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The navigability potential of the Northeast Passage has gradually emerged with the
melting of Arctic sea ice. For the purpose of navigation safety in the Arctic area, a reliable
daily sea ice concentration (SIC) prediction result is required. As the mature application
of deep learning technique in short-term prediction of other fields (atmosphere, ocean,
and hurricane, etc.), a new model was proposed for daily SIC prediction by selecting
multiple factors, adopting gradient loss function (Grad-loss) and incorporating an
improved predictive recurrent neural network (PredRNN++). Three control experiments
are designed to test the impact of these three improvements for model performance
with multiple indicators. Results show that the proposed model has best prediction skill
in our experiments by taking physical process and local SIC variation into consideration,
which can continuously predict daily SIC for up to 9 days.

Keywords: SIC daily prediction, PredRNN++, Grad-loss, Arctic Northeast Passage, deep learning

INTRODUCTION

Arctic sea ice has gradually melted in recent decades due to global climate change (Guemas et al.,
2016). On the one hand, the melting of sea ice affects the global climate through decreasing the
albedo of the sea surface, which has absorbed more radiant heat, and leads to further melting of
sea ice (Screen and Simmonds, 2010; Francis and Vavrus, 2015). On the other hand, the melting of
Arctic sea ice has also presented important influences and opportunities to the global transportation
industry. The summer thaw in the Northeast Passage makes the navigation possible (Stroeve
et al., 2012) and has significantly impacted the global transportation industry. Compared with
the traditional passage, the Northeast Passage reduces the geographical distance by 40%, greatly
reducing time and transportation costs (Chen et al., 2020; Tseng et al., 2021).

However, the opening of the Northeast Passage must firstly ensure the navigation safety with
a complete maritime navigation system in the Arctic. The greatest difficulty of Arctic navigation
compared to that of other seas lies in sea ice prediction, which remains very difficult due to
observational data limitations and complicated sea ice influencing factors. Sea ice concentration
(SIC) has the greatest impact on navigation of the many characteristics of sea ice (Similä and Lensu,
2018). Therefore, this study focusses on SIC predictions.

Current sea ice prediction primarily relies on two types of methods: model simulation and
statistical prediction. Model simulation is based on factors that affect sea ice changes and
characterize the effects of each factor based on known physical laws. Current mainstream models
[e.g., the Los Alamos sea ice model (CICE) and the Louvain-la-Neuve sea ice model (LIM)]
predict sea ice based on temperature, salinity, melt ponds, and sea ice ridging and rafting
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(Vancoppenolle et al., 2009; Hunke et al., 2013). Model simulation
provides assimilation results with a stable error and strong
interpretability using the influence of each factor on sea ice
change. However, there is room of improvement such as the
redistribution mechanism of small-scale sea ice from thinner
to thicker ice is not well-described (Hunke et al., 2011).
Additionally, sea ice models should be better coupled with
atmospheric and oceanic models. Furthermore, the numerous
factors affecting sea ice change and complex influencing rules
make it difficult to simulate with unclear influencing rules. For
example, current models do not adequately describe the influence
of cloud cover, humidity transport, and temperature changes—
which have important effects on local sea ice—due to the lack of
quantitative influencing rules (Cox et al., 2016; Lee et al., 2017;
Mudryk et al., 2018).

Statistical prediction is different from model simulation. It
uses statistical methods to explore data laws and to fit the
relationship between the independent and dependent variables.
Thus, statistical methods do not require the input of explicit
influencing rules and that is why statistical prediction may
compensate for model simulation deficiencies in the case of
unknown change laws. Traditional statistical methods, such
as the vector autoregressive model and the vector Markov
model, can perform multi-factor weekly SIC prediction based
on multiple sea ice, ocean, and atmosphere factors (Wang et al.,
2019). However, traditional methods are limited by the models
themselves. Additionally, the spatial resolution of prediction is
not high and only described a relatively simple change law.
Accurate daily predictions of high-frequency changes are difficult
to obtain using traditional methods.

Therefore, deep learning techniques have been increasingly
favored due to its strong capability to portray more complex
non-linear laws. Deep learning methods currently applied to
SIC prediction primarily include long short-term memory
networks (LSTM) (Chi and Kim, 2017), convolutional neural
networks (CNNs) (Wang et al., 2017; Jun Kim et al., 2020), and
convolutional long short-term memory network (ConvLSTM)
(Liu et al., 2021). A single-factor monthly prediction model
of SIC was established based on LSTM (Chi and Kim, 2017).
The model has the time series processing capability of LSTM
and makes improved predictions based on SIC data at multiple
historical moments. However, LSTM only performs grid-by-
grid calculations and cannot simultaneously process spatial
correlation and time dimension information. In contrast, the
SIC multi-factor monthly prediction model based on CNNs can
handle spatial correlation information (Jun Kim et al., 2020).
However, CNNs cannot process time dimension information
based on previous-moment information, which has led to “near-
sightedness.” Therefore, in order to simultaneously process
spatio-temporal information, ConvLSTM was applied to daily
SIC prediction (Liu et al., 2021). The study overcame the
shortcomings of LSTM and CNNs by establishing a single-factor
daily prediction ConvLSTM model. However, the model is only
based on the SIC change law and do not consider other factors
affecting sea ice change. Moreover, the model can only predict
SIC for 1 day. Longer predictions can only be performed through
iterative prediction.

Further, in the above-mentioned deep learning models, the
mean square error loss (MSE-loss) or mean absolute error loss
(MAE-loss) functions are used during model training and only
consider the size of the error. However, the change trend within
the SIC space is also essential for SIC prediction.

Therefore, the purposes of this study are as follows: to
introduce multiple factors affecting SIC changes to perform
SIC multi-factor prediction, to introduce improved predictive
recurrent neural network (PredRNN++) to achieve daily
prediction for multiple consecutive days, and to propose a new
gradient loss function (Grad-loss) that introduces the influence
of the local SIC change trend during model training to further
improve model prediction.

The remainder of this paper is structured as follows:
section “Data” introduces data sources, factor screening,
and data pre-processing; section “Methods” introduces
the methods and design of the comparative experiments;
section “Results and Discussion” introduces and discusses the
results of the comparative experiments; section “Conclusion”
summarizes the study.

DATA

ERA5 Reanalysis
ERA5 is the fifth generation European Center for Medium-
Range Weather Forecasts (ECMWF) reanalysis for global climate
and weather for the past four to seven decades (Mahmoodi
et al., 2019; Hersbach et al., 2020; Muhammed Naseef and Sanil
Kumar, 2020). Data are currently available from 1950 and split
into stored climate data entries from 1950–1978 (preliminary
back extension) and from 1979 onward (final release plus timely
updates) (Hersbach et al., 2018).

Various satellite observations are assimilated in ERA5
reanalysis. Satellite radiances (infrared and microwave)
observations mainly include AMSR-2 of GCOM-W1 satellite,
AMSRE of AQUA satellite, AMSU-A of NOAA-15/16/17/18/19,
ATMS of NPP, TMI of TRMM, MVIRI of METEOSAT-2/3/4/5/7,
GOES IMAGER of GOES-4 and MIPAS of ENVISAT, etc.
Satellite scatterometer observations mainly include ASCAT of
METOP-A/B satellites, OSCAT of OCEANSAT-2, SEAWINDS
of QUIKSCAT. Satellite altimeter observations mainly include
RA of ERS-1/2, RA-2 of ENVISAT, and Poseidon-2 of JASON-1
(Hersbach et al., 2020).

Compared with ERA-interim, ERA5 reanalysis adds more
satellite observations during the assimilation process. This
improves the resilience of the system to discontinuities resulting
from outages of any single instrument. At the same time, it
can also reduce analysis errors through the effect of averaging
independent errors in the observations. The data observed by
these satellites is bias corrected using VarBC (Auligné et al.,
2007). The bias correction model for channels assimilated from
these sensors employ a constant term, a scan-angle-dependent
correction (based on a third-order polynomial in scan-angle)
and four airmass predictors (Hersbach et al., 2020). After the
bias correction, the satellite observations are assimilated into
models to obtain the variables in ERA5 reanalysis. For example,
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measurements from the microwave sounders MSU, AMSU-A,
and ATMS are assimilated as brightness temperatures, providing
information on temperature throughout the troposphere and
stratosphere (Bormann et al., 2013).

Based on satellite observations assimilated into models, ERA5
reanalysis can provide researchers with the most precise hourly
reanalysis data and contains a variety of meteorological and
marine elements. ERA5 bias has been assessed for specific
variables and diverse spatio-temporal domains. The accuracy
of each element in the ERA5 analysis is generally better than
that of ERA-interim. For example, the accuracies of upper-air
temperature, surface pressure, and 10-m zonal wind are increased
by approximately 0.4 K, 0.2hPa, and 0.5 m/s, respectively
(Hersbach et al., 2020).

The temporal coverage of this dataset is from 1979 to present,
and the spatial coverage is global. Data has been regridded to
a regular lat-lon grid of 0.25 degrees and provided hourly for
the reanalysis. The data used in this study can be downloaded
from the website [ERA5 hourly data on single levels from 1979 to
present (copernicus.eu)].

Factor Screening and Data
Preprocessing
The selection of predictors is no doubt a fundamental chain
of deep learning. Sea level pressure, temperature and wind
speed are typical factors considered in the previous works of
sea ice concentration (SIC) prediction (Vancoppenolle et al.,
2009; Hunke et al., 2013; Ballinger and Sheridan, 2015). In
addition, based on the dynamic and thermal processes of sea
ice, existing studies have shown that factors such as cloud cover,
radiation, and vertical flux also have an impact on the changes
of sea ice (Gu et al., 2018; Perovich et al., 2007; Comiso et al.,
2017). Therefore, various data are extracted from ERA5 for
SIC prediction, including sea surface temperature (SST), vertical
integral of heat flux (VHF), vertical integral of divergence of
moisture flux (VMF), mean sea level pressure (MSL), 10-m wind
component (WIND), 2-m temperature (T2M), albedo for direct
radiation (AL), low cloud cover (LCC), skin temperature (SKT),
and SIC.

Factor screening is performed on all 10 factors to reduce
the amount of model calculation and data dimensions. Five
meteorological and oceanic factors (i.e., SST, MSL, T2M, SKT,
and SIC) are selected by calculating the time lag correlation
coefficients. The time-lagged correlation is the calculation of the
correlation between the value of each factor at time t-1 and the
SIC at time t. Figure 1 shows the time-lag correlation coefficient.

As shown in Figure 1, the stronger the intensity of the warmer
color, the greater the positive time lag correlation between this
factor and SIC. The stronger the intensity of the cooler color, the
greater the negative time lag correlation. Therefore, according
to the absolute value of the time lag correlation, we non-
dimensionalize the data of the five above-mentioned factors and
normalize each one to between 0 and 100 to train the model.
Due to missing land values in SST and SIC, nan values should
not exist in the model training. Therefore, the nan values of land
in the SST are set to -100 to clearly distinguish from sea surface

temperature. The nan values of the land in SIC are set to 0 due to
the absence of sea ice.

Data from January 2010 to December 2019 are used as the
training set for the SIC prediction model, and data from January
to December 2020 are used as test values of the model prediction
effect. The longitude and latitude range from 120◦ to 180◦E and
66.75◦ to 83◦N, respectively.

METHODS

This study was based on Grad-loss and applied ConvLSTM
and PredRNN++ to 10 consecutive days of short-term daily
SIC prediction. In addition to comparing the ConvLSTM and
PredRNN++ models, this study also compared the prediction
effects of different loss functions.

Convolutional Long Short-Term Memory
Network
Convolutional long short-term memory network is a
combination of CNNs and LSTM. CNNs are neural networks that
include convolution calculations and are suitable for processing
two-dimensional spatial field information. CNNs overcome the
limitations of point-by-grid calculations and are mostly used
in image recognition and classification fields (LeCun et al.,
1998; Ren et al., 2017; Yoo et al., 2019). LSTM is a time-cycle
neural network based on recurrent neural networks (RNNs) that
processes time-series information. LSTM solves the long-term
dependency problem of RNNs and has recently been used in
speech recognition and text translation (Sundermeyer et al., 2015;
Wang et al., 2020). ConvLSTM adds the convolution operation
of CNNs based on LSTM and processes temporal and spatial field
information (Shi et al., 2015). Therefore, ConvLSTM is more
suitable for applications for image processing (Hu et al., 2020).

Improved Predictive Recurrent Neural
Network
Predictive recurrent neural network is a deep learning network
based on ConvLSTM. Principal improvements include changing
the ConvLSTM neural unit to causal LSTM and proposing
a new neural unit (Gradient Highway Unit, GHU). Causal
LSTM calculates spatio-temporal information separately to better
capture short-term dynamic changes. The GHU connects neural
units at different moments and directly transmits characteristic
historical information to subsequent moments. Thus, retaining
the gradient during backpropagation is easier and partially solves
the problem of gradient disappearance (Wang et al., 2018).
PredRNN++ retains the advantages of ConvLSTM by processing
time series and performing convolution operations on spatial
fields. In addition, PredRNN++ is more suitable than ConvLSTM
for predictions that rely on long-term historical sequences
(Bonnet et al., 2020).

Gradient Loss Function
Most loss functions currently used in deep learning methods are
mean square error loss function (MSE-loss) or mean absolute

Frontiers in Marine Science | www.frontiersin.org 3 September 2021 | Volume 8 | Article 736429

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-736429 September 13, 2021 Time: 12:44 # 4

Liu et al. Daily Prediction of SIC

FIGURE 1 | Time lag correlation coefficient of each factor. The intensity of warmer and cooler colors represents the magnitude of the time lag correlation.

error loss function (MAE-loss). The calculation formulas of MSE-
loss and MAE-loss are as follows:

MSE_loss = 1
m

m∑
i=1

(
yi − ŷi

)2
(1)

MAE_loss = 1
m

m∑
i=1

∣∣yi − ŷi
∣∣ (2)

Mean absolute error loss exhibits better robustness than MSE
in the face of outliers, because MSE squares the error and gives
outliers more weight. However, both MSE and MAE compare the
real value with the predicted value grid by grid. Therefore, the
MSE and MAE loss functions can only compare the difference
between the real SIC and the predicted SIC at the same grid point
in the network training process.

In fact, different oceanic regions respond differently to
environmental factors. Thus, local sea ice changes also have an
important impact on the prediction effect. Therefore, this study
adopts a gradient based on MAE to reflect local sea ice changes,
and proposes Grad-loss. We have compared the prediction effect
when using MAE-loss and Grad-loss to explore the improvement
of Grad-loss. The calculation formula for the Grad-loss is as
follows:


Gradlat =

(
y(i+1,j) − y(i,j)

)
−
(
ŷ(i+1,j) − ŷ(i,j)

)
Gradlon =

(
y(i,j+1) − y(i,j)

)
−
(
ŷ(i,j+1) − ŷ(i,j)

)
Grad_loss = 1

m

m∑
i=1

∣∣yi − ŷi
∣∣ /std(y)∗2

+Gradlat/std(Gradlat)+ Gradlon/std(Gradlon)

(3)

where, Gradlat and Gradlon represent the gradients in the latitude
and longitude directions, respectively; and std represents the
standard deviation. To ensure that the dimensions of MAE and
Grad are the same, the std of the SIC and the std of the gradient
are removed from the formula.

Research Flow
This experiment builds ConvLSTM and PredRNN++ based on
the TensorFlow deep learning environment (Abadi et al., 1983)
and applies them to short-term SIC prediction.

Existing research on the sensitivity of network hyper-
parameters shows that the prediction effect is better when the
number of network layers is 3 (Wang et al., 2017). The layer
of 3 strikes a balance between the modeling capability and data
amount. A shallower model would lead to inadequate fitting and
a deeper model cannot be effectively feeded. In the training phase,
the training effect is better when the learning rate is set to 0.001
(Jun Kim et al., 2020). In this way, the loss can be reduced
quickly, and the possibility of falling into a local optimum can
be reduced. The kernel size of layer 1-3 is set 5-3, respectively.
That is, the faster changes are extracted first, and then the subtle
changes are learned (Jun Kim et al., 2020). The setting of filters,
in a 3-layer network, usually decreases from 128 to 64. That is,
the model extracts more changes in the front layer, and then
gradually extracts the law related to sea ice change in the latter
layer (Liu et al., 2021).

Consequently, three-layer networks are built for ConvLSTM
and PredRNN++. The filters in each layer of the network
were 128, 128, and 64, with kernel sizes of 5, 3, and 3,
respectively. The dimension of input data was 4D (time
series × height × width × factors). The batch size of input data
was 32. The activation function was a rectified linear unit (ReLU).
The optimizer used Adam, which combined the advantages of
the AdaGrad and RMSProp optimization algorithms, had high
computational efficiency, and required only a small amount of
memory (Kingma and Ba, 2015). Table 1 presented the specific
hyper-parameters.

Besides two different networks, two types of input data, and
two types of loss functions are considered. The input data can
be the SIC itself (namely the self-regression model), or the
multiple factors listed in section “Factor Screening and Data
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TABLE 1 | ConvLSTM and PredRNN++ hyper-parameters.

Learning
rate

Filters Kernel
size

Activation
function

Batch
size

Optimizer

ConvLSTM 0.001 (128, 128, 64) (5, 3, 3) ReLU 32 Adam

PredRNN++ 0.001 (128, 128, 64) (5, 3, 3) ReLU 32 Adam

TABLE 2 | SIC prediction model comparison experiment design.

Models Attributes Loss functions Mark

Conv
LSTM

Pred
RNN++

Single Multiple MAE Grad

√ √ √
ConvLSTM_Self_MAE

√ √ √
ConvLSTM_Self_Grad

√ √ √
ConvLSTM_Multi_MAE

√ √ √
ConvLSTM_Multi_Grad

√ √ √
PredRNN++_Self_MAE

√ √ √
PredRNN++_Self_Grad

√ √ √
PredRNN++_Multi_MAE

√ √ √
PredRNN++_Multi_Grad

Preprocessing.” These two cases are called single-factor and
multi-factor hereinafter. In terms of loss function, a novel loss
based on horizontal gradient (Grad-loss) is proposed, in order
to improve the conventional MAE-loss. Eight models are thus
constructed to make further comparison, as shown in Table 2.

The length of input sequence and output sequence can be an
important factor of deep learning. The performance is usually
better with the comparable length of input sequence and output
sequence, but could be degraded with the former becoming
longer (Wang et al., 2018; Bonnet et al., 2020; Liu et al., 2021).

The performance of each model is evaluated by the 10-day
running test of 10-day lagged prediction in 2020. To be more
specific, the prediction of January 11–20 is made by the data
of January 1–10, succeeded by the prediction of January 12–21
from January 2–11, until the prediction of December 22–31. In

this case, 347 seq-to-seq predictions are made in the year 2020.
Figure 2 illustrated the analogy process.

Based on a variety of properties of the human visual system,
the spatial structure similarity (SSIM) considers the brightness,
contrast, and structure information of the image. In deep
learning, it is usually used to assess the quality of image prediction
(Wang et al., 2004). Hence we have evaluated the SSIM, MAE, and
the difference (DIFF) between the predicted value and the test
value to compare the prediction effects of each model. The SSIM
compares the spatial structure difference between the predicted
value and the test value across the entire oceanic region; MAE
compares the error of the two values in the overall oceanic region;
the DIFF intuitively displays the difference of the error and the
spatial distribution between the predicted and test values.

The DIFF and SSIM calculation methods are as follows:

DIFF = y− ŷ (4)

SSIM(y, ŷ) =

(
2uyuŷ+c1

)(
2σyŷ+c2

)
(
u2
y+u

2
ŷ+c1

)(
σ2
y+σ2

ŷ+c2

) (5)

where, u represents the average value, and σ represents the
variance or covariance. c1 and c2 are constants, c1 = (0.01∗L)2,
and c2 = (0.03∗L)2. L is set to 100 in this study to calculate SIC.

Figure 3 shows the oceanic region and control experiments
designed in this study. Factor screening and pre-processing are
adopted to generate the input datasets. Eight models are adopted
for the training period (see Table 2). The test sets are put
into the eight models to obtain their predictions. Three control
experiments are designed to test the performance of the proposed
multi-factor short-term daily SIC prediction model with three
improvements, i.e., adopting multi-factors, gradient loss function
and the advanced deep learning algorithm. Firstly, the impact of
adopting multi-factors is tested by comparing the performance
of single-factor and multi-factor both in ConvLSTM model and
PredRNN++ model. Secondly, the impact of adopting gradient
loss function is tested. Finally, the performance of adopting
PredRNN++ model and ConvLSTM model are compared to
showing the impact of advanced deep learning algorithm.

Input Output

ERA5 test value
1-10 January 2020

SIC-predic�on
11-20 January 2020

Input Output

ERA5 test value
2-11 January 2020

SIC-predic�on
12-21 January 2020

Input Output

ERA5 test value
12-21 October 2020

SIC-predic�on
22-31 October 2020

FIGURE 2 | Date of model test input and output.
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Contrast 1:
The impact of adopting multi-

factors for model.

Contrast 2:
The impact of adopting Grad-loss 

for model.

Contrast 3:
The impact of adopting 
PredRNN++ for model.

ConvLSTM

Single 

factor

Multiple 

factor
VS

PredRNN++

VS
Single 

factor

Multiple 

factor

ConvLSTM

MAE-

loss

Grad-

loss
VS

PredRNN++

VS
MAE-

loss

Grad-

loss

PredRNN++

PredRNN++_Self_MAE

PredRNN++_Self_Grad

PredRNN++_Multi_MAE

PredRNN++_Multi_Grad

PredRNN++

PredRNN++_Self_MAE

PredRNN++_Self_Grad

PredRNN++_Multi_MAE

PredRNN++_Multi_Grad

ConvLSTM

ConvLSTM_Self_MAE

ConvLSTM_Self_Grad

ConvLSTM_Multi_MAE

ConvLSTM_Multi_Grad

Factor screening

and

pre-processing

Factor screening

and

pre-processing

ConvLSTM PredRNN++VS

FIGURE 3 | Model design and workflow schematic. Based on SSIM, MAE, and DIFF, the prediction effects of each model are compared in order.
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RESULTS AND DISCUSSION

Predictability
Although the above-mentioned models are used for 10-day
SIC prediction during training, their effectiveness is unknown.
Therefore, to test the predictability, we have compared the
average MAE predicted by each model for 10 days with
the monthly average MAE. Because the Northeast Passage is
primarily navigable in autumn (September to November), we
consider October as a comparison example. The monthly average
SIC in October is subtracted from the daily SIC, and the monthly
average MAE is obtained using formula 2.

Figure 4 shows that among the eight models, the model with
the best prediction effect can reach 9 days of validity. That is
to say, the prediction error on the 9th day is smaller than the
monthly average change. Therefore, the follow-up comparison
experiment between the SSIM and MAE of each model is
conducted based on the longest predictable time (9 days).

Single Factor or Multiple Factors
This experiment uses the five factors selected in section “Factor
Screening and Data Preprocessing” to verify whether the effect
of multi-factor prediction is better than that of single-factor
prediction. As shown in Figure 2, each model makes 347 10-
day running predictions. Considering the validity cannot surpass
9 days (Figure 4), the SSIM and MAE of 347 consecutive 9-day
predictions of each model are averaged over 9 days to compare
the effects of predictions. Figures 5, 6 show the results.

In Figure 5, the positive value of DIFF indicates the better
performance of multi-factor model. The performance of the
multi-factor model in summer is sometimes less effective. But
more often than not, multi-factor model has better spatial
structure similarity. In Figure 6, the negative value of DIFF
indicates the better performance of multi-factor model. In
most cases, the error of the multi-factor model is smaller.
In spring and summer, although there are fluctuations, the

improvement effect is more obvious. Therefore, in general, the
prediction effect of multi-factor model is better than that of
single-factor model. The multi-factor improvement effect is more
obvious on PredRNN++.

The advantage of the multi-factor prediction model over
a single factor is primarily reflected in the season when the
sea ice changes greatly. In summer, melt ponds change the
albedo of the sea surface and decrease the accuracy of summer
SIC observations (Cavalieri et al., 1990; Perovich et al., 2007;
Mäkynen et al., 2014). Therefore, the multi-factor model is more
accurate through considering the factors affecting sea ice to
weaken the influence of melt ponds (Liu et al., 2021).

Mean Absolute Error-Loss or Gradient
Loss Function
To test whether using Grad-loss can improve model prediction,
we have divided the ConvLSTM and PredRNN++ multi-factor
prediction model into two types: MAE-loss and Grad-loss. The
SSIM and MAE of the prediction results are averaged for nine
consecutive days. Figures 7, 8 show the results.

Figures 7, 8 show that Grad-loss further improves the
accuracy of the SIC prediction model based on multiple
factors for ConvLSTM and PredRNN++. Grad-loss adds the
local change of SIC to the loss function by considering the
gradient between adjacent grid points. Thus, the Grad-loss-based
SIC prediction model considering local SIC changes produces
more accurate predictions than the MAE-loss-based model. In
addition, Grad-loss significantly improves year-round prediction
accuracy (rather than only in the summer).

Convolutional Long Short-Term Memory
Network or Improved Predictive
Recurrent Neural Network
According to model differences, this experiment has divided into
two categories to test the applicability of the ConvLSTM and

FIGURE 4 | The magenta dashed line in the figure represents the monthly average MAE; the remaining 8 solid lines represent the average MAE of eight models for
10 consecutive days in October 2020.

Frontiers in Marine Science | www.frontiersin.org 7 September 2021 | Volume 8 | Article 736429

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-736429 September 13, 2021 Time: 12:44 # 8

Liu et al. Daily Prediction of SIC

FIGURE 5 | The SSIM for single-factor and multi-factor ConvLSTM predictions based on MAE-loss (A) and the SSIM for single-factor and multi-factor PredRNN++
predictions (B). The DIFF in the bar graph is obtained by subtracting the single-factor model from the multi-factor model. The red color represents the positive value,
and the blue color represents the negative value.

FIGURE 6 | MAE for single-factor and multi-factor ConvLSTM predictions based on MAE-loss (A) and MAE for single-factor and multi-factor PredRNN++
predictions (B). The DIFF in the bar graph is obtained by subtracting the single-factor model from the multi-factor model. The red color represents the positive value,
and the blue color represents the negative value.

PredRNN++ for short-term SIC prediction. In addition to taking
the 9-day average of the SSIM and MAE, this study also averages
347 prediction results for nine consecutive days. The average
effects of 347 predictions and consecutive 9-day predictions are
compared. Figures 9, 10 compare the model prediction results.

Figures 9, 10 show that the PredRNN++ multi-factor
prediction model based on Grad-loss has a relatively high SSIM

and low MAE. The advantage of PredRNN++ over ConvLSTM
for the 347 predictions is primarily reflected in seasons with
significant sea ice changes. PredRNN++ produces the best 9-day
prediction results.

In addition to comparing the SSIM and MAE of the entire
oceanic region, this study also has compared the size and
distribution of the DIFF of the two types of models in the
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FIGURE 7 | The SSIM for multi-factor prediction of ConvLSTM based on MAE-loss and Grad-loss (A); the SSIM for multi-factor prediction of PredRNN++ based on
MAE-loss and Grad-loss (B). The DIFF in the bar graph is obtained by subtracting the model based on MAE-loss from the model based on Grad-loss.

FIGURE 8 | MAE for the multi-factor prediction of ConvLSTM based on MAE-loss and Grad-loss (A); MAE for the multi-factor prediction of PredRNN++ based on
MAE-loss and Grad-loss (B). The DIFF in the bar graph is obtained by subtracting the model based on MAE-loss from the model based on Grad-loss.

spatial field. Because Arctic sea ice changes greatly in summer
(June to August), this study has calculated the DIFF between the
predicted and test values in July 2020. Owing to the different
predictability of different models, this study only compares

the first-day prediction results. Figure 11 shows the 15 July
prediction results.

Figure 11 shows that the DIFF of the monthly average
result is the largest, indicating significant SIC variability in the
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FIGURE 9 | Average SSIM for the ConvLSTM and PredRNN++ multi-factor models for 347 predictions (A); Average SSIM of the nine consecutive days of prediction
(B). The DIFF in the bar graph is obtained by subtracting the model of ConvLSTM from the model of PredRNN++.

FIGURE 10 | Average MAE of the ConvLSTM and PredRNN++ multi-factor models in 347 predictions (A); The average MAE of the nine consecutive days of
prediction (B). The DIFF in the bar graph is obtained by subtracting the model of ConvLSTM from the model of PredRNN++.
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FIGURE 11 | The SIC of ERA5 in the East Siberian Sea on 15 July 2020 (A). The SIC predicted by ConvLSTM on 15 July (B). The SIC predicted by PredRNN++ on
15 July (C). The DIFF of the monthly average SIC minus (A) in July (D). The DIFF of the (B) minus (A,E). The DIFF of the (C) minus (A,F).

current month. Overall, the DIFF of the PredRNN++ multi-
factor prediction model based on Grad-loss is the smallest.
In addition, the DIFF spatial distribution of the PredRNN++
model is relatively uniform, with no large-scale oceanic region
deviations. Except for large deviations near islands, deviations in
most oceanic regions are below 10%. By comparison, ConvLSTM
has large deviations oceanic regions and a relatively large
overall deviation.

The SSIM, MAE, and DIFF indicators show that the
PredRNN++ multi-factor prediction model based on Grad-loss
has the best prediction effect. The prediction effect of the Grad-
loss-based ConvLSTM multi-factor model is similar to that of
PredRNN++ in winter but inferior during periods of significant
SIC changes (summer and autumn). Summer and autumn are the
navigable seasons of the Northeast Passage, and the East Siberian
Sea is an essential sea of the Northeast Passage (Kunkel, 2004).
Thus, the requirements for sea ice prediction are higher and the
PredRNN++ multi-factor prediction model based on Grad-loss is
the best choice.

Models trained by PredRNN++ had better prediction results
than those of ConvLSTM primarily due to the improved Causal
LSTM in PredRNN++. The Causal LSTM could separately
calculate temporal and spatial change of the unit by adding more
non-linear calculations under the same network level condition.
Thus, it could better reflect SIC variation in summer and autumn.

However, more non-linear calculations in PredRNN++ might not
significantly improve the results in winter as the little SIC change.

The PredRNN++ multi-factor prediction model based on
Grad-loss had the highest prediction skill but still had some
limitations. First, the SST and SIC land missing values were set to
-100 and 0, respectively, causing the training data to deviate from
the true physical meaning. In the future, an attention mechanism
could possibly be introduced to concentrate the weight of the
convolution calculation on the sea ice region and to weaken
the influence of the missing values. Second, PredRNN++ made
longer predictions and achieved higher accuracy but sharply
increased network complexity and computational overhead. The
computational cost of PredRNN++ was more than twice that
of ConvLSTM. Follow-up work might be able to simplify the
PredRNN++ network structure to reduce the computational cost
while ensuring the SIC prediction effect.

In addition, the predictability of the model for Arctic
navigation had an important influence on trajectory planning
results. Longer model predictions could produce more extensive
area predictions with the trajectory planning algorithm and
reduce the likelihood of falling into a local optimum (Koenig
and Likhachev, 2005). The MAE of continuous 9-day prediction
showed that the Grad-loss-based PredRNN++ multi-factor
prediction model had the slowest error increase and the smallest
error range among the models. Therefore, the PredRNN++
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multi-factor prediction model based on Grad-loss was more
suitable for trajectory planning in Arctic waters.

CONCLUSION

Model numerical simulation is based on known laws, which
has a time-consuming calculation. This study has proposed
a new predict model with adopting multiple factors, gradient
loss function and an advanced deep learning algorithm called
PredRNN++ that can continuously predict daily SIC for up to
9 days. Factor screening is adopted to select 5 of 10 factors that
affected SIC changes for prediction. Three control experiments
are designed to test the impact of these three improvements for
model performance.

Additionally, the SSIM, MAE, and DIFF indicators are used
to evaluate the prediction effect of each model, and the following
conclusions are drawn:

1. The physical interpretation of the prediction models and
the short-term SIC prediction effect are improved by
introducing multiple factors related to SIC changes.

2. Grad-loss function further improves the accuracy of daily
SIC prediction of the multi-factor model by adding extra
information of local SIC variation.

3. The PredRNN++ multi-factor prediction model based on
Grad-loss function has the best spatial structure similarity,
the lowest error, and the best predictability. Additionally,

the PredRNN++ model has the smallest deviation between
the predicted value and the test value and contains no
large-scale oceanic region deviations.
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