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We evaluated here the effects of the epibiotic diatom Tabularia sp. on the productivity of
the calanoid copepod Acartia tonsa (Dana) for assessing their risk on copepod intensive
aquaculture industry for the provision of live feed. In the first experiment, uninfested
and intensively infested females were cultivated individually for the assessment of egg
production. Intensively infested females appeared to have a significantly lower egg
production (5.0–9.0 eggs/female/d) than uninfested females (22.0–26.0 eggs/female/d)
during 5 consecutive days. In the second experiment, effects of culture densities on
diatom epibiosis were investigated in 9 L cultures at three different densities (200, 400,
and 600 ind. L−1). Another culture at higher volume (250 L) and lowest density (200
ind. L−1) was also carried out to test the effect of culture volume on diatom epibiosis.
The infestation rate (%), infestation intensity (ratio of surface diatom coverage levels,
classified as levels 0–3) and daily egg harvest rate (number of harvested eggs per day
per liter) were evaluated among the four culture populations. The copepods had higher
infestation rate (53.69–60.14%) and intensity rate (high ratios at level 2 and 3) when the
densities were increased from 200 ind./L to 400 and 600 ind./L. Although egg harvest
increased with increasing culture density, it seemed that the diatom-infested A. tonsa
population reach a saturated egg production when the density was higher than 400
ind./L. Nevertheless, the differences of culture volumes (250 and 9 L) appeared to be
not to have any effect when the copepods were cultivated at the same density (200
ind./L). This study reveals for the first time that the epibiosis of the diatom Tabularia sp.
reduces the individual egg production, and egg harvest rate in high-density culture of
the copepod A. tonsa. Our findings implicate that diatom epibiosis should be avoid in
copepod intensive culture systems.
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INTRODUCTION

Copepods represent important trophic linkages in marine food
webs (Støttrup, 2000; Hwang et al., 2004; Turner, 2004). They
provide nutritional benefits (van der Meeren et al., 2008; Rayner
et al., 2015; Pan et al., 2018) and great palatability (Chesney,
2005; Højgaard et al., 2017) for feeding aquatic larvae. Based
on the emerging developments of intensive culture techniques,
different copepod species are meanwhile cultivated and used as
live feed in marine larviculture (Lee et al., 2005; Drillet et al.,
2011; Blanda et al., 2015; Hansen, 2017). The indoor intensive
culture system could be consistently maintained at optimal
culture conditions facilitating higher copepod productivity than
extensive outdoor culture systems. Furthermore, they should
be managed sustainably and cost-effective (Abate et al., 2016).
Laboratory studies on the optimal culture conditions of several
copepod species have been accomplished, and resulting evidence
suggests that these can be upgraded to mass culture systems.
However, a complete removal of microorganisms that provide
potential health risks to copepods in intensive culture systems
remains challenging (Paerl and Tucker, 1995; Petkeviciute et al.,
2015; Rurangwa and Verdegem, 2015).

Copepods are common hosts of epibiotic microorganisms
such as bacteria, protists and microalgae (Carman and Dobbs,
1997; Utz and Costs, 2005; Mantha et al., 2013; Burris and Dam,
2014; Romano et al., 2021). The effects of epibiotic ciliates and
bacteria were the focus point of several studies (Nagasawa, 1987;
Puckett and Carman, 2002; Bickel et al., 2012; Souissi et al., 2013;
Burris and Dam, 2014; Jones et al., 2016). Their infestations are
considered to be adverse for copepod reproduction. Epibionts are
mostly found on the surface of crustacean zooplankton during
their growth phase which results in the dispersion of epibionts to
a new basibiont (de Souza Santos et al., 2020). The constitution of
the substratum dictates the number of species that can establish
themselves on the basibiont to the point of bringing about a
high level of adaptability in epibiotic communities. Locating
a suitable substratum is of utmost importance to an epibiont
(Purushothaman et al., 2021).

Recent studies have shown host preference among epibionts
(Silver-Gorges et al., 2021). Epibionts were found on planktonic
crustaceans in eutrophic water conditions, but the relation
between the physical parameters of water and epibiosis have
not yet been studied in detail (Nayak et al., 2021). Ecologically,
epibiosis is an important phenomenon as it is a direct reflection
of the level of pollution since absence or presence of certain
epibiont-basibiont associations can be used for bioindication
(Purushothaman et al., 2021). Ciliate epibionts are frequently
found on crustacean species, such as copepods (Souissi et al.,
2013; Burris and Dam, 2014).

However, occurrences of microalga epibiosis on copepods
were mostly documented with particular focus on epibiont
morphology, phylogeny, and distribution (Carman and Dobbs,
1997; Fernandes and Calixto-Feres, 2012; Li et al., 2014;
Gómez et al., 2018; Nayak et al., 2021). The impacts of algal
epibiosis on copepod reproduction were rarely investigated as
yet. Hakimzadeh and Bradley (1990) and Petkeviciute et al.
(2015) noted higher expressions of stress-related proteins and

genes in the algal-infested calanoid copepods Eurytemora affinis
(Poppe) and Acartia tonsa. A field study showed that the
algal infestation seemed not to affect copepod survival and
egg production (Møhlenberg and Kaas, 1990). Nevertheless, the
impact of epibiotic microalgae on copepod productivity remains
unclear and should be further investigated.

The calanoid copepod A. tonsa has been considered as a
suitable live prey in several larviculture studies (Wilcox et al.,
2006; Øie et al., 2017; Vanacor-Barroso et al., 2017). Intensive
mass cultures of A. tonsa has been established in a pre-industrial
culture facility affiliated to the University of Lille, France since late
2014. In December 2015, epibiotic diatom infestations occurred
in A. tonsa cultures calling for an investigation of its effects
on copepod mass culture. Two independent experiments were
performed to verify the following questions: (1) the effects of
epibiotic diatoms on the egg production of individual copepods,
(2) the effects of culture volume and copepod density on
the epibiotic diatom infestation rate, infestation intensity and
copepod egg harvest rate in the mass cultures. Our study aimed to
assess the consequences of diatom epibiosis on the reproduction
and mass culture productivity of A. tonsa.

MATERIALS AND METHODS

Microalgae and Copepod Stock Cultures
Copepod and microalgae cultures were maintained in an indoor
and pre-industrial culture facility programmed at 18 ± 1◦C
and 12L:12D light:dark cycle. The culture line of microalga
Rhodomonas baltica (RCC350) as copepod food was obtained
from the Roscoff Culture Collection, France. Batch cultures were
maintained in 10 L flasks with treated natural seawater (1-µm-
filtered, UV-radiated, chlorine-sterilized, at salinity 34) enriched
with Walne’s medium (Walne, 1970). The algae were used for
feeding the copepods at exponential growth phase (2–3 days after
inoculation), and the cultures were re-inoculated every 6–7 days.
The copepod A. tonsa culture strain (DFH.AT1) was obtained
from Roskilde University, Denmark, and reared in 250 L culture
columns containing the treated seawater where the microalgae
R. baltica was added as feed (2 × 104 cells mL−1). The water of
the batch cultures was completely replaced every 2 weeks.

Light Microscopy, Scanning Electron
Microscopy Examinations, and
Terminology of Epibiotic Diatoms
Copepods infested by epibiotic diatom were randomly collected
from the stock cultures. Alive samples were observed and
photographed under an inverted light microscope (IX71,
OLYMPUS, Tokyo, Japan). Finally, the copepods were fixed
with 4% buffered glutaraldehyde for SEM analysis. For SEM
preparation, individual copepods were dehydrated in an
ethanol gradient (70% → 85% → 95% → 100% → 100%),
and were transferred to aluminum stubs. Then a drop of
hexamethyldisilazane (HMDS) was added for critical point
drying. The stubs were sputter-coated with Gold-Paladium
(E1010, Hitachi Ltd., Tokyo, Japan), and observed using a Hitachi
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TM3000 SEM (Hitachi Ltd., Tokyo, Japan) at an accelerated
voltage of 20 KV.

Colonies of epibiotic diatoms were collected and lyophilized,
then treated with KMnO4 and HCl to eliminate organic matter.
The acid-washed diatom valves were conserved in Milli-Q filtered
water. Fifty microliters of the specimen were placed and air-
dried on an aluminum stub, then as for the copepods sputter-
coated with the Gold-Paladium. Specimens were observed using
a Hitachi S-4800 field emission scanning electron microscope
(Hitachi Ltd., Tokyo, Japan). The morphometric measurements
of the diatoms were performed using imagery software Image J (v
1.41, National Institutes of Health, United States).

Experimental Design
Individual Experiment
To evaluate the impact of diatom epibiosis on the egg production
of A. tonsa at individual scale, 6 uninfested and 6 intensively
infested (> 70% epibiotic diatom coverage) adult females
were sorted from the 250 L culture columns and cultured
individually in 6-well culture plates containing treated natural
seawater (10 mL/well) and R. baltica were added as feed. The
environmental conditions were maintained as aforementioned
(section “Microalgae and Copepod Stock Cultures”), and
the culture medium was replaced every day. The daily egg
production was documented during 5 consecutive days using a
stereomicroscope (SZX9, OLYMPUS, Tokyo, Japan).

Population Experiment
The copepods collected from the same batch culture were divided
into 4 separate culture populations to immediately initiate the
experiment after a volumetric density estimation. The volumes
and densities of the 4 populations (one culture each) were
designed as follows: (A) 200 individuals L−1, 250 L; (B) 200
individuals L−1, 9 L culture; (C) 400 individuals L−1, 9 L culture;
(D) 600 individuals L−1, 9 L culture. Population B was designated
as the positive control, which examined the effects of culture
volume and copepod density when the results were compared to
population A, and populations C, D, respectively.

The culture conditions of the 4 populations were maintained
as aforementioned (section “Microalgae and Copepod Stock
Cultures”). Daily egg production was documented in all
populations during 5 consecutive days as analytical replicates.
After 15 min of no aeration, the eggs were siphoned from the
bottom and isolated by sieving through 120 µm (to retain the
copepods) and 70 µm meshes (to collect eggs). The copepods
and the water were returned to the cultures, and the number of
eggs was volumetrically estimated under the stereomicroscope.
At the 5th day (endpoint), all the copepods were collected and
volumetrically counted to estimate the final density. Around
200 each adult male and female were randomly sorted from
the population, then fixed in 4% formaldehyde for further
analysis. The copepod specimens were examined under inverted
microscope (IX71, Olympus, Japan), and the infestation rate (%)
was calculated as: number of infested copepods/total number of
collected copepods. Subsequently, all the infested copepods were
visually classified under the microscope into four levels of diatom
exoskeleton coverage (Møhlenberg and Kaas, 1990). Meaning

of the different coverages levels as level 0: 0% coverage; level
1: < 10% coverage; level 2: 10–50% coverage; level 3: > 50%
coverage (Figure 1). Infestation intensity (ratio% of different
coverage levels) was calculated as: number of copepods at various
infestation levels/total number of infested copepods.

Data Analysis
Statistical analysis was carried out using the SPSS program
(Version 17.0). In the individual experiment, Student’s t-test was
used to compare the mean values of the egg production number
between uninfested and intensively infested females (n= 6 each)
on a daily basis. In the population experiment, the daily egg
harvest number (daily egg production per liter) was estimated
during 5 consecutive days in each treatment. We first confirmed
the absence of interaction between treatment (population)× time
(replicate) by using a repeated measure ANOVA. Then, a one-
way ANOVA test was applied to the average data of daily egg
production per liter obtained over 5 days in each population.
Once the significant differences were detected among populations
(p < 0.05), Tukey’s multiple comparison test was used to analyze
specific differences between pairs of populations.

RESULTS

Light Microscopy and Scanning Electron
Microscopy Examinations of Epibiotic
Diatoms
LM pictures of infested copepods and the epibiotic diatoms are
shown in Figure 2. The mono-species diatom colonies adhered
to the A. tonsa exoskeleton without apparent preference for
micro-locations on the exoskeleton (Figures 2A,B). The diatom
could have 2–3 segmented chloroplast plates (Figures 2C,D) or
a large chloroplast plate (Figure 2F) in the silicate valve. In
accordance to LM examinations, the SEM pictures indicated a
mono-specific diatom infestation on the exoskeleton of A. tonsa
(Figure 3A). Detailed SEM pictures (Figure 3B) indicate that the
diatoms attached to the copepods used a mucilaginous pad. The
linear-lanceolate valves (Figures 3C,D) of the diatom measured
(n = 15) 32.4 ± 6.2 µm in apical axis and 3.4 ± 0.3 µm
in transapical axis, and the striae (10.3 ± 1.1 per 10 µm)
were distributed symmetrically bilateral on the non-raphe valve
with broad axial area (Figures 3E,G). Apexes were rounded
but not capitate, and carried one rimoportula at each polar
nodule (Figures 3F,H). A literature review was facilitated for
diatom species identification based on their morphological
characteristics by Snoeijs (1992); Kaczmarska et al. (2009), Totti
et al. (2009); Suzuki et al. (2015), Cao et al. (2018), and Gómez
et al. (2020), and the description of the genus Tabularia reported
by Williams and Round (1986). The diatom was identified as
Tabularia sp.

Individual Culture Experiment
The individual daily egg production declined significantly
(p < 0.01) when the copepods were intensively infested
with epibiotic diatoms (Figure 4) during 5 consecutive days.
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FIGURE 1 | Illustration of different epibiont infestation levels on copepod A. tonsa. (A) Level 0: 0% coverage; (B) level 1: < 10% coverage; (C) level 2: 10–50%
coverage; (D) level 3: > 50% coverage.

The average egg production of uninfested females ranged
from 22.0–26.0 eggs/female/day, whereas this was reduced
to a range of 5.0–9.0 eggs/female/day in intensively infested
individuals.

Population Culture Experiment
Figure 5 shows that the daily egg production rate (eggs/L/day)
averaged from the data obtained during five consecutive days.
A significantly lowest egg production (496.4 ± 51.4) was found
in the population A (250 L, 200 ind./L). The populations C (9 L,
400 ind./L) and D (9 L, 600 ind./L) had the top two highest egg
production (3078.52 ± 524.86 and 3227.56 ± 596.81 eggs/day/L,
respectively) among populations, yet the two populations were
not statistical different to group B (9 L, 200 ind./L). At the same
population density (200 ind./L), populations A (250 L) and B (9
L) had similar levels of infestation ratio and intensity, different

in males and females (Tables 1, 2). On the other hand, both
male and female infestation rate were higher when the population
density increased from 200 (population B) to 400 (population C)
and 600 (population D). Notably, female copepods had higher
epibiotic rates (40.9–73.2%) and intensity (higher ratios in level
2 and 3) compared to males. All populations remained at similar
density after the 5-day cultivation, except a remarkable decline
was found in population D (Table 1).

DISCUSSION

Pennate diatoms belonging to the genus Tabularia are common
components in marine benthic communities (Snoeijs, 1992).
Their epibiotic associations are documented in benthic
organisms such as bryozoans (Wuchter et al., 2003) and marine
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FIGURE 2 | The copepod A. tonsa infested with the epibiotic diatom Tabularia sp. (A) adult male (B) adult female (C) infestation on an antennule (D) infestation on
caudal setae (E) infestation on a spermatophore attached on female (F) diatom colony isolated from copepods. Scale bars: (A,B): 150 µm; (C–F): 20 µm.

macroalgae (Totti et al., 2009). The occurrence of Tabularia
epibiosis on copepods has been reported recently in the English
Channel (Gómez et al., 2020), where it is close to the copepod
culture unit in the present study. Although equipped with a well-
established filtration system (sand filter, UV, and bio-filtration),
the origin of the diatom contamination was likely from the inlet
of natural sea water to the copepod culture environment. The
epibiotic association of Tabularia with the planktonic copepod
A. tonsa in aquaculture environment is reported here for the first
time. Microalgal epibiosis is considered as an ecological strategy
to access higher light exposure and nutritional replenishment
provided by their mobile host swimming in the water column
(Totti et al., 2010). In addition, the epibiotic microalgae may have
higher chances to absorb the excretion released from their host
as nutrients (Wahl et al., 2012). Based on the aforementioned
statements, the survival and mobility of the hosts are crucially
benefitting epibiotic diatoms. Thus, the infestation of epibiotic
diatoms seem not to be lethal in an acute sense. Based on the
analysis by light microscopy and SEM (Figures 2, 3), the reported

epibiosis was a mono-specific event. This observation suggests
that the diatom Tabularia sp. could outcompete other epibionts
during biofouling at certain circumstances. The main object of
the present work was to investigate the productivity of copepods
in the events of epibiont infestation for aquaculture propose.
Despite the fact that the diatom was identified as Tabularia sp.
based on the morphological features examined under light and
scanning electron microscopy, and a deep literature review, it
should be noted that diatom molecular taxonomy or phylogeny
is not the main focus in our work.

Ikeda (1977) noted a similar metabolic ratio of the diatom-
infested and uninfested copepod Calanus plumchrus. However,
the negative impacts of epibionts on the swimming behavior
of their zooplankton hosts were confirmed (McAllen and Scott,
2000; Souissi et al., 2013; Burris and Dam, 2014). The authors
suggested that the zooplankton hosts need to expend additional
energy to cope with the extra burden and water drag caused
by the epibiotic assemblages. Especially, the burden effect could
be pronounced in the case of diatom epibiosis, where heavy
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FIGURE 3 | SEM image of the infested copepod A. tonsa and the epibiotic diatom Tabularia sp. (A) Infested A. tonsa female. (B) Colony of epibiotic diatom Tabularia
sp. attached on copepod exoskeleton. (C) Interior view of entire valve. (D) External view of entire valve. (E) Interior view of striae structure. (F) Interior apex of valve
showing details of rimoportula and ocellulimbus. (G) External view of striae structure. (H) External apex of valve showing details of rimoportula aperture and
ocellulimbus opening. Scale bars: (A) 250 µm; (B) 15 µm; (C,D): 5 µm; (E–H) 1 µm.
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FIGURE 4 | Egg production per female per day of the uninfested and
diatom-infested copepod A. tonsa during 5 consecutive days. Data are
presented as average ± standard error (n = 6), where **p < 0.01,
***p < 0.001.

FIGURE 5 | Daily A. tonsa egg production per liter in the culture populations
at different volumes and population densities. A: 200 ind./L in 250 L, B: 200
ind./L in 9 L, C: 400 ind./L in 9 L, D: 600 ind./L in 9 L. The data were obtained
during 5 consecutive days, and presented as average ± standard error. The
letters (a and b) above bars indicate significant differences (p < 0.05) identified
by Tukey’s post hoc test.

silicate valves can provide a remarkable weight burden to
their host (Purushothaman et al., 2021). Based on the results
obtained in individual experiments, all diatom-infested A. tonsa
females survived during the 5 experimental days yet produced a
significantly lower quantity of eggs. This coincided with reduced
egg production found in a previous study of A. tonsa females
infested with ciliate epibionts (Burris and Dam, 2014). It is
worthy to note that the age of copepods examined in the
individual experiment of the present study, and Burris and Dam’s
work were not controlled. Although we attempted to investigate

TABLE 1 | Infestation rate (%) of adult male and female A. tonsa in different
culture populations.

Infestation rate

Culture Final density on % total % total % total

populations the 5th day female male individual

A (200 ind./L in 250 L) 220 ind./L 43.40 26.83 36.17

B (200 ind./L in 9 L) 201 ind./L 40.89 30.47 35.32

C (400 ind./L in 9 L) 435 ind./L 73.24 48.05 60.14

D (600 ind./L in 9 L) 427 ind./L 56.28 51.29 53.69

the relationship between host age and diatom epibiosis by
carrying out an extended experiment, it was challenging to
artificially induce the diatom adherence on the copepods. Indeed,
the egg production decline with increasing age of copepod (Pan
et al., 2014; Rodríguez-Graña and Calliari, 2020). If the diatom
epibiont increased accumulatively on the copepod across age, it
is highly possible that the age could be a co-factor with diatom
epibiosis reducing copepod egg production. The combined effect
of age and epibiosis on the decline of egg production, if it
could occur in our study, should be amplified with increasing
copepod age, because the hosts become older and the epibionts
accumulate more. Although the constant egg production rates
were found in our 5-day individual experiment, it should be
noted that the effects of age and epibiosis on the change of
A. tonsa egg production may occur gradually in a time-scale
of weeks. Therefore, an extended monitoring is required to
verify the combined effect of age and epibiosis on the egg
production of the copepod.

To better understand the risk of diatom epibiosis for A. tonsa
aquaculture, we assessed diatom epibiosis and copepod egg
productivity in culture populations with three densities and two
volumes. The infestation rate and intensity were not different in
the 9 and 250 L populations when maintained at lowest density
(200 ind./L). This finding suggests that the impact of culture
volume is minor with respect to diatom epibiosis. On the other
hand, the diatom infestation rate and intensity of adult A. tonsa
were higher in the populations with higher copepod densities
(400 and 600 ind./L). Likewise, the density-dependent epibiont
prevalence was compared with some Cladocera and copepod
species in lake and pond waters (Barea-Arco et al., 2001; de
Souza Santos et al., 2020). In the aquaculture environment, as
a closed water system similar to lakes or ponds, the higher
density of A. tonsa could facilitate higher encounter rates
and the possibility of epibiont transmission between copepods
(Burris and Dam, 2014).

The density of copepods in culture is a crucial parameter
affecting copepod productivity (Jepsen et al., 2007; Mahjoub et al.,
2014; Rayner et al., 2017). Jepsen et al. (2007) demonstrated
that egg production (eggs L−1 d−1) increased with increasing
copepod density from 100 to 600 ind. L−1 using the same
A. tonsa strain (DFH-ATI). Due to the different methods of
egg collection, the egg harvest per liter in the present study
was lower than the result of Jepsen et al. (2007). Nevertheless,
the designated densities (200–600 ind. L−1) in our study were

Frontiers in Marine Science | www.frontiersin.org 7 September 2021 | Volume 8 | Article 728779

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-728779 September 18, 2021 Time: 14:18 # 8

Pan et al. Epibiotic Diatom on Acartia tonsa

TABLE 2 | Infestation intensity: ratio (%) of four levels of epibiont surface coverage of A. tonsa in different culture populations.

Level 0 Level 1 Level 2 Level 3

Culture
populations

% total
female

% total
male

% total
individual

% total
female

% total
male

% total
individual

% total
female

% total
male

% total
individual

% total
female

% total
male

% total
individual

A (200 ind./L in 250 L) 56.60 73.17 63.83 26.42 19.51 23.40 15.09 7.32 11.70 1.89 0.00 1.06

B (200 ind./L in 9 L) 59.11 69.53 64.68 24.14 26.18 25.23 11.82 3.43 7.34 4.93 0.86 2.75

C (400 ind./L in 9 L) 26.76 51.95 39.86 57.28 44.16 50.45 10.80 3.03 6.76 5.16 0.87 2.93

D (600 ind./L in 9 L) 43.72 48.71 46.31 23.72 39.66 31.99 13.95 9.91 11.86 18.60 1.72 9.84

below the limiting density threshold for A. tonsa egg production.
Instead of increasing with higher copepod density, similar
egg production levels (3000 eggs L−1 d−1) were measured in
the culture populations C (400 ind. L−1) and D (600 ind.
L−1). This finding implicates that the diatom-infested A. tonsa
population, if under the same culture conditions and population
origin, may reach the saturating egg production capacity at
lower population density. The notable decrease of population
was measured in the population D (Table 1), which had the
highest ratio of infested copepods at the greatest diatom coverage
(level 3). The higher intensity of infestation could be correlated
to the higher encounter rate under the crowded conditions.
As aforementioned, the diatom infestation is physiologically
stressful to copepods, and it not only reduces individual egg
production but also increases copepod mortality. Since the
heavily infested copepods may die earlier, it could be expected
that the infestation rate was slightly lower in population D
than in population C. Overall, our findings clearly indicate the
remarkable reduction of egg harvest rate in A. tonsa mass culture
due to high diatom infestation intensity and copepod mortality.

Regardless of culture densities and volumes, females of
A. tonsa had higher infestation rate than males in all culture
populations (Table 1). The higher ratio of surface coverage level
2 and 3 was found in infested females (Table 2), which indicates
that the female A. tonsa (body length: 1068.36 ± 56.20 µm)
can carry more diatoms on their body surface than the male
(body length: 931.98± 18.22 µm) does. This discovery coincided
with the “habitat patch size effects” hypothesis stating that
large-sized host provides larger targets for epibiont adherence
(de Souza Santos et al., 2020). Host behavior could also strikingly
impact the host-epibiont relationship. Ramos-Rivera et al. (2021)
stated that the injured host had slower swimming speed and
stayed more frequently at the water surface, which facilitated
a greater opportunity for epibiont adherence. It’s been noted
that A. tonsa females have significantly lower swimming speeds
and tended to aggregate around the tank bottom (Buskey
et al., 2002; Kiørboe and Bagøien, 2005), where the benthic
diatom Tabularia sp. abundantly colonized. This behavior pattern
may lead to a higher encounter frequency and period to the
benthic Tabularia in the culture environment, and eventually
cause a higher epibiont infestation rate and intensity on female
A. tonsa. On the other hand, female A. tonsa is known to
live longer than male (Rodríguez-Graña et al., 2010). The
greater longevity could be another explanation of female’s higher
epibiotic infestation if the epibiont really increase accumulatively
with copepod age.

Diatom biofouling has been extensively studied in the
context of anti-fouling coating or substance applications (Molino
et al., 2009; Al-Naamani et al., 2017; Wanka et al., 2018).
The mechanism of diatom fouling on zooplankton was rarely
studied. This may be due to the difficulty of investigating
diatom life cycles and their complex interactions with their
host and environmental factors. Consequently, we attempted
to expose uninfested A. tonsa individuals at the same-age
(i.e., hatched and grow out from the same batch of eggs) to
the prior isolated Tabularia cells. However, no infestation was
documented during a 14-day period. Based on our observation,
the diatom cells changed their cell morphology when it was
cultivated independently. This preliminary finding suggests on
physiological modifications of Tabularia sp. between the free-
living and epibiotic phases of its life cycle. Furthermore, Mantha
et al. (2013) stated that the deterioration of water quality
affects the exoskeleton of copepods. In their study this was
an outcome of high epibiotic and ectoparasitic infestation.
Although the analysis of water quality was excluded in the
present work, higher accumulation of copepod excretions could
be expected in the high-density culture populations. Under
such conditions epibiosis could be triggered either by signals
related to the weakened exoskeleton of copepods or simply
by the chemistry of the ambient waters. Further studies are
required to verify possible abiotic or biotic stimuli that trigger
the settlement of the diatom, which provide implications for
aquaculturists to monitor and prevent the prevalence of epibiotic
diatoms on copepod mass production. Moreover, the removal
protocol of epibiotic diatom using algicidal substances and
bacteria (Kitaguchi et al., 2001) could be developed for epibiotic
diatom control.

CONCLUSION

In conclusion, our study demonstrated the adverse impact of the
diatom epibiont on the productivity of the copepod A. tonsa.
The diatom-infested copepods decreased their egg production
for about 70% at the individual basis, and they reached the
saturating egg production capacity and higher mortality at lower
population density. These findings implicate the risk of diatom
epibiosis causing economic losses for the copepod aquaculture
industry. This also means that the presence of epibionts on
copepods should be regularly monitored in copepod intensive
culture systems to avoid negative developments such as increased
mortality and any decrease of growth and egg production.
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