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As important aquaculture species worldwide, shrimps and crabs are thermophilic
animals with a feeble thermoregulation ability. Changes in environmental factors are
the main reason for the decrease in the immunity and disease resistance ability of
cultured organisms. Water temperature is one of the most common abiotic stress
factors for aquatic ectotherms. It influences nearly all biochemical and physiological
processes in crustaceans, resulting in an imbalance in ion and water homeostasis,
neuromuscular function loss, cellular dehydration, and altered metabolic pathways. The
present review summarizes the current knowledge on the effects of low temperature on
the physiological response, and the behavior, development, and growth of shrimp and
crab. We suggest a deeper research to understand the physiological processes involved
in thermoregulation; this knowledge could be used to reduce the adverse effects in the
shrimps and crabs during the culture.
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INTRODUCTION

As important aquaculture species worldwide, crustaceans such as shrimp and crab have very weak
cold regulation abilities. Since the 1980s, various diseases have caused huge losses in the aquaculture
industry. Epidemiological surveys showed that shrimp and crab diseases mainly occurred in spring
and summer, and the peak of the disease often occurred after drastic changes in environmental
conditions. Changes in environmental factors are the main reason for the decline of biological
immunity and disease resistance (Le Moullac and Haffner, 2000). For crustaceans such as shrimp
and crab, the water temperature is an important survival-related environmental factor, which not
only directly influences their metabolism, growth, molting, and survival, but also affects other
environmental factors (e.g., dissolved oxygen) (Chen et al., 1995; Hennig and Andreatta, 1998;
Saucedo et al., 2004). Therefore, the temperature has become an essential factor restricting shrimp
and crab culture.

There has been significant research progress on how temperature affects crustacean growth,
physiology, survival, energy metabolism, and biochemistry. In shrimps and crabs, cold shock
can be discussed in the context of the general stress response. The present review used the
definition of stress reported by Donaldson et al. (2008), which described stress as a cascade of
physiological responses occurring in an organism that tries to re- disturbance its homeostasis after
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an insult. There are three broad categories of responses to
environmental stress: primary (e.g., the release of corticosteroids
and catecholamine and the neuroendocrine response), secondary
(e.g., immunological, osmoregulatory, hematological, cellular,
and metabolic changes), and tertiary (e.g., behavioral and
physiological stress responses in the whole organism). This paper
reviews the research progress of the effects of temperature from
the three aspects (see Figure 1), which will enrich the basic
physiological data of shrimp and crab, and to guide the artificial
culture of shrimp and crab, providing a reference for related
research in the future.

PRIMARY RESPONSES – THE
NEUROENDOCRINE RESPONSE

The endocrine and nervous systems function synchronously
to regulate many physiological processes and to maintain
balanced organism-wide homeostasis in both normal and
stressful conditions, via a process, termed neuroendocrine
integration (Adamski et al., 2019). The neuroendocrine system
and its related signaling molecules (e.g., biogenic amines (BAs)
and neuropeptides) regulate many crustacea behavioral and
physiological processes; therefore, they might also affect cold
tolerance (Chen et al., 2014).

BAs identified in crustaceans include catecholamines
[dopamine (DA), norepinephrine (NE), and epinephrine (E)]
and indoleamine [5-hydroxytryptamine (5-HT)] (Chang et al.,
2009, 2015). The stress response involves BAs (Zhao et al., 2016).
For instance, low temperatures alter BA concentrations, allowing
insects to survive in, or prepare for, unfavorable conditions
such as prolonged stress. BAs have important functions in
the regulation of fundamental life processes (Sinakevitch
et al., 2018). Not only do BAs function as neuromodulators
and neurotransmitters in nervous tissues, but also can act as
neurohormones after their release into body fluids (Sinakevitch
et al., 2018). According to the target tissue, BAs bind to different
types of G protein-coupled receptors (GPCRs), resulting in the
stimulation of various secondary messengers, such as Ca2+ or
cyclic adenosine monophosphate (cAMP) (Farooqui, 2012).
Research has identified four DA and five 5-HT receptor subtypes
in crustaceans to date (Northcutt et al., 2016; Pang et al., 2019).
Most of these receptors are member of a GPCR superfamily
that activates cascades of second messengers, mainly protein
kinase A (PKA) and cAMP (Costa et al., 2016). In crayfish
(Procambarus clarkii), agonistic behavior, such as the loser and
winner effects is mediated by the cAMP-PKA signaling pathway
(Momohara et al., 2016).

BAs’ neuroprotective role in supporting muscle activity in
various crustaceans in response to low temperature has been
studied (Hamilton et al., 2007). In lobster and crayfish muscles,
increased haemolymph 5-HT levels in response to cold resulted
in an increase in the amplitude of the excitatory postsynaptic
potential (EPSP). BAs’ effects are frequently temperature-
dependent; e.g., 5-HT-induced alterations of the EPSP occur
only at suboptimal temperatures, which might aid the function
of neuromuscular junctions under low temperature stress

(Hamilton et al., 2007; Zhu and Cooper, 2018). This hypothesis
was supported partially by the observation that in Drosophila
melanogaster larval heart exposed to cold, only 5-HT had a strong
excitatory effect (Zhu et al., 2016).

In crustaceans subjected to cold stress, the BA levels are
altered. For example, in the giant prawn Macrobrachium
rosenbergii, variations in NE levels in the haemolymph, eyestalk,
and thoracic ganglion, suggested that NE mediates cold shock-
induced hyperglycemia (Hsieh et al., 2006). Higher haemolymph
levels of DA were detected in 24◦C-acclimated white shrimp
(Litopenaeus vannamei) when shifted to a lower temperature (18
or 21◦C) (Pan et al., 2008).

The crustacean hyperglycaemic hormone (CHH) family is
an important endocrine hormone, comprising CHH, molt-
inhibiting hormone (MIH), gonad-inhibiting hormone (GIH),
and mandibular organ-inhibiting hormone (MOIH) (Chen et al.,
2020). In particular, CHH, which mainly regulates the release of
glucose, is involved in the mediation of stress responses. CHH
is probably the most widely studied neuroendocrine mechanism
that mediates the crustacean stress response (Wanlem et al.,
2011). CHH is a neurohormone produced by the X-organ sinus
gland complex, which is located in the eyestalk, and is regulated
by several neuromodulators, e.g., catecholamines (Liu et al., 2008;
Aparicio-Simón et al., 2010). DA’s hyperglycemic effects involve
CHH (Webster et al., 2012). A hyperglycemic response is also
elicited by NE and E and to NE and E also elicit a hyperglycemic
response; however, this effect is not dependent on the eyestalk,
suggesting that this effect is not mediated by CHH or is mediated
by non-eyestalk produced CHH (Si et al., 2019). A significant
increase in CHH levels in the haemolymph in response to
cold stress have been reported in several crustaceans, including
the L. vannamei (Lago-Lestón et al., 2007) and the freshwater
crayfish, Cherax quadricarinatus (Prymaczok et al., 2016).

SECONDARY RESPONSES – CHANGES
IN METABOLISM, THE IMMUNE
SYSTEM, AND OSMOREGULATION

Low temperature is closely related to the immune and antioxidant
system of shrimps and crabs (see Table 1), and is the
most important stress factor in aquaculture (Xu et al., 2019).
Low temperature not only causes a disorder of free radical
metabolism, damage the normal physiological function and
immune defense ability of cells and tissues, and directly affects the
metabolism of aquatic animals, but also affect dissolved oxygen
and other environmental factors, thus leading to the susceptibility
of shrimps and crabs to pathogens.

Effects of Low Temperature on
Metabolism
Temperature can directly affect the respiration and energy
metabolism of crustaceans. Under low temperature stress, on
the one hand, energy consumption increases. On the other
hand, neurohormone secretion and digestive enzyme activity
decrease, and energy metabolism-related enzyme activity and
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FIGURE 1 | Schematic representation of natural and anthropogenic sources of cold shock and the primary, secondary and tertiary responses to cold shock.

metabolic modes are altered, resulting in crustacean metabolic
disorder (Anestis et al., 2008). Low temperatures are believed
to have widespread effects on marine organisms’ behavioral
and physical traits, including their metabolism. Generally,
crustaceans lack efficient regulators, making them sensitive to
reduced temperatures.

In shrimp and crab, proteins are the primary energy
source (Cuzon et al., 2010). In cold-adapted L. vannamei,
fat absorption and digestion, and the protein pathways were
enhanced significantly (He et al., 2018). Similarly, under cold
stress (23◦C), plasma lipids (especially total cholesterol and
triglycerides) and total proteins increased significantly; there
were no significant changes in glucose levels (Wu et al., 2020).
Therefore, it was speculated that in crustaceans under acute
cold-stress, lipids and proteins are the main energy sources
(Wang et al., 2019). A metabolic study of the black tiger shrimp
(Penaeus monodon) cultured under low temperature revealed
that its amino acid and trehalose contents increased significantly
(Jiang et al., 2019). Under low temperature stress, in addition
to the fatty acid composition of tissues and cells, the content
of free amino acids (FAA) in tissues also changed. The content
of total FAA increased in spring and autumn, but decreased
rapidly in winter. As an important nutrient in the body, protein
may be automatically decomposed into amino acids under low
temperature stimulation. On the one hand, amino acids are used
for protein synthesis and turnover, and on the other hand, they
might have anti-stress functions. To improve the metabolic rate
and oxygen carrying capacity of the body, or to meet the needs of
protein synthesis, the structure and synthesis rate of hemocyanin
in shrimp and crab will change significantly in response to stress.

The fatty acid metabolism of crustaceans is sensitive to
temperature. Cold temperature mainly affects membrane fluidity
by affecting the saturation of fatty acids in the cell membrane.

Membrane fatty acid desaturation is considered an important
mechanism by which crustaceans adapt to low temperature,
and is crucial to maintain membrane fluidity, enzyme activity,
and normal cell function (Pruitt, 1990; Suprayudi et al., 2004).
Cold stress leads to a change in the fatty acid (FA) composition
in crustacean cells, which usually leads to the decrease in
the saturated fatty acid (SFA) ratio and a rapid increase in
the unsaturated fatty acid (UFA) ratio, which is conducive
to the maintenance of cell membrane fluidity (Azra et al.,
2020a,b). In Scylla serrata, Cancer pagurus, and Carcinus maenas,
the SFA content decreased significantly at low temperature
(Cuculescu et al., 1995; Wang et al., 2007). In the crayfish
cultured at low temperatures, the haemolymph cholesterol and
triglyceride contents were reduced significantly, suggesting that
under cold stress, these two substances are consumed to release
energy (Wu et al., 2020). UFAs are important components
of cellular membranes and participate in energy metabolism
(Nemeth et al., 2014). Under cold stress, UFA levels increased
in L. vannamei (Fan et al., 2019), the Chinese fleshy shrimp
(Fenneropenaeus chinensis) (Meng et al., 2019), and the kuruma
shrimp (Marsupenaeus japonicas) (Ren et al., 2020). Desaturase
enzymes play an important role in the synthesis of unsaturated
fatty acids. In C. quadricarinatus low temperature treatment
increased 16 desaturase mRNA expression and enzyme activity
with decreasing water temperature (Wu et al., 2018). However,
the mechanisms for the induction of 16 desaturases at low
temperature remain unclear.

As an important energy source, sugar plays a vital role in
the low temperature stress of shrimp and crab. A decrease in
temperature led to an increased blood glucose content and
a decreased glycogen content in M. rosenbergii, S. serrata,
Pachygrapus crassipesran Dall, Paranephrops planfrons,
and L. vannamei (Hsieh et al., 2006; Kong et al., 2008;
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Valle et al., 2009; Zhou et al., 2011). This change in sugar levels
in shrimp and crab is an adaptation to low temperature. During
cold stress, glucose is consumed as a fast energy source, and the
hepatopancreas continuously decomposes glycogen to meet the
needs of maintaining the metabolic energy supply. When the
temperature rises, or the crustacean adapts to low temperature,
the haemolymph glucose level will gradually recover.

Effects of Low Temperature on Immune
System
The crustacean immune system mainly functions via innate
immune mechanisms comprising humoral and cellular
responses. Cellular innate immunity comprises all hemocyte-
mediated reactions (e.g., phagocytosis, nodule formation, and
encapsulation). Humoral innate immunity comprises mainly
lysozyme, phosphatases, antimicrobial peptides (AMPs), protease
inhibitors, agglutinins, and the prophenoloxidase-activating
system (Kenneth and Lage, 1992; Kulkarni et al., 2020). In the
humoral response, AMPs, lysozyme, or phenoloxidase (PO)
concentrations increase markedly under stress conditions,
e.g., invasive pathogens, disease outbreaks, and environmental
hazards. Hemocytes comprise the major component of the
crustacean cellular immune system, and their levels will change
according to the condition of the organism and the environment
(Wang and Chen, 2006). Thus, stress-induced immune system
activity is conveniently assessed using the total haemocyte
count (THC) (Xu et al., 2019). Fan et al. (2013) found that
the THC in L. vannamei was reduced when the temperature
decreased from 28 to 13◦C. These results indicated that the THC
of crustaceans is closely related to temperature. The lower the
temperature, the lower the enzyme activity and the lower the
THC. In lobsters, the hemocyte phagocytic activity was affected
negatively by low temperature (Steenbergen et al., 1978). The
evolutionarily conserved cellular process of autophagy involves
maintaining homeostasis by recycling damaged or excess cellular
components (e.g., misfolded proteins, intracellular pathogens,
damaged organelles, and damaged DNA) (Bolliet et al., 2017).
In L. vannamei, autophagy is associated with low temperatures
(Liang et al., 2020).

In invertebrates, the important innate immune response
mechanism, melanization, functions via the prophenoloxidase
(proPO)-activating system and is catalyzed by PO (Amparyup
et al., 2013). In shrimp, melanization has been suggested to be an
antiviral response (Zhao et al., 2020). Meanwhile, PO functions
in cellular defense in association with phagocytosis-enhancing
factors; therefore, PO is used frequently to assess the effect of
environmental stress on the invertebrate immune system (Ellis
et al., 2011). In brown shrimp (Penaeus californiensis) exposed to
increasing temperature (18−32◦C), the hemocyte proPO system
activity decreased at 32◦C (Vargas-Albores et al., 2008). In the
crab (Carcinus aestuarii), when incubated at 4◦C, the PO activity
in cell-free haemolymph was significantly higher than that in the
control crabs incubated at 17◦C (p < 0.05) (Matozzo et al., 2011).

In addition, immune parameters, such as antibacterial activity,
are suppressed by low temperature. Taken together, these
previous studies show that low temperature has important

effects on shrimp disease tolerance and survival. However, to
date, there have been few studies investigating the immune
regulatory mechanisms in shrimp exposed to low temperature.
Lysozyme (LSZ), as a kind of hydrolase, is the basis of phagocyte
sterilization, existing widely in different tissues, body fluids, and
secretions of various organisms, and can be used to measure the
non-specific immune capacity of organisms (Mock and Peters,
1990). Low temperature can affect the activity of LSZ. Ding
et al. (2010) reported that temperature change could inhibit the
LSZ activity of S. serrata. In the red claw crayfish, LSZ was
inhibited significantly following low temperature exposure (Wu
et al., 2019). Hemocyanins are extracellular negatively charged
proteins that are involved in numerous physiological functions,
such as protein storage, osmoregulation, oxygen transport, and
enzyme activities (Ishwarya et al., 2018; Coates and Costa-Paiva,
2020). In the crayfish P. clarkii and P. zonangulus, the acclimation
temperature directly affected the hemocyanin binding affinity
(Powell and Watts, 2006). Thus, it is believed that shrimp are
more susceptible to pathogens under low temperature conditions.

Effects of Low Temperature on the
Antioxidant System
In healthy organisms, the production and elimination of free
radicals are in a dynamic balance; however, in adversity,
stress will induce a reaction from the enzyme systems and
non-enzyme systems of mitochondria, microsomes, and the
cytoplasm, resulting in the production of excess reactive oxygen
species (ROS) and oxygen free radicals, thus breaking the
balance of reactive oxygen metabolism (Wade et al., 2017). In
cells and tissues, oxidative stress’s effects on cellular damage
can be indicated by the level of lipid peroxidation (Mensah
et al., 2012). To reduce oxidative stress and repair damaged
cells, the primary defense response comprises the production
of enzymatic and non-enzymatic antioxidants to scavenge ROS
and free radicals (El-Gendy et al., 2010). In all organisms, the
main antioxidative enzymes that detoxify ROS are glutathione
S-transferase (GST), glutathione reductase (GR), catalase (CAT),
glutathione peroxidase (GPx), and superoxide dismutase (SOD),
in addition to the non-enzymatic antioxidant molecule, reduced
glutathione (GSH) (Lesser, 2006; Zheng et al., 2019).

In mud crabs subjected to cold stress, the CAT, SOD, and
GPX activities increased over 2 h, and then decreased gradually;
the content of malondialdehyde (MDA) also increased gradually
under cold stress (Kong et al., 2007). In S. paramamosain
acclimated at 5, 10, 15, and 27◦C (control group), the SOD, CAT,
and GPx activities, and the MDA content decreased gradually
with lowering temperatures and were significantly reduced at 5
and 10◦C compared with those in crabs incubated at 27◦C (Kong
et al., 2012). Qiu et al. (2011) evaluated the physiological effects of
continuous temperature decrease on L. vannamei. The MDA level
increased when water temperature decreased from 23 to 12◦C.

It has become clear that organisms share a common
adaptation mechanism, termed the heat shock response (HSR), to
cope with temperature-induced stress, which results in a dramatic
change in gene expression patterns and leads to the elevated
synthesis of a range of molecular chaperones and the induction
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of other cell-protective pathways (Richter et al., 2010). The heat
shock protein (HSP) and heat shock factor (HSF)- mediated
regulation pathways play crucial roles in the HSR, and have
been studied intensively in terms of HSR mechanisms and the
cold-tolerance of organisms (Gbotsyo et al., 2020).

HSPs are regulated by heat shock elements (HSEs), HSFs,
and other factors to control their cellular levels (Morimoto
and Santoro, 1998). HSF1 is an important transcription factor
that regulates the heat shock response, and is expressed
widely in eukaryotes, playing an important role in maintaining
intracellular homeostasis during heat stress (Anckar and
Sistonen, 2011). When the body is subjected to cold stress,
it combines with HSE. In addition, HSPs are conserved at
the evolutionary level. In a study of high temperature stress
of Penaeus monodon, PmHSF1 expression was elevated. The
expression levels of HSPs and other heat tolerance related genes
in P. monodon changed significantly after the PmHSF1 gene was
knocked down (Sornchuer et al., 2018). In M. japonicas, MjHSF1
transcription was upregulated under heat stress (Zheng et al.,
2020). To date, most of the studies on the related functions of
HSF1 have focused on the interaction between HSF1 and HSPs,
and there are few studies on the expression of immune related
factors associated with HSF1. Several HSP genes are downstream
targets of HSF1, which are involved in crustacean resistance to
adverse environments.

HSPs comprise molecular chaperones that are produced
during the exposure to, and recovery from environmental
or physiological stress, including cold stress (Johnston et al.,
2018). HSPs, also referred to as molecular chaperones or stress
proteins, comprise a group of highly conserved proteins that
are present ubiquitously in both prokaryotic and eukaryotic
organisms (Roberts et al., 2010). HSPs protect cellular functions
and structures and from the effects of stress and have important
functions in the maintenance of cellular homeostasis (Morimoto
and Santoro, 1998). Based on their molecular weight, HSPs are
generally classified into five families, HSP100, HSP90, HSP70,
HSP60, and small HSPs (Ahn and Im, 2020). In F. chinensis, the
levels of FcHSP90 mRNA were induced sensitively in response to
heat shock (from 25 to 35◦C), reaching a maximum level after
6 h of heat shock (Li et al., 2009). In other crustaceans (S. serrata
and L. vannamei) mRNA levels of HSP40, HSP70, or HSP90 were
increased in response to cold or heat shock (Fu et al., 2013; Chen
et al., 2018; Sung et al., 2018; Fan et al., 2019).

Apoptosis, a cell death process, has a crucial function
in maintaining tissue hemostasis and disease protection. As
a component of inflammatory reactions, the physiological
function of apoptosis helps to remove damaged or harmful
cells from immune tissues (Johnstone et al., 2002). Li et al.
(2014) evaluated the effect of continuous temperature decrease
on hemocyte apoptosis of L. vannamei, which showed an
increase in the apoptotic cell ratio and a decrease in caspase-
3 activity when the water temperature was reduced from 27
to 17◦C. Cold temperature led to increase caspase-3 expression
in the swimming crab (Portunus trituberculatus) (Meng et al.,
2014). A previous study from our group demonstrated that
in M. japonicus, the expression of p53 increased significantly
under cold stress, which suggested that cold-induced apoptosis

might involve p53 (Ren et al., 2020). Significant changes in
p53 signaling pathways under cold stress were also observed in
the hepatopancreas of the red claw crayfish under cold stress
(Wu et al., 2019).

Low Temperature’s Effects on
Osmoregulation
During cold acclimation (or low temperature adaptation),
shrimps and crabs change the composition and concentration
of intracellular ions by regulating the number and distribution
of various ion channels on the cell membrane and changing
the composition and concentration of intracellular ions to
maintain normal physiological activities (Masroor et al., 2018).
On the gill cell membrane of S. serrata, four kinds of
adenosine triphosphatases (Ca2+/Mg2+-ATPase, Ca2+-ATPase,
Mg2+-ATPase, and Na+/K+-ATPase), which are involved in
ion uptake and osmotic pressure regulation, were upregulated
during the process of adaptation to a lower temperature (Kong
et al., 2012). In the hepatopancreas of M. nipponense, the Na+-
K+ ATPase activity in the temperature range 16−22◦C was
enhanced by 1.38-fold compared with that in the temperature
range 25−32◦C (Wang et al., 2006). In Procambarus clarkia,
exposure from room temperature (23◦C) to 4◦C for 28 days
resulted in a significant increase in Ca2+-ATPase activity (Gao
et al., 2009). Thus, in a cold environment, shrimps and crabs can
reduce heat loss by adjusting the ionic concentration and osmotic
pressure of their body fluid to reduce the difference between their
body temperature and that of the outside water.

LEVEL THREE – CHANGES IN
BEHAVIORAL AND GROWTH
RESPONSES

Temperature is a basic environmental factor that limits species
distribution, affecting individual growth and determining the
reproductive cycle. How shrimps and crabs adapt to temperature
change and maintain a steady state of life process is a long-
term scientific problem. Low temperature has adverse effects on
the growth and development of organisms (Shields, 2019). The
temperature adaptation range of an organism is an important
character in aquaculture. Improving tolerance to temperature
stress is a challenging problem in aquaculture breeding. In the
rock crab (Cancer irroratus), progressive temperature increase
caused their heart rate to increase between 12 and 26◦C, peaking
at 153 ± 27 beats min−1 at 26◦C (Frederich et al., 2009). The
molting and reproduction of crustaceans are also affected by
temperature. The lower the taxonomic position of the organism,
the more susceptible it is to temperature. Therefore, to regulate
the reproductive physiology of crustaceans, water temperature is
an important factor.

Effect of Temperature on Shrimp and
Crab Embryonic Development
The embryonic development of crustaceans is a dynamic
physiological process. In addition to the influence of the
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TABLE 1 | Effects of low temperature on immune and antioxidant parameters in shrimp and crab.

Organism Species Size/life stage Temperature Factor Tissue References

Shrimp Litopenaeus vannamei 11 g, 4 cm 13◦C SOD, POD, CAT, GSH-Px,
T-AOC

Hepatopancreas,
haemolymph

Xu et al., 2018

Litopenaeus vannamei 4.59 ± 0.5 g 13◦C IAP, p53, HSP70 Intestine Wang et al., 2020

Litopenaeus vannamei 1.91 ± 0.22 g 15◦C CGL, GSH, TBARS Hepatopancreas,
haemolymph

de Souza et al.,
2016

Litopenaeus vannamei 5.0 1 ± 0.46 g 12 ± 2◦C MDA Haemolymph Qiu et al., 2011

Litopenaeus vannamei 7.09 ± 3.22 g 13◦C Ser/Thr kinase signal
pathway

Muscle Huang et al., 2017

Penaeus monodon 16.5 ± 0.6 g 15◦C O2
−, SOD, GSH, NOS, NO Hepatopancreas Jiang et al., 2019

Penaeus monodon 3.96 ± 0.82 g 20◦C SOD, ACP, PO Haemolymph Yang et al., 2013

Marsupenaeus japonicus 13.034 ± 0.88 g 10◦C p53, CYCS, Bax, Bcl2,
caspase-3

Hepatopancreas Ren et al., 2020

Fenneropenaeus chinensis P40 4◦C GST, C-type lectin, ASAH, Whole body Meng et al., 2019

Macrobrachium rosenbergii 30.2 ± 4.1 g 22◦C THCs, PO, proPO, RBs,
LGBP, PE, a2-M, SOD

Haemolymph Chang et al., 2015

Macrobrachium
nipponense

0.66 ± 0.03 g 29◦C ALT, SOD, CAT, MDA, INOS Hepatopancreas,
haemolymph

Lv et al., 2021

Cherax quadricarinatus 22.56 ± 1.25 g 9 ± 2◦C ACP, AKP, LSZ, PO Hepatopancreas Wu et al., 2019

Cherax quadricarinatus 22.56 ± 1.25 g 9◦C HSP21, THC, SOD, T-AOC,
GPx, MDA

Hepatopancreas,
haemolymph

Wu et al., 2018

Crab Scylla serrata 145 ± 20 g 4◦C SOD, CAT, GPX, MDA Gills Kong et al., 2007

Portunus trituberculatus 213.8 ± 21.6 g 3◦C SOD, CAT, MDA, PC,
caspase-3, HSP70, HSP90

Hepatopancreas,
muscle

Meng et al., 2014

Carcinus aestuarii 4 cm 4◦C CAT, THC Gills, haemolymph Matozzo et al.,
2011

Carcinus aestuarii 1–1.7 g 4◦C THC, DCH, NRRT Haemolymph Qyli et al., 2020

a2-M, a2-macroglobulin; AChE, acetyl cholinesterase; ACP, acid phosphatase; ALP/AKP, alkaline phosphatase; ALT, alanine aminotransferase; Bcl2, B-cell
leukemia/lymphoma-2; Bax, Bcl-2-associated X protein; CAT, catalase; CSP, cyclophosphamide; Cu/Zn-SOD, Cu/Zn superoxide dismutase; CYCS, cytochrome C;
DCH, differential hemocyte count; GCL, glutamate-cysteine ligase; GSH, glutathione; GSH-Px/GPx, glutathione peroxidase; GST, glutathione s-transferase; HSP21,
heat shock protein 21; HSP70, heat shock protein 70; HSP90, heat shock protein 90; IAP, inhibitor of apoptosis protein; INOS, inducible nitric oxide synthase; LDH,
lactate dehydrogenase; LGBP, lipopolysaccharide- and b-1,3-glucan binding protein; LSZ, lysozyme; MDA, malondialdehyde; NO, nitric oxide; NOS, nitric oxide synthase;
NRRT, neutral red retention time; O2

_, negative ions of oxygen; p53, a tumor suppressor gene; PC, protein carbonyl; PE, peroxinectin; PO, polyphenol oxidase; POD,
peroxidase; RBs, respiratory bursts; ROS, reactive oxygen species; SeGpx, Selenium containing glutathione peroxidase; SOD, superoxide dismutase, T-AOC, total
antioxidant capacity; TBARS, thiobarbituric acid reactive substance; THC, total hemocyte count; Trx, thioredoxin reductase.

TABLE 2 | Tolerance and behavior characteristics of shrimp and crab in response to temperature.

Species Temperature interval (◦C) Symptoms under low temperature stress References

Litopenaeus vannamei 16 to 38◦C <18◦C, they will stop feeding; <9◦C they will die Jesus et al., 1997

Penaeus monodon 18 to 34◦C <18◦C, they stop feeding and swimming; <12◦C, they will die Wang et al., 2006

Marsupenaeus japonicus 17 to 29◦C <10◦C, food intake decreased and they died below 5◦C Dong et al., 2020

Fenneropenaeus chinensis 18 to 30◦C water temperature dropped to 4◦C, the shrimp lost its balance, fell
to one side and lost its response to external stimuli

Meng et al., 2019

Procambarus clarkii 20 to 30◦C Stopped feeding below 14◦C, and died below 1◦C Chen et al., 1995

Macrobrachium rosenbergii 15 to 34◦C <18◦C, the shrimp will be impatient, swim wildly along the pool
wall, their reactions will be slow, and they will not eat; <14◦C, they
will die after a few days

Cheng and Chen, 2000

Cherax quadricarinatus 24 to 30◦C <14◦C, they did not grow and died after 4 weeks Haubrock et al., 2021

Macrobrachium nipponense 24 to 27◦C Stopped feeding below 14◦C Wang et al., 2006

Scylla paramamosain 18 to 25◦C Died below 5◦C Huang et al., 2019

Portunus trituberculatus 12 to 35◦C Food intake decreased below 10◦C Meng et al., 2014

Portunus pelagicus 14 to 36◦C <17◦C, the food intake decrease; <14◦C, little activity; <12◦C, it
will cause death

Azra et al., 2018

Charybdis feriatus 20 to 30◦C <14◦C, the food intake begins to decline; < 9◦C, the food intake
stopped

Baylon and Suzuki, 2007

Eriocheir sinensis 20 to 26◦C <19◦C, crawls with low frequency and eats a little; <10◦C, it stops
growing and molting; <5◦C, it hibernates and does not eat

Song et al., 2004
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parents, the external environmental conditions also have an
important impact on embryonic development. In particular, the
temperature not only affects the time of embryonic development,
but also affects the quality and speed of embryo development
(Yamamoto et al., 2017). Studies have shown that only when the
temperature of organisms is above zero can they begin to develop
and grow (Hartnoll and Abele, 1982). The biological zero of
embryonic development of Exopalaemon carinicauda, S. serrata,
and P. clarkii are 12.18◦C, 11.70◦C, and 5.60◦C, respectively (Wu,
1991; Lv et al., 2004; Liang et al., 2013).

In the suitable temperature range, the higher the temperature,
the faster the embryo develops. Wang et al. (1998) found that the
embryonic development time of Thenus orientalis was shortened
from 43 to 21 days with an increase in temperature from 22 to
31◦C. Liang et al. (2013) found that in the ridgetail white prawn
E. carinicauda, the incubation time of embryos shortened with
the increase in temperature when the temperature was between
18 and 28◦C. Cooler water retards growth and delays maturity,
causing crabs to begin maturation when they are at larger sizes
(Azra et al., 2020a).

Gonadal Development of Crustaceans in
Response to Temperature
During evolution, crustaceans have formed a relatively perfect
reproductive regulation system, involving neuropeptides,
hormones, neurotransmitters, and other hormones (Nguyen
et al., 2016). The levels of these hormone are adjusted with
the changes in temperature, salinity, and other environmental
factors, such that crustaceans can reproduce under the best
environmental conditions. Among them, temperature is
involved in gonadal maturation by regulating hormone synthesis
and secretion (Qian et al., 2015).

Xu et al. (2008) studied P. clarkii and found that an
increase in water temperature from 22 to 28◦C could promote
gonadal maturation. Carmona-Osalde et al. (2004) found that
in the range of 16–25◦C, the ovary development of P. llamasir
could be promoted by increasing the temperature. When the
water temperature was between 15 and 25◦C, the egg holding
rate of S. serrata increased as the temperature increased
(Yao et al., 2005). These studies confirmed that the water
temperature is a major factor that influences crustacean gonadal
development. In a certain temperature range, the higher the
water temperature, the better the quality of gonadal development
of crustaceans.

Effects of Low Temperature on Behavior
and Growth of Crustaceans
Behavioral modifications comprise changes in microhabitat
use, abundance and distribution, feeding, predation, migration
and spawning behaviors. In crustaceans grown under low
temperatures, decreased activity and a decrease or cessation
of feeding are the most frequently observed in behavior
(Matheson and Gagnon, 2012). Fighting behavior increases
the heart rate and metabolic rate of animals, and has a
certain impact on their ability to withstand high temperature
(Wang et al., 2020). Crustaceans are intolerant to low
temperature and lack the ability to regulate their body

temperature. In a low temperature environment of 9◦C, the
body of L. vannamei lost its balance and was slow to
respond to external stimuli. Temperature has more complicated
effects on locomotor activities (e.g., swimming or walking),
which form part of the normal behavior of an animal,
and are thus controlled by the central nervous system
(Lagerspetz and Vainio, 2006).

Temperature is a growth limiting factor for all living
things, but especially for aquatic organisms (Lushchak, 2011).
All shrimps and crabs have a temperature tolerance range
(see Table 2). When the water temperature exceeds the
regulatory capacity of shrimp and crab, low temperatures
will slow down their growth rate and even cause death.
Temperature optima can be defined as the temperature at
which shrimp grow fastest and most efficiently (González et al.,
2010). The tolerance of different crustaceans to temperature
is shown in Table 1. At low temperatures, shrimp and
crabs need more energy to cope with stress, resulting in
a significant reduction of reserves used for the growth
process. Studies have shown that temperature is closely
related to the growth of L. vannamei (Wyban et al., 1995)
P. monodon (Deering et al., 1995), and Macrobrachium
nipponense (Wang et al., 2006).

Temperature can affect the growth of crustaceans by altering
two factors, the molt increment (the increase in duration
between successive molts) and the intermolt period (the time
interval between successive molts). Increasing temperature
usually decreases the intermolt period; however, its effect
on the molt increment is unknown. In early juvenile mud
crabs, S. paramamosain, temperature-induced autotomy
influenced the molting of early juvenile mud crabs, and
changes in the levels of mRNA encoding the ecdysone receptor
(EcR) seemed to play an important regulatory role in the
molting process (Gong et al., 2015). Juvenile dungeness crabs
(Metacarcinus magister) at different stages of molting (12,
19, or 26 days post-molting) were moved from ambient
temperature (15◦C) to temperatures of 5◦C and 20◦C for
14 days. From 5 to 20◦C, survival ranged from 97 to 100%
Molt stage progression increased from 5 to 15◦C, but not
at 20◦C (Wittmann et al., 2018). L. vannamei incubated at
13◦C showed significant reductions in swimming and feeding
behaviors, and more deaths were observed at this temperature
(Huang et al., 2017).

PERSPECTIVES

Climate change is causing alterations to oceans, rivers, and
lakes; therefore, it is vital to determine the mechanism by
which crustaceans tolerate low temperatures, to gain a deeper
understanding of the effects environmental fluctuation on
biology. This will allow us to implement the required measures
to conserve aquatic organisms. However, we lack sufficient detail
of the biological responses of crustaceans to low temperatures.
To gather these data, it is important to study the expression
and functions of genes and proteins that are influenced by
temperature changes. The temperature adaptation range of an
organism is an important agricultural character of an aquaculture
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variety. Improving the tolerance to low temperature stress is
an important issue in aquaculture breeding. However, it is
precisely because of the wide range of physiological effects of low
temperature that involves many genes, which important genes
determine the temperature tolerance is obviously a question that
needs to be answered first. With the completion of the whole
genome sequencing of shrimp and crab (Zhang et al., 2019;
Tang et al., 2020; Jin et al., 2021; Yuan et al., 2021; Zhao et al.,
2021), it has become an important research method to mine
the key regulatory genes from the temperature responsive gene
regulatory network.

CONCLUSION

Short- and in long-term temperature fluctuation has become
a major stress factor responsible for altering the distribution
patterns of marine crustaceans. The accumulated literature shows
that the physiological parameters of crustaceans are influenced
significantly by temperature changes. To adapt to environmental
temperature alteration, crustaceans must invoke endocrine
responses, changes in their metabolic rate, immune responses,
and antioxidant responses. Despite having a good general
grasp of the effects of temperature on crustaceans’ responses,
there are still gaps in our knowledge. However, obtaining a
complete understanding of crustaceans’ temperature adaptation
mechanisms will permit us to predict future changes and will
augment our knowledge of their physiological and ecological
requirements. Current research provides a basis for future
studies of the responses of crustaceans to low temperatures. The
specific FAA metabolism pathways and ROS signal transduction

pathways that are triggered in response to low temperature
variation should be investigated in the future.
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