutrients and particularly protein are lost with the
heads. The shells are mostly processed or sold by Norwegian
fisheries and food processing companies to international
partners for chitin/chitosan extraction. Different projects under
development are treating the optimization of sustainable
processing methods with full utilization of the resources
(example: KrillSOFT project, funded by the Norwegian Research
Council in 2019) developing a circular bioeconomic approach
for full utilization of krill.

Large seasonal fluctuations in fisheries that give variation in
access to residual raw material, lack of technological solutions
for storage and processing onboard the fishing vessels,
economic incentives, infrastructure for new processing
methods, documentation, regulations and market
authorizations for new marine ingredients or products. An
additional bottleneck is the existing waste regulation framework.

Seaweed waste Wild resource origin: The total catch of Ascophyllum
nodosum and Laminaria hyperborea combined in 2019 was
149,876 tons, with a first- hand value of 4.06 million EURO
(40.59 million NOK). Minor amounts of other seaweed species
e.g., Ulva sp., Himanthalia elongata, Vertebrata lanosa,
Palmaria palmata are harvested by hand and sold as whole
locally to restaurants or directly to the consumer. The
exploitation of the last-mentioned species as food results in
almost no waste and when so (washing water) in small volume.
Alginates can constitute up to 40% of the dry weight of L.
hyperborea (Gunn.) Foslie and are extracted in over hundred
different qualities for a broad range of applications. During the
processing of the A. nodosum biomass few wastes are
produced: gravel and sand are removed from the seaweed and
up to 82% of moisture is removed. After processing of
A. nodosum in meal, 50% of the meal is further processed into
extracts, together with fresh seaweed. After extraction, the rest
is used as fertilizer by local farmers (∼750 tons/year).
Aquaculture origin: Current commercial seaweed farming in
Norway is limited to the kelp species Saccharina latissima
(sugar kelp) and Alaria esculenta (winged kelp) due to their
ability to reach high biomass yields and a favorable content in
nutritional and bioactive compounds with multiple industrial
applications

Industrial exploitation of A. nodosum and L. hyperborea
generate waste. During the harvesting of A. nodosum
by-catches composed mostly of Fucus species are occasional
and are separated manually from the Ascophyllum and process
further mostly as seaweed extract for agricultural use.
The extraction of alginate from L. hyperborea results in the
production of a cellulosic suspended phase, which today is
considered as ‘waste,’ but can represent a valuable resource
due to their organic matter content.
Aquaculture origin: As the aquaculture industry is still
immature, very little investigation has been made to estimate
the waste types (biomass or processing liquid). The lost
biomass during harvesting is estimated to be around 30% and
after the freezing and thawing up to 40% of wet weight. To
optimize the productions and have a minimum impact on the
environment, the wastes generated during this novel type of
production would need to be identified further to both define
the volume and develop innovative uses of these wastes.

of the production liquid to collect the rest of the material for
soil improvement has been tested but not proven to be cost-
effective.

As the aquaculture seaweed industry is still immature (Araújo
et al., 2021), minimal investigation has been made to estimate the
waste types (biomass or processing liquid). Current commercial
seaweed farming in Norway is limited to the kelp species
Saccharina latissima (sugar kelp) and Alaria esculenta (winged
kelp) due to their ability to reach high biomass yields and
a favorable content in nutritional and bioactive compounds
with multiple industrial applications (Stévant et al., 2017;
Broch et al., 2019). The loss during harvesting is estimated to be
around 30% and measured losses of up to 40% when seaweed
biomass is frozen and thawed (e.g., Emblemsvåg et al., 2020).
To optimize the productions and have a minimum impact on

the environment, various wastes generated during this novel type
of production would need to be identified further to define the
volume and develop innovative uses of these wastes.

Marine Waste in Scotland: Opportunities
and Challenges
The Scottish aquaculture industry is dominated by farmed
Atlantic salmon. However, rainbow trout, mussels and, more
recently, seaweed are gaining attraction as well. Scottish
government recognizes the importance of marine resources
and has set a target to double the economic contribution of
aquaculture from 1.8 billion GBP in 2016 to 3.6 billion GBP by
2030 and also to double the number of jobs to 18,000 by 2030
(Scotland Food and Drink, 2016).
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However, aquaculture and fisheries also generate leftover
residues and waste such as fish trimmings (guts, heads, tails,
frames, and skin), by-catch, aquaculture mortalities, shells and
various leftover biomass. This residual biomass can be divided
into three categories: (a) co-products which contribute to the
profit of the business; (b) by-products that do not generate
substantial income but are cash-neutral when accounted for
disposal costs; and (c) waste which costs business money to
dispose of (Zero Waste Scotland, 2015). As with any market, the
costs associated with the above categories fluctuate (e.g., cost of
landfill) and are subject to policies and reforms.

In 2015, Zero Waste Scotland (a not-for-profit environmental
organization funded by the Scottish Government and European
Regional Development Fund) conducted a study, ‘Sector Study
on Beer, Whisky, and Fish,’ to evaluate waste practices in
Scotland. Their report identified several opportunities in the
marine waste sector based on extracting value from leftover
residue. However, the authors also highlighted a need for (a)
coordinated and staged development of biorefinery strategy;
(b) locally adapted innovative low-tech solutions, suitable for
small scale and rural areas; (c) cross-sector awareness raising;
(d) bioresources mapping; and (e) efficient data recording and
sharing. Opportunities and challenges of three specific sectors of
marine waste (fish, shellfish and seaweed waste) are presented in
Table 6, as well as discussed in subparagraphs below.

Fish Waste
Some fish are immediately frozen upon arrival and exported as
a whole, so the processing occurs elsewhere. Nevertheless, most
fish are processed locally, which generates a significant amount
of waste. During processing, some trimmings (guts, heads, tails,
frames, and skin) are removed. Scotland-wide fish processing
waste was estimated at 160,000 tons (Pitcairn et al., 2017). While

there are well-established international markets for various fish
parts in West Africa and East Asia, it is currently not cost-
effective to transport fish waste long distances. However, some
Scottish fish waste is exported shorter distances and processed
into higher-value products (e.g., fish by-products processed in
Norway) (Zero Waste Scotland, 2015).

Fish Waste Opportunities
Fish waste can be minced and sold as fish meal, used in animal
feed. In Scotland, most fish waste (75%) that is being re-used
is sold for blending into aquaculture feeds. Other lower value
markets include pig and poultry feeds and pet food (Zero
Waste Scotland, 2015). Aquaculture feed in Scotland is custom
formulated to address the nutritional needs of specific fish
species and their growth stages. Almost all feeds are a blend of
materials. The main requirement is to feed with a high content
of protein and ω-3 fatty acids. Physical properties are also
considered, and losses during feeding are reduced by increasing
pellet digestibility and decreasing the speed of sinking in the
water. Intra-species recycling (e.g., salmon waste being recycled
back into salmon feed) is not permitted under the EU Animal
By-Product Regulation (ABPR); therefore, the dominant source
of protein and oils in salmon feed is from other wild fish. Other
cheaper feed materials (soy, corn, wheat, plant-based oils) are
being blended to reduce the overall cost of fish feed, so the ratio of
vegetable meal to fish meal increases. Currently, about 15% of fish
feed is recycled into fish meal, and fish feed in Scotland remains
more expensive (up to 40% in 2014) than in other countries such
as Norway (Zero Waste Scotland, 2015).

Various innovative fish waste applications were identified
in the ‘Sector Study on Beer, Whisky, and Fish’ report
(Zero Waste Scotland, 2015). These include composting,
land spreading and organic fertilizers (taking advantage of

TABLE 6 | Summary of marine waste utilization in Scotland.

Source Opportunities Challenges

Fish waste Fish waste can be minced for variety of animal feeds. Other uses include
composting and fertilizers, anaerobic digestion and biodiesel production,
protein hydrolysis, extraction of collagen, guanine, enzymes, carotenoids and
hydroxyapatite and other specialty markets (see Zero Waste Scotland, 2015)
Number of companies focusing on recycling is increasing (there are 12 in
Scotland)

Lack of incentive to investigate other applications for waste
due to cheap disposal cost
It is cost-prohibitive to sort and/or pretreat the waste
Small, disperse and rural fishing processing facilities cannot
profit at small scale
Seasonality and perishability of the waste
Complicated waste regulation

Shellfish and
crustacean waste

Shellfish and crustacean waste can be used in feed and food flavoring,
anaerobic digestion, fertilizers (and pesticides), to extract enzymes,
carotenoids, as calcium source in variety of industries, and as structural material
(see Zero Waste Scotland, 2015)
Shells are a source of chitin which has a well-established market. In addition,
new and innovative technologies are emerging (e.g., antimicrobial chitosan film
from CuanTec Ltd)

Most shellfish are shipped away whole, so the waste
stream is very small and cheap disposal is currently
preferred by the industry
For some applications, shells must be meat-free for
processing which can be costly
Complicated waste regulation

Seaweed waste
and/or beach
wrack

Seaweed waste and/or beach wrack can be used for biogas production, soil
improvement products and fertilizers, landfill material for sustainable projects
Environmental benefits of seaweed growth (nutrient and contaminant
absorption, CO2 sequestration, positive climate impact etc.)
Seaweed cultivation and/or wild harvesting is a growing industry with new
socio-economic opportunities and emerging research and commercial farms
(e.g., Hebridean Seaweed Company Ltd and Scottish Association for Marine
Science)

Potential for facilitation of disease, alteration of population
genetics and negative environmental alteration for birds and
insects
Knowledge gaps associated with beach wrack collection
and separation (see Chubarenko et al., 2021) and
large-scale seaweed farming (see Campbell et al., 2019)
Need for supportive legal regulations
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high nitrogen and phosphorus content), anaerobic digestion
and biodiesel production (suitable for fish mortalities that
cannot enter any other value chain), protein hydrolysis
(protein and peptone refining techniques), a specialist market
of manufacturing fish glue, extraction of collagen, guanine,
enzymes, carotenoids, and hydroxyapatite. The number of these
innovative applications suggests that there is an economic and
environmental opportunity for utilizing fish waste in Scotland.
However, these innovative uses have been tested only on a
small scale in Scotland and generally have a low technology
readiness level.

Currently, there are about 12 companies in Scotland focusing
on recycling and use of fish waste. These include the production
of fish meal, biofuel, fish leather, new foods, oils, and fertilizers.
There is a growing demand for bio-based products and renewable
energy. Naturally, the demand is driven by price and quality.
In 2015, the price range for fish waste was 130–160 GBP/ton of
pelagic waste (Zero Waste Scotland, 2015).

Fish Waste Challenges
There are many challenges associated with fish waste processing.
Fish industries are often focused on their core and profitable
business and lack the incentive to investigate other applications
for their waste, especially if disposable is cheap and easy. Any
new technology is often profitable only at a large scale, which
is not suitable for small, disperse and rural fishing operations in
Scotland. There is also an issue of seasonality and perishability
(some products and wastes are available only in certain months),
which lowers the steady input and consistency of the feedstock.
Similarly, biological waste often consists of multiple residues
and potential contamination, while it is cost-prohibitive to
pretreat the waste before processing. For example, cod liver
can be utilized to extract valuable oils, but is often damaged
during processing. Similarly, fish skin used for gelatin extraction
must be meat-free, which is not a priority during processing.
Complicated waste regulation also presents another obstacle
because businesses are reluctant to study different regulatory
approaches, which is having a negative impact on their decision-
making regarding fish waste.

Shellfish Waste
Shellfish production in Scotland is dominated by mussel (Mytilus
spp.) and pacific oyster (Crassostrea gigas), with 6,699 tons and
4,610 tons produced, respectively. Scallop (Pecten maximus),
queen scallop (Aequipecten opercularis) and native oyster (Ostrea
edulis) are also produced, but at a smaller scale (not more
than 150 tons combined). Cultivation of common periwinkle
(Littorina littorea) was also recorded. In 2019, the total value
for all species combined was approximately 7.9 million GBP
(Munro, 2019).

Shellfish are shipped away as a whole, which practically
eliminates any significant waste stream. Shellfish farmers have,
therefore, a small incentive to even investigate any uses for
shellfish waste and prefer local disposal.

Waste from crustacean (crabs, lobster, shrimp, etc.) is more
dominant than the others. Shells and/or carapaces with no signs
of diseases are often applied as organic land fertilizers. In 2008,

Scotland produced 3,400–7,000 tons of crab waste and 6,500–
13,000 tons of nephrops (Nephrops norvegicus) (Archer and
Russel, 2008). The exact information is difficult to access; hence
waste generations are largely broad estimates.

Innovative applications from shellfish waste include
composting (Lanno et al., 2020), anaerobic digestion, processing
into agricultural lime fertilizer, using shells as a calcium source
for animal feed, enzyme extraction from viscera and using
shells as aggregate for building applications and track surfacing.
All the shells must be flesh-free, which is often difficult to
achieve cost-effectively. Crustacean waste can be used to produce
chitin (which is a well-established global industry), in fish
feed, as an ingredient in pet food, to extract carotenoids, to
produce stock for flavoring for human consumption, and use
as fertilizer and a pesticide (e.g., reduce nematode presence)
(Zero Waste Scotland, 2015).

Seaweed Waste
In Scotland, seaweeds are wild-harvested and have been used
locally in small quantities for feed, food and fertilizers for
centuries; however, large-scale seaweed cultivation is only
recently being developed (Pitcairn et al., 2017). Several
commercial and research farms (Hebridean Seaweed Company
Ltd and Scottish Association for Marine Science) are actively
pioneering the industry. Biorefinery report (Pitcairn et al.,
2017) has estimated 8-10 million tons/yr of wild, easily
and sustainably harvestable seaweed. Seaweed farming is also
becoming more popular.

Overall, the most targeted species are S. latissima, A. esculenta,
P. palmata, L. hyperborea, and A. nodosum. The seaweed industry
creates significant opportunities in Scotland from seaweed
applications in food, feed, fertilizers, anaerobic digestions,
nutraceutical and pharmaceutical industry, while macroalgae
benefit the environment by sequestering CO2 and absorbing
nutrients from the water during growth. Similarly, microalgae
have also been recognized for their potential in all application
fields listed above and wastewater bioremediation (Scottish
Enterprise, 2019). The benefits of IMTA, which includes
seaweed, are also being investigated. The socio-economic
opportunities and potential of the budding seaweed industry
in Scotland are considerable and generally recognized. Scottish
Enterprise (2019) estimated that high-value products from
seaweed (specifically L. hyperborea) could contribute up to 300
million GBP/yr by 2030.

A recent review by Campbell et al. (2019) highlighted
the environmental risks and knowledge gaps associated with
large-scale seaweed farming in Europe. The authors identified
several areas of concern, including facilitation of disease,
alteration of population genetics and broader alterations to
the local physiochemical environment (e.g., increased noise,
altered nutrient fluxes and flow, impact on benthic species, etc.)
(Campbell et al., 2019). Current small-scale farms in Scotland
were identified as low risk; however, a transition to large-scale
cultivation requires more research and monitoring efforts to
fully understand the environmental implications and evaluate the
balance between environmental risks and benefits of large-scale
seaweed cultivation.
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Side Stream Valorization in the Baltic Sea
Beach wrack has ecological functions such as providing food and
habitat for sandy beach fauna, nutrients for dune vegetation,
and protection for coastal dunes. In the framework of the
INTERREG project GRASS (Table 7), existing environmental
data and expert opinions were gathered to model beach wrack
production potential in the Baltic Sea region. A higher amount of
beach wrack is expected in the late autumn months and the early
winter, along with the end of production season and the onset
of heavier storms. High beach wrack production is predicted
at shores that have a narrow photic zone (i.e., distance to the
10 m isobath less than 1 km) and are exposed to favorable wave
direction. Moreover, higher solar radiance and water salinity are
associated with elevated beach wrack.

Clear hotspots of beach wrack production and harvest
emerged throughout the whole Baltic Sea area (including
Kattegat, Figure 4). The highest production values (up to 4,000 g
per m2 per month) were observed on the west and east coasts
of Sweden, all along the southern coast of Finland, west coast of
Estonia and in Gdansk Bay. However, some production hotspots
were sporadically found even on the east coast of Finland,
reaching northernmost parts of the Bothnian Bay as well as on
the shores of St. Petersburg. The remaining parts of the Baltic Sea
were characterized by lower beach wrack production potential
(approximately 0–1,000 g per m2 per month).

Along most of the coast, the beach wrack that is deposited
on the beaches does not unduly affect the people who live close
by. However, in certain areas, a proportion of the wrack moving
onshore is permanently trapped. It creates problems not only
for inhabitants of those areas, local authorities responsible for
maintaining the beaches or beach visitors (Kataržytė et al., 2019),
but also for the local beach ecosystem. Seagrass and algae wrack,
during decomposition, release several constituents, which alter
the coastal biogeochemical cycles and influence organisms living
there. These include nutrients and dissolved organic carbon,
which affect flora and microbial activity, and heavy metals
(in polluted systems), creating a risk for biota (Rudovica and
Bartkevics, 2015). Also, the emission of volatile components
from decaying plant material might represent a risk for human
health (H2S, Hg0, Cs−137), as well as for climate change (by CH4
emission). Hence, beach wrack is the subject of several research
projects (Table 7).

Pollution Prevention
Anthropogenic mercury release remains a problem in the aquatic
environment and, based on the sedimentary records in the
Baltic Sea, it exceeds Hg coming from natural sources (i.e.,
hydrothermal processes and rock weathering) by a factor of 5 on
average. Recently, the emission of this metal to the environment
has substantially decreased (Helsinki Commission, 2009, 2018;
Kwasigroch et al., 2021). This has resulted in a noticeable decrease
of mercury concentration in macrophytes in the Polish coastal
zone of the southern Baltic (Bełdowska et al., 2015, 2016). In
parallel, the intense growth of some macrophytobenthos on the
sea bottom has been observed in many areas (Carmen et al., 2019;
Sokołowski et al., 2021). This is stimulated by an improvement
of environmental conditions and lengthening of the growing

season. It leads to the rapid inclusion of mercury from the water
column (which is introduced from natural and anthropogenic
terrestrial sources) and from sediments (which was deposited in
the past and can be considered retarded anthropogenic emission)
(Bełdowska et al., 2015).

In many areas of the Baltic Sea, due to the pattern of currents
and shape of the coastline, large quantities of macrophytobenthos
gather in the coastal zone or end up as beach wrack. During
the summer season in the Gulf of Gdansk, on 1 km of
the beach, the amount of beached seagrass and algae wrack
ranges from several dozens to 800 tons (Filipkowska et al.,
2008; Weinberger et al., 2020). Considering median total Hg
concentration (7.6 ng/g dry weight), it has been calculated that
a beach segment that is 1 km long may receive 6 g of mercury per
season. Analyses of coastal erosion in the Southern Baltic show
that about 39% of the Polish coast is accumulative (Dubrawski
et al., 2008). It means that about 200 km of coastline favors
phytobenthic accumulation. During the summer season, benthic
plants on Polish beaches alone may contain 0.05–1.2 kg of Hg
(Bełdowska et al., 2015).

A recent study performed within the CONTRA project in
the Puck Bay (sheltered part of Gulf of Gdańsk), Poland,
indicate that the concentrations of Hg in the managed beach
(P1), where live algae occur, were lower than those collected in
the unmanaged site, where decomposing wrack was collected
(sampling sites R1 and R2, Figure 5). However, in the unmanaged
station, the concentrations of Hg in live algae (sampling site
R3) were similar to those at the managed site. This indicates
that although biological material from the bay accumulates Hg
at the same rate and is characterized by the same mercury
concentration in both sites, accumulation does not stop on
landing. Decomposing beach wrack in the unmanaged site is rich
in organic matter and continuously builds up Hg concentration.
This is probably caused by the excellent sorption capabilities
of decaying plants and algae material that may capture Hg
from coastal water, acting as a filter for surface waters. Another
explanation is the Hg capture from the atmosphere, where
it originates in low emission from local sources (Bełdowska
et al., 2014). This means that unmanaged beaches may not only
transfer Hg from beach wrack via accumulation into live algae
and subsequent release, but also enhance Hg flux to the beach
from local sources.

Besides pollutants, nutrients are also removed from water
by algae and marine plants, which are later released from
decomposing beach wrack. Decomposition of organic matter
at the bottom causes a higher concentration of phosphate and
ammonia in porewaters than nearbottom waters (Graca et al.,
2006). Porewaters, collected from areas beneath decaying beach
wrack, had similar phosphate and ammonia concentrations
(phosphate, p = 0.86; ammonia, p = 0.46) as porewaters
in the coastal zone sediments, but higher than those in
nearbottom waters (phosphate, p = 0.003; ammonia, p < 0.01)
(Figures 6A,B).

Moreover, in porewaters collected beneath beach wrack
in unmanaged beaches (sampling sites R1, R3), the median
concentration of phosphate and ammonia equaled to 14.5 and
140.9 µmol/dm3, respectively. These concentrations were over
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TABLE 7 | Case studies on beach wrack in the Baltic Sea basin.

Project Keywords Location Collection Processing Economy, other profit Legislation Main focuses

WRACK4SOIL Fertilizers, soil improvement
products

Bad-Doberan, Germany Yes Yes Yes No Improving existed technology of
collection and processing, economic
feasibility

BIO-CHAR Biochar, products Island Rügen, Germany Yes Yes Yes Yes Improving existed technology of
collection and processing, economic
feasibility, legislative issues

WRA-COVER Compost material, landfill
biocover

Køge Municipality, Denmark Yes Yes Yes Yes Improving existed technology of
collection and processing, economic
feasibility, legislative issues

WRACK4COAST Dune restoration Curonian and Vistula spits, Russia Yes Yes Yes Yes Analysis of possible technology of
collection and processing, economic
feasibility, legislative issues

ALREA Gasification Kalmar, Sweden No No No No Experimental setup and testing of
feasibility – innovation

WAIT Removal of nutrients and
pollution

Puck Bay, Poland Yes No Yes No Assessment of profit of removal of
beach wrack to the Baltic Sea water
quality

FERTI-WRACK WWTP, fertilizers Swarzewo, Puck Bay, Poland Yes Yes Yes Yes Improving existed technology of
collection and processing, economic
feasibility

ESMIC Removal of plastic pollutants Melnragë, Palanga, Lithuania Yes No Yes No Assessment of the feasibility of removal
of beach wrack to reduce plastic
pollutants in the Baltic Sea

GRASS Macroalgae cultivation and
harvesting

Baltic Sea Region Yes Yes Yes Yes Raise awareness and develop capacity
building in macroalgae cultivation,
harvesting and use

CONTRA Sustainable beach wrack
management

Baltic Sea Region Yes Yes Yes Yes Assess the environmental, social and
economic impact of wrack removal and
provide its reuse options
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FIGURE 5 | The study area (left) and total mercury concentration (right) in live algae at the managed site (P1) and unmanaged site (R3), decaying beach wrack at the
unmanaged site (R1, R2).

FIGURE 6 | Concentration of (A) phosphates, (B) ammonia, and (C) nitrates + nitrites in water, porewater and beach porewater (sampled from under the detritus)
from April (2019) to November (2019) at three sampling sites (P1, R1, R3) in the Bay of Puck (Poland).

three times higher than those from the managed beach in the
same area (P1). This suggests that phosphates and ammonia
released from decaying beach wrack are partially retained in the

beach porewaters. However, in the longer perspective, they return
to coastal waters, where they fuel primary production. One ton
of dry beach detritus weight contains from 0.5 to slightly above
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FIGURE 7 | Construction of experimental gasification plant (Bisters et al., 2021): (1) feedstock bunker; (2) hydraulic press feeder; (3) extruder-type pyrolizer; (4)
separation chamber – gas and char accumulation tank; (5) secondary gas cracking; (6) external inductive heater – temperature reformer; (7) gas cooler; (8) inductive
heater resonator; (9) inductive heater power box; (10) flare; (11) control cabinet; (12) hydro-station; (13) hydro-cylinder; (14) prior hydro-presser box; (15) nitrogen
balloon.

3 kg of phosphorus and from 5 to 32 kg of nitrogen. Such a
load, delivered to sea water, is potentially responsible for the
production of 0.5–3 tons of phytoplankton biomass.

Nitrates are also being produced in porewaters. They reach
the highest concentration close to the surface, in oxygenated
layers. In deeper layers, they are consumed by denitrification
(Behrendt et al., 2013). In the study area, nitrate concentrations
in porewaters collected beneath decaying beach wrack were
similar to those observed in the water column (p = 0.811) and
significantly higher than those in porewaters of coastal sediments
(Figure 6C). The conditions below decaying beach wrack favor
nitrification, which unfortunately reduces the nitrogen removal
(in its gaseous form) from the water.

These results indicate that beach wrack removal from the
beach can prevent both – pollutants and nutrients scavenged
from plants and algae during their lifetime in the sea
from re-entry to the coastal waters. Therefore, using beach
wrack as a resource could contribute to the clean-up of the
marine environment.

Gasification/Torrefaction
As a prospective solution for beach wrack from the Baltic Sea
coast, processing, gasification and transformation to biochar
has been demonstrated based on an experimental study and
pilot-scale tests. Gasification is a chemical process that converts

carbonaceous material, such as biomass and coal, into gaseous
fuel or chemical feedstock (Basu, 2010), differing substantially
from other thermal processes, such as incineration or pyrolysis
(Porshnov et al., 2018). This gaseous fuel is known as producer
gas or synthesis gas (syngas) containing CO2, H2, CO, H2O, CH4,
and N2. Surplus char, formed from the pyrolysis process, is heated
by supplying a limited amount of air in the gasifier. Beach wrack
sampled from several sites along the Baltic Sea coastline contains
relatively high amounts of plastic residues (up to 5%) and
inorganic material (ash up to 30%). However, thermogravimetric
and proximate/ultimate analysis on beach wrack demonstrates
relatively high carbon amounts (up to 30%) with low organic
chlorine and sulfur concentration. The highest heating value
ranges 8–15 MJ/kg, thus proving the potential to use it for energy
production purposes. Also, trace elements and heavy metal
concentrations are low in beach wrack (Burlakovs et al., 2019).

The choice of thermochemical conversion technology was
driven by the specific nature of the beach wrack. Beach wrack
gasification tests were performed on an innovative gasification
plant for pyrolysis of various wastes and the thermal cracking
of pyrolysis gas products. The apparatus consists of an extruder-
type pyrolizer/gasifier, a pyrolysis product separation chamber, a
thermal cracker for gaseous pyrolysis products and a gas burning
torch (Figure 7). The gasification process does not use air or
oxygen as a gasification agent. The process is allothermal in

Frontiers in Marine Science | www.frontiersin.org 27 October 2021 | Volume 8 | Article 723333

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-723333 October 13, 2021 Time: 15:8 # 28

Rudovica et al. Marine Waste Valorization

FIGURE 8 | Schematic overview of the anaerobic fermentation of marine biomass, indicating organic and inorganic connections, the main chemical transformation
of compounds and resulting intermediate and final products.

nature, using an external heat source, and the system is used
in continuous operation mode. In the extruder-type pyrolyzer
(3), the fuel is compacted. The operating temperature of the
extruder is set and automatically adjusted to 300–600◦C. The
primary reforming of the fuel into pyrolysis gas and coal is
carried out in the extruder. In the pyrolysis product separation
chamber (4), the pyrolysis gas is separated from the coal. The
carbon is stored in an airtight container. After cooling, the coal
is unloaded from the container and sent to a laboratory for
analysis. The pyrolysis gas is fed to a secondary high-temperature
reformer (6), where the pyrolysis gas is heated to 800–1200◦C.
At elevated temperatures, a high turbulent tar thermal cracking
occurs, and heavy organic gaseous substances are reformed
into the synthesis gas components, such as H2, CO, CO2. At
the output of the secondary reformer, the gas is cooled, and
the heat consumed in the process is recovered. The resulting
synthesis gas has a high concentration of CH4 (up to 60%), but
the obtained waste char can be used as biochar or as fuel to
replace fossil analogs.

Anaerobic Digestion
To test the biogas potential obtained from different Baltic Sea
coastal beach wrack, three experimental studies were conducted
using anaerobic digestion methods. The first two tests were
undertaken for three types of selected beach wrack algae from the
Riga Gulf coast in Latvia and a mixed sample from the Kalmar
coast in Sweden. Anaerobic fermentation (Figure 8) was applied
for the samples without specific pre-treatment. In the first study,
16 bioreactors operated in batch mode at 38◦C were used to
ferment the three common algal types available as beach wrack
in the Gulf of Riga. Testing samples were taken from the beach

wrack piles in Jaunkemeri, Bigaunciems, and Ragaciems coastal
areas in Latvia.

From fermentation of 32 days, 0.276 L/g DrOM (dry organic
matter) biogas (0.046 L/g DrOM methane) from brown algae
and 0.248 L/g DrOM biogas (0.027 L/g DrOM methane) from
red algae were obtained. From green algae, 0.425 L/g DrOM
biogas (0.071 L/g DrOM methane) were obtained on average. The
study showed that from the coast-washed beach wrack, a small
amount of methane can be generated per DrOM if there is no
pre-treatment and conditioning of the samples. From the mixed
sample, due to a higher presence of debris and lignocellulose
feedstock, the biogas yield with applied anaerobic fermentation
method also shows limited biogas potential.

Further study for measuring brown algae biogas production
was tested with three pre-treatment methods: algae being kept
for 24 h in tap water, washed for 1 h in a stream of running
fresh water and dried. The resulting methane quantities were
compared with those obtained from the raw brown algae. From
algae that were kept in tap water for 24 h, 0.560 L/g DrOM
biogas (0.198 L/g DrOM methane) was obtained, and from the
ones washed 1 h in running water, 0.569 L/g DrOM biogas
(0.211 L/g DrOM methane) was obtained, but from dried mass,
only 0.164 L/g DrOM biogas (0.065 L/g DrOM methane) was
gained. The study confirms that washing brown algae as a pre-
treatment for anaerobic fermentation avoids salts inhibition and
can perform better in biomethane production.

Biogas (methane), generated from brown algae in the study
without special pre-treatment, is on average 0.276 L/g DrOM
(0.046 L/g DrOM), which is a very low yield, and from red-
brown algae in the study without special pre-treatment is on
average 0.248 L/g DrOM (0.027 L/g DrOM). Red-green algae
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in the study without special pre-treatment acquired an average
of 0.425 L/g DrOM (0.071 L/g DrOM), which is slightly better
but still represents a relatively low result. Biogas (methane)
generated from mixed algae with coastal reed mixture in the study
without special pre-treatment on average shows 0.267 L/g DrOM
(0.32 L/g DrOM), which is a comparably low yield. The retention
of brown algae samples in water for 24 h resulted in about 63.6%
more methane in the DrOM compared with unwashed brown
algae. In the second brown algae study, sample pre-treatment
in running water washed for 1 h gained about 74.4% more
methane out of DrOM than units from unwashed brown algae.
The test results have shown that rinsing seaweed before feeding
into anaerobic digestion is preferable to achieve better yields. In
cases where it is not possible to apply the described methodology,
biogas/methane yields will be negligible, and recovery of the
waste into biogas will not be economically feasible. With the
pre-treatment of brown algae in running water, the feedstock
is well suited for optimal volume biogas generation for energy
recovery and use in other bio-SNG (synthetic natural gas)
applications. With or without pre-treatment, seaweed biomass
can be used in the co-fermentation of other waste streams like
sewage sludge or manure. Such co-fermentation will optimize the
C:N ratio and will neutralize the inhibiting effect. For clarification
of the optimal process parameters, further studies and tests
are recommended.

CONCLUSION

To effectively valorize marine waste, promising perspectives
must be considered, namely: (a) the development of
mechanical technology for the harvesting of the biomass;
(b) the development of chemical and biological pipelines
to conserve and/or process marine biomass; (c) the market
search to maximize the potential use in the various industries;
(d) the employment of communication strategies to raise
awareness, increase consumers’ acceptance on the potential
greener technologies or public health improvement through
enhanced waste-originated food or feed ingredients as well
as biomedicals; (e) the promotion of public and private
funding toward innovation and technology development,
while addressing the potential legislative bottlenecks; and
(f) the application of eco-friendly principles to production
systems. Even though significant progress has been made
in marine-derived biomass research and innovation, there
is still the unmet need for technology scale-up and the
establishment of business opportunities to promote sustainability
and circular economy. Hence, the valorization of waste
into useful products entails a tight collaboration between
industry and research sectors, as well as governance bodies.
It is reflected in the governance promotion of resource
efficiency in Europe by several European policy initiatives,
the most recent one being the European Green Deal, which
is Europe’s roadmap for a sustainable economy. The use
of bioactive compounds, valorized from side streams and
waste, will significantly contribute to global environmental
sustainability as waste valorization companies contribute

to a green, blue and circular economy. These companies
should include a socially responsible connotation and
provide an alternative source of income for communities
that are heavily dependent on fisheries and aquaculture.
Therefore, future research should, on the one hand, target
the optimization of side streams processing into useful
products, and guarantee a sustainable supply and product
quality on the other hand, regardless of the season or
geographical location.
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Setyobudi, Graca, Grinfelde, Hogland, Ioannou, Jani, Kataržytė, Kikionis, Klun,
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