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Symbiosis with photoautotrophic organisms has evolved in various species and even
whole animal lineages, which allowed them to directly benefit from photosynthesis.
This so-called photosymbiosis is best studied in cnidarians, which primarily establish
symbioses with dinoflagellates from the family Symbiodiniaceae. In most other animals
the mechanisms of establishing photosymbiosis, the physiological basis, and the
evolution of a photosymbiotic life history remain poorly understood. Sea slugs belonging
to the Cladobranchia (Gastropoda, Nudibranchia) are no exception, and are a rather
neglected animal lineage in the research field of photosymbiosis. Yet, studying these
sea slugs holds great potential to establish a unique photosymbiosis model, as they are
the only known taxon that has evolved two different strategies to acquire their symbiont:
either from cnidarian prey (thus becoming a secondary host) or directly out of the water
column. The mechanisms for photobiont uptake and maintenance are unknown for
these sea slugs, but might be similar to those of cnidarians. However, in terms of the
evolution of photosymbiosis, Cladobranchia seem to share many commonalities with
more closely related sea slugs belonging to the Sacoglossa, which only maintain the
chloroplasts of the algae they feed on. Hence, Cladobranchia have the potential to shed
light on the evolution of photosymbiosis in taxonomically divergent animals that also
harbor photobionts of different evolutionary lineages.

Keywords: Nudibranchia, photosynthetic symbiosis, sea slugs, Symbiodiniaceae, symbiont recognition

INTRODUCTION

Symbiotic relationships shape genomic and morphological plasticity, which is a driving force of
evolution within prokaryotes and eukaryotes (Margulis, 1981; Burki et al., 2020). Most common are
symbioses between heterotrophic organisms, but some protists (Decelle, 2013; Decelle et al., 2015;
Foster and Zehr, 2019) and a few animal lineages (Melo Clavijo et al., 2018) engage in symbioses
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with photoautotrophic organisms (photobionts) – the so-
called photosymbiosis (Cowen, 1988; Stanley, 2006). Among
animals, stony corals (Scleractinia) are probably the best-
known example of a successful photosymbiosis. Corals primarily
form a mutualistic symbiosis with dinoflagellates of the
family Symbiodiniaceae (Fensome, 1993), that are referred
to zooxanthellae when in hospite. Yet, more recently the
mutualism of the photosymbiosis has been questioned and some
authors refer to a host-controlled parasitism of the photobiont
(Wooldridge, 2010; Blackstone and Golladay, 2018). Independent
on the exact nature of the symbiosis, the photosymbiosis of
corals and Symbiodiniaceae is based on an interdependent
nutrient exchange cycle between the host and the photobiont
(Stanley and Helmle, 2010; Tornabene et al., 2017). It has been
shown that the coral host obtains nutritional support by the
photobiont in the form of sugars, amino acids and some other
essential nutrients, sometimes even superseding its nutritional
requirements, allowing the coral host to thrive in oligotrophic
waters (Muscatine and Porter, 1977; Falkowski et al., 1984; Lin
et al., 2015) and enhances their ability to form skeletons and build
up the coral reef structure (Stanley and Lipps, 2011; Tambutté
et al., 2011; Roth, 2014). In return, the coral host provides carbon
dioxide and ammonium, which are key limiting compounds for
the photobiont (e.g., Yellowlees et al., 2008). The coordination
of this nutrient exchange cycle is complex. Its disruption, for
instance caused by heat stress, can lead to the breakdown of the
symbiosis and can result in the expulsion of the photobionts. This
process is known as bleaching and often eventually results in the
coral’s death leading in extreme cases to mass bleaching events, as
seen in recent years, that are endangering entire reef communities
across the globe (Suggett and Smith, 2020).

Aside from Scleractinia, photosymbiosis in metazoans is not
well understood (Melo Clavijo et al., 2018). Considering its
potential benefit for the heterotrophic host, it remains unclear
why the symbiosis with a photobiont has evolved only in a
few metazoan lineages. It is likely that photosymbiotic animals
share components of a common genetic tool kit, which are
essential for the initiation and maintenance of a photosymbiosis.
This set of genes probably includes a large fraction related to
the innate immune system (Gross et al., 2009; Davy et al.,
2012; Mansfield and Gilmore, 2019), which is also highly
relevant for other animal-microbe symbioses (e.g., McFall-Ngai
et al., 2012; Schmittmann et al., 2021). Genomic data could
help to understand these molecular mechanisms, but are still
scarce for most photosymbiotic animal lineages (Melo Clavijo
et al., 2018). Fortunately, genome-sequencing initiatives such
as the recently launched Aquatic Symbiosis Genomics Project
by the Welcome Sanger Institute and the Gordon and Betty
Moore Foundation are addressing this lack of genomic data.
Among others, this initative focuses on key photosymbiotic
species in different lineages, which will provide a wealth of
data and hence enable us to boost our understanding of
photosymbioses. However, the acquisition of genomes of non-
photosymbiotic congeners will be eminent to identify relevant
genomic adaptations promoting photosymbiosis. Analyzing and
comparing photosymbiotic and non-photosymbiotic animals
within and between different lineages will have the potential

to unravel their common genomic adaptations for photobiont
recognition and maintenance. Such comparisons also hold the
key to clarify at which point in the evolutionary history the animal
host acquired distinct adaptations needed for photosymbiosis
and if these adaptations evolved convergently or homologously.

We propose that a specific group of sea slugs, the
Cladobranchia that belong to the Nudibranchia, should be
studied in more detail. This lineage could considerably contribute
to our understanding of photosymbiotic processes and the
evolution of photosymbiosis in distantly related animals.

“Butterflies of the Sea”
Nudibranchia are a morphologically diverse and colorful group
of non-shelled sea slugs, belonging to the Heterobranchia
(Burmeister, 1837) and consisting of the suborder Doridina
and the suborder Cladobranchia. Over 4,000 nudibranch species
have been described and, due to their colorful appearance,
they fascinate scientists and non-scientists alike and are often
called “butterflies of the sea” (Anderson, 1995). Current research
on Nudibranchia focuses on assessing their biodiversity (e.g.,
Eisenbarth et al., 2018; Fritts-Penniman et al., 2020; Korshunova
et al., 2021), their developmental biology and life cycle (Page,
1993; Kristof and Klussmann-Kolb, 2010; Ahmadian et al., 2016;
Togawa et al., 2019), and phylogenetic relationships within
the different groups (e.g., Carmona et al., 2013; Goodheart
et al., 2015a,b; Karmeinski et al., 2021 Korshunova et al.,
2021). Furthermore, because most Nudibranchia lost their
protective shell, alternative defense strategies, such as mimicry
of food sources (Gosliner and Behrens, 1990), calcareous
needles (Cattaneo-Vietti et al., 1995), the synthesis of toxic
metabolites (Bogdanov et al., 2017), and storing and using
cnidocysts “stolen” from their cnidarian food source (Obermann
et al., 2012; Goodheart et al., 2018) are investigated. Especially
the potential pharmaceutical relevance of their secondary
metabolites (reviewed by Cimino and Gavagnin, 2006; Putz et al.,
2010; Fisch et al., 2017) makes them an interesting group for
researchers. Photosymbiosis is only found in the Cladobranchia
that comprise approximately 1,000 species and that can be
identified by the lack of gills and their large dorsal appendices,
the cerata, that also function as respiratory organ. However,
photosymbiosis in Cladobranchia is not well understood.

Cladobranchia Evolved Different
Strategies of Photobiont Acquisition
Like most photosymbiotic animals, Cladobranchia acquire their
photobionts anew in each generation (i.e., horizontally, instead
of vertically from their parents), which is the most common
mechanism of photobiont acquisition in animals (reviewed in
Melo Clavijo et al., 2018). However, only Cladobranchia evolved
two different modes of horizontal photobiont acquisition – out of
the water column or from photosymbiotic cnidarians (Figure 1).
Within the Cladobranchia, members of the Dendronotoidea
(Allmann, 1845), such as Melibe engeli Risbec, 1937 (Figure 1),
experienced morphological modifications that resulted in a
fan-like mouth opening (Gosliner, 1987), allowing them to
effectively ingest the photobionts out of the water column

Frontiers in Marine Science | www.frontiersin.org 2 January 2022 | Volume 8 | Article 745644

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-745644 December 28, 2021 Time: 11:2 # 3

Rola et al. Photosymbiosis in Cladobranchia

FIGURE 1 | Cladogram of selected Cladobranchia species showing different levels of photosymbiosis. Members of Cladobranchia are widespread distributed (1.
Habitat) and acquire their photobiont horizontally either from the water column or by feeding on photosymbiotic cnidarians (2. Photobiont source). Different degree of
ramification of the digestive gland system is present in Cladobranchia (3. Digestive gland system) that might be correlated to the stability of the photosymbiosis (4.
Photosymbiosis). The cladogramm and the respective information are based on published data (Wägele and Willan, 2000; Johnson and Gosliner, 2012; Moore and
Gosliner, 2014; Goodheart et al., 2018; Karmeinski et al., 2021). The images were taken by Heike Waegele (Melibe engeli, Dermatobranchus semistriatus), Daniela
Kupschus (Flabellina affinis, Cratena peregrina, Pteraeolidia ianthina), and Sabrina Bleidissel (Phyllodesmium briareum).

(Bleidissel, 2010; Burghardt and Wägele, 2014). To the best of
our knowledge, adults of the genus Melibe are the only sea
slugs to obtain their photobionts this way. The vast majority
of Cladobranchia, however, acquire the photobionts by feeding
on cnidarian prey and “stealing” the cnidarians’ photobionts
(Rudman, 1981; Kempf, 1984; Wägele, 2004). This is a unique
photobiont acquisition strategy in animals that evolved in
Cladobranchia probably multiple times in the superfamilies
Arminoidea, Iredale and O’Donoghue (1923), Fionoidea Gray
(1827), and Aeolidioidea Gray (1827) (Figure 1).

Not All Cladobranchia Can Maintain
Photobionts
Subsequent to the uptake, Cladobranchia selectively phagocytize
the photobionts into epithelial cells of their digestive gland
system (DGS). The DGS branches throughout the entire body
and, particularly, into the cerata (Figures 2A,B). Once the algae
are phagocytized in the epithelial cells, they remain in their
coccoid state and are surrounded by the phagosomal membrane

(Figures 2C,D; Wägele and Johnsen, 2001; Wakefield and Kempf,
2001). In most cladobranchs, like Flabellina affinis (Gmelin, 1791)
or Cratena peregrina (Gmelin, 1791) (Figure 1), the algae are
then rapidly digested, while some species, like Berghia stephanieae
(Valdés, 2005) (Figure 2A) are capable to maintain the algae
photosynthetically active for a few days (Monteiro et al., 2019).
Regarding the organismic interaction that we describe in this
review we refer to the general symbiotic terminology. Within
that terminology, the existing subcategories of photosymbiosis
are defined based on the beneficial aspects and the time-span
of interaction, following the definitions by Kempf (1991). Based
on this, maintaining the photobiont for a short term is here
referred to an unstable photosymbiosis, because the algae reside
intracellularly, but the slugs, like B. stephanieae, tend to digest
the algae within a couple of days, or expel them from the
cells and secrete them in a viable state in the feces. Species
that have evolved an unstable photosymbiosis do not appear
to benefit from the photosynthesis performed by the acquired
photobionts. They are neither able to maintain their symbionts
nor their biomass when solely relying on the photobiont as
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FIGURE 2 | Morphology and microscopic details of Berghia stephanieae. Morphology of B. stephanieae (A). Detail of a cerata of B. stephanieae bearing the
photobionts (B), histological cross-section through a cerata showing the host cells of the cerata bearing the photobiont (C), and detail of the coccoid (non-motile)
stage of intracellular Symbiodiniaceae (D). cm: Symbiodiniaceae cell membrane, cp: chloroplast, li: lipid droplets, lu: lumen of the host digestive gland, n: nucleus,
pm: host phagosomal membrane, Sym: Symbiodiniaceae. The images were taken by Gregor Christa (A,B), Jenny Melo (C) and Elise Laetz (D).

source of nutrition (Kempf, 1991; McFarland and Muller-Parker,
1993; Bleidissel, 2010; Monteiro et al., 2019). Yet, some taxa
have evolved the ability to establish a stable photosymbiosis,
maintaining the photobionts for months. For a couple of these
photosymbiotic species, like Melibe engeli and Phyllodesmium
briareum (Bergh, 1896), it has been shown that the photobiont
can fully support the host, enhancing growth and the ability
of long-term reproduction without a reduction in the quantity
and quality of egg-masses under regular light conditions (Kempf,
1984; Burghardt and Wägele, 2004, 2006, 2014; Burghardt
et al., 2005, 2008a,b; Burghardt and Gosliner, 2006). These
observations support the idea that at least these Cladobranchia
species and Symbiodiniaceae are involved in a mutualistic
symbiosis, which is unique in gastropods. More closely related
Sacoglossa sea slugs, that are in a sort of photosymbiosis with
chloroplasts of their algal prey, are not able to grow, or even
maintain their biomass, if they are exclusively dependent on their
ingested chloroplasts for more than a couple of weeks (Pelletreau
et al., 2012; Christa et al., 2014). Further, they are not able to
maintain the quantity and quality of egg-masses during periods
of food depletion (Cartaxana et al., 2019). Hence, Cladobranchia
provide a unique opportunity to understand which genomic
adaptations are needed to evolve a mutualistic photosymbiosis

in sea slugs. Comparative analyses of photosymbiotic and non-
photosymbiotic Cladobranchia with Sacoglossa and Cnidaria
might uncover if these genomic adaptations are based on
convergent evolution or if, for instance, epigenetic modifications
are involved in activating specific genes in photosymbiotic slugs.

Mechanisms for Photobiont Recognition
and Maintenance Are Unknown in
Cladobranchia
The selective incorporation of photobionts in Cladobranchia is
a complex process. It remains unknown how the slugs are able
to distinguish between photobionts and plankton and further
digest all plankton (e.g., in Melibe) or tissues of the cnidarian
prey while maintaining the photobionts intact. The mechanisms
of photobiont recognition by the epithelial cells of the DGS
have not yet been addressed, while in cnidarians the photobiont
recognition is based on a set of animal host pattern recognition
receptors (PRRs). Specific microbe associated molecular patterns
(MAMPs) of the photobiont (Neubauer et al., 2016, 2017;
Mansfield and Gilmore, 2019) bind to the PRRs, which triggers
downstream signaling cascades to maintain the photobiont (Davy
et al., 2012). The PRRs of Cladobranchia might be similar to
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those of their cnidarian host, as they incorporate the same
photobiont and hence need to recognize the same MAMPs.
However, Cladobranchia could also just use different PRRs to
recognize other MAMPs to identify the equivalent photobiont.
The incorporation process might even be more similar to the
selective uptake of chloroplasts by more closely related members
of sea slugs belonging to the Sacoglossa (Chan et al., 2018; Melo
Clavijo et al., 2020). Using phylogenetic and domain specific
analyses of the respective receptors will help to understand if the
relationship of the respective PRRs is matching the taxonomy of
the host. In combination with subsequent functional analyses,
for instance by gene expression and manipulation, a list of
candidate genes can be generated that could be involved in
photobiont recognition. Therefore, Cladobranchia are the only
animals that could permit a direct comparison of photobiont
recognition mechanisms, in particular PRRs, between a primary
(Cnidaria) and secondary (Cladobranchia) host of the same
photobiont. At the same time, Cladobranchia allow comparisons
with mechanisms of chloroplast recognition in the more closely
related Sacoglossa. These analyses may provide insights into
the relevance of PRRs in photosymbiosis across taxonomically
divergent animal taxa. Furthermore, they may elucidate how
conserved the signaling pathways for initiating photosymbiosis
are – independent from the taxonomic lineage of the photobiont.

Evolution of Stable Photosymbiosis in
Cladobranchia
The evolution of a stable photosymbiosis in Cladobranchia
is still not well understood. It appears that photosymbiosis
evolved several times independently in different Cladobranchia
superfamilies (Figure 1). For instance, it might have evolved
independently in the Dendronotoidea and a monophyletic
group including Arminoidea, Fionoidea, and Aeolidioidea. This
would explain the evolution of the two different acquisition
modes. Alternatively, photosymbiosis could also have evolved in
each of the superfamilies independently. It is furthermore
unknown whether unstable and stable photosymbiosis
evolved separately, or if stable photosymbiosis evolved from
unstable photosymbiosis.

Commonly, photosymbiotic Cladobranchia have a highly
branched digestive gland system and specialized digestive
structures, such as large circular chambers, fine tubules and
cisternae that are located at the tips and harbor the photobionts
(Burghardt and Wägele, 2014). These structures are considered
to enlarge colonizable space and optimize light attenuation,
increasing photobiont density and photosynthesis, respectively
(Rudman, 1991; Burghardt et al., 2008a,b; Moore and Gosliner,
2011). Yet, despite of having a highly branched digestive gland
system, species of Phestilla or Limenandra (Figure 1), and
species like Melibe leonina (Gould, 1852) or Phyllodesmium
kabiranum Baba, 1991, are non-photosymbiotic (Figure 1). Aside
of this exception the genus Phyllodesmium shows a correlation
between photosymbiosis and a highly branched digestive gland
system (Rudman, 1991; Burghardt et al., 2008a,b; Moore and
Gosliner, 2011). A highly branched DGS might not be a
prerequisite to evolve a stable photosymbiosis, but it appears to

be advantageous to harbor larger numbers of photobionts and to
optimize photosynthesis.

The cnidarian prey is considered important for the stability of
the photosymbiosis in Cladobranchia (Wägele et al., 2010). For
instance, members of the genus Phyllodesmium, in which most
species have a stable photosymbiosis, feed exclusively on xeneid
cnidarians belonging to the Alcyonacea. However, Pteraeolidia
semperi (Bergh, 1970), also in a stable photosymbiosis, obtains the
photobionts from Hydrozoa, so that the food source is not strictly
connected to photosymbiosis (Figure 1). Instead, it seems to be
based on obtaining specific secondary metabolites for defense
purposes (Bogdanov et al., 2017) and the feeding preference
is rather taxon-specific. Independent of the source of the
photobiont, the efficiency of the photosymbiosis may be further
influenced by the specific algal taxon. For instance, in other stable
photosymbiotic systems, such as Cnidaria-Symbiodiniaceae and
Bivalvia-Symbiodiniaceae associations, the animal hosts could
benefit from more physiologically resilient photobionts during
increased ambient temperature (Hume et al., 2016; Cziesielski
et al., 2018; Mies, 2019; Cunning and Baker, 2020). When corals
are in symbiosis with multiple symbiodiniacean genera, the active
removal of less resilient strains results in an adaptive bleaching,
which might increase the animal’s fitness and improve the
stability of the symbiosis considerably (Ziegler et al., 2014; Bayliss
et al., 2019; Chen et al., 2019). So far, only a few studies have
investigated the diversity and composition of Symbiodiniaceae
in Cladobranchia (Loh et al., 2006; FitzPatrick et al., 2012;
Ziegler et al., 2014; Wecker et al., 2015; Yorifuji et al., 2015).
Nevertheless, these studies have not uncovered any correlation
between specific Symbiodiniaceae taxa and the ability to establish
a photosymbiosis with Nudibranchia. It rather seems that
symbionts are taken up from the cnidarian prey indiscriminately.
Future analyses of photobiont abundance in cladobranchs in
comparison to their cnidarian prey will help to understand if
the slugs are able to distinguish between Symbiodiniaceae taxa
and selectively expel less beneficial photobionts. Comparative
metabarcoding analyses, as available for some cnidarians and
their Symbiodiniaceae composition (Fujise et al., 2021), is still
lacking for sea slugs, but are needed to reveal the relevance
for a stable photosymbiosis in Cladobranchia. It might be
further worth to investigate, if the slugs play a role in genotype
dispersion of symbiodiniaceans in marine habitats. The fact
that symbionts are transferred from a sessile to a motile host
could potentially enhance the dispersion of symbiodiniaceans
and could change the composition of clades and strains
in environmental populations (Parker, 1984). This could be
beneficial for other sessile photosymbiotic animals and their
symbiont uptake, facing environmental changes with different
adapted symbionts (Umeki et al., 2020).

Regardless of the stability of the photosymbiosis, little is
known on how nutrients are exchanged between the slugs and
the algae. The phagosomal membrane surrounding photobionts
in cnidarians is known as symbiosome (Hill and Hill, 2012). The
symbiosome plays a crucial role in the successful establishment
of the symbiosis. Transporters relevant for nutrient exchange,
i.e., sugars from the algae to the animal and dissolved
inorganic compounds from the animal to the algae, are
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situated in the symbiosomal membrane (Sproles et al., 2018).
In cladobranchs it is unknown if and which transporters are
present on the phagosomal membrane and how comparable
it is to the symbiosome in terms of functionality. Future
immuno-histochemical studies could give valuable insights into
the localization of photosymbiosis-relevant receptors and their
role in the nutritional exchange between the two partners,
while metabolomics could provide important information on
the interdependent nutrient exchange between both partners.
Further, it remains to be shown whether in species with a
stable photosymbiosis the symbiosis is beneficial for the host
and whether the symbiosis is mutualistic or even some sort
of parasitism as proposed for other photosymbiotic animals by
some authors (Lesser et al., 2013; Blackstone and Golladay, 2018;
Androuin et al., 2020).

CLADOBRANCHIA CAN SHED LIGHT ON
PHOTOSYMBIOSIS

Cladobranchia are a promising model to deepen the knowledge
on fundamental processes that lead towards the evolution of
photosymbiosis in animals as they resemble a connecting link
between the well studied photosymbiosis in cnidarians and
the less understood animal lineages such as sea slugs. Future
research combining genomics, metabolomics, physiological, and
immuno-histochemical studies, as well as phylogenetic analyzes
of key receptors or proteins involved in photosymbiosis,
will highlight if photosymbiosis evolved convergently or
homologously in the different animal lineages.
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