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It remains difficult to segregate pelagic habitats since structuring processes are dynamic
on a wide range of scales and clear boundaries in the open ocean are non-existent.
However, to improve our knowledge about existing ecological niches and the processes
shaping the enormous diversity of marine plankton, we need a better understanding
of the driving forces behind plankton patchiness. Here we describe a new machine-
learning method to detect and quantify pelagic habitats based on hydrographic
measurements. An Autoencoder learns two-dimensional, meaningful representations of
higher-dimensional micro-habitats, which are characterized by a variety of biotic and
abiotic measurements from a high-speed ROTV. Subsequently, we apply a density-
based clustering algorithm to group similar micro-habitats into associated pelagic
macro-habitats in the German Bight of the North Sea. Three distinct macro-habitats,
a “surface mixed layer,” a “bottom layer,” and an exceptionally “productive layer” are
consistently identified, each with its distinct plankton community. We provide evidence
that the model detects relevant features like the doming of the thermocline within an
Offshore Wind Farm or the presence of a tidal mixing front.

Keywords: machine learning, North Sea, submesoscale, pelagic habitats, plankton patchiness

INTRODUCTION

Submesoscale features like eddies, fronts or filaments structure the pelagic realm at spatial scales of
order (1–10 km) (Lévy et al., 2012; Shulman et al., 2015; Buckingham et al., 2016) and temporal
scales that range from several hours to a few days (Baschek and Maarten Molemaker, 2010;
Thompson et al., 2016). Associated processes determine nutrient fluxes (Omand et al., 2015;
Thompson et al., 2016) as well as plankton patchiness (Levy and Martin, 2013; Shulman et al.,
2015; Lévy et al., 2018) and thereby even shape the seascape for top predators like sea birds
(Bertrand et al., 2014).

Recent advances in marine remote sensing technology (Wedding et al., 2011) enabled scientists
to separate benthic structures into mosaic-like patterns of different habitat classes (Hinchey et al.,
2008; Pittman et al., 2011) following the role model of terrestrial ecosystems. However, what is
well known and trivial in landscape ecology can be quite challenging in seascape ecology. While
it remains difficult to segregate pelagic habitats, which exhibit no clear boundaries (Hinchey et al.,
2008; Pittman et al., 2011; Wedding et al., 2011) and can be quite dynamic on a wide range of
scales, benthic habitat maps can give an impression of physically distinct areas that consistently
occur together with particular species communities (Harris and Baker, 2012). Some effort has been
undertaken to characterize fish habitats (e.g., Bellido et al., 2008; Giannoulaki et al., 2011; Tugores
et al., 2011; Laman et al., 2017; Amorim et al., 2018; Friedland et al., 2020; Funk et al., 2020),
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but fewer studies focused on zooplankton (e.g., Labat et al.,
2009; Alvarez-Berastegui et al., 2014; Espinasse et al., 2014).
Thus, mechanisms contributing to the enormous diversity of
plankton, a fundamental component of pelagic food webs,
are still not fully understood (Sano et al., 2013; North
et al., 2016). Understanding the processes shaping plankton
communities is essential to improve our knowledge of existing
ecological niches (Houliez et al., 2021). Despite the growing
awareness of the importance of spatial structure for ecology
and management (Pittman et al., 2011; Wedding et al., 2011),
there is still a lack of concepts and techniques applicable to
characterize the spatial structure of the seascape in pelagic
environments (Alvarez-Berastegui et al., 2014). Mainly, because
traditional oceanographic methods are inadequate for observing
the submesoscale (Baschek and Maarten Molemaker, 2010) due
to insufficient resolution and range (Marmorino et al., 2018).
Recent advances in instrumentation partially closed this gap, but
there still is a need for novel analysis methods to take advantage
of the existing data (North et al., 2016). Some machine learning
techniques are specifically designed to identify and characterize
features in a “sea of data,” which makes it very promising to apply
them also in this challenging field of research.

Autoencoders (AE) are a common tool in the machine
learning community which consist of an encoding and a decoding
part (Hinton, 2006). Initially devised to reduce (Encoder) and
recover (Decoder) the dimensionality of their inputs (Hinton,
2006), they have been soon applied to a wide range of tasks like
denoising (e.g., Vincent et al., 2010) or anomaly detection (e.g.,
Zhao et al., 2017; Chen et al., 2018).

Autoencoders do not classify or detect specific elements or
objects in their inputs, but learn meaningful low dimensional
representations, i.e., relevant high-level abstractions, of their
inputs (Bengio et al., 2006) so that the original data can be
reconstructed as similar as possible by the decoder part. The
input data don’t need any pre-processing, e.g., labeling of subsets,
by humans, since the target the network aims to reconstruct is
basically the original input. The compressed representations of
the encoder can also be used as input for subsequent modeling,
e.g., in a Convolutional Neural Network (CNN) application. In
that case the unsupervised pre-training of a CNN embedded in
an AE can help to capture more intricate dependencies (Erhan
et al., 2009) and better initialize the weights of the extended
model (Bengio et al., 2006). Thus, the (local) minimum in the
loss surface of the AE corresponds to a good transformation of
a high dimensional input to a lower dimensional intermediate
output (output of the Encoder-part) (Bengio et al., 2006), which
would become the input for the classifier in a CNN. In this setting,
the final output of the AE, the reconstructions, are secondary.
However, a low reconstruction error of the AE ensures that the
compressed signal incorporates the important features of the
original high dimensional input data.

In this study we take advantage of this specific application of
AEs. Instead of substituting the decoder part with a classification
or regression network we use the compressed signal of the
encoder as input for a subsequent clustering algorithm. We use a
fully connected AE to reduce a high dimensional input consisting
of a variety of abiotic and biotic oceanographic measurements

to a lower dimensional meaningful representation (intermediate
output), skip the decoding part after the training is completed and
cluster the encoded features to macro-habitats. Similar micro-
habitats lead to similar representations and therefore regions
with different characteristics are segregated as different macro-
habitats. These macro-habitats correspond to distinct pelagic
habitats in the southern North Sea, whose plankton communities
are compared and analyzed.

MATERIALS AND PROCEDURES

Data Acquisition and Preparation
Physical and biological oceanographic measurements were
recorded on a North Sea summer cruise with the RV Heincke
(HE429, July 19–24, 2014) with a MacArtney TRIAXUS Remotely
Operated Towed Vehicle (ROTV). For a detailed description of
the device see Plonus et al. (2021). The ROTV transects were
located in the direct vicinity of two Offshore Wind Farms (OWF)
BARD Offshore 1 (BARD) and Global Tech I (GTI; Figure 1).
The map was generated using QGIS v3.18 (QGIS, 2021) with
bathymetric metadata and Digital Terrain Model data products
from the EMODnet Bathymetry portal (15.7.21)1. The ROTV
was towed at a speed of 8 knots (4.1 m s−1) with a three-degree
lateral offset to lessen any disturbance from the vessels wake.
During most transects the ROTV was undulating with a vertical
speed of 0.1 m s−1 from ∼ 4 m below the sea surface to ∼
8 m above the sea floor. The horizontal resolution between two
surface peaks was ∼ 560 m, while the vertical resolution was ∼
0.3 m. The ROTV measured water temperature, salinity, oxygen,
and chlorophyll-a at a frequency of 1 Hz and was equipped with
a Video Plankton Recorder (VPR, Seascan Inc., Falmouth, MA,
United States) which provided zoo- and phytoplankton densities
on the taxonomic family-, and sometimes even genus-level. For a
detailed description of the VPR plankton image classification see
Floeter et al. (2017). We used a similar summer cruise with the RV
Heincke 5 years later (HE534, June 16–21, 2019) as a test data set.
For our analyses we selected the following variables: temperature
(◦C), salinity (PSU), oxygen (µmol l−1), density (kg×m−1), and
chlorophyll-a (RFU). For each of the variables, we calculated the
horizontal (grid cell to the left, i.e.,∼ 25 m) and vertical (grid cell
above, i.e., 1 m) gradient. Furthermore, we had sufficient density
data (N l−1) available for the taxa “Appendicularia,” “Copepoda,”
“Dinoflagellates,” “Gastropoda,” “Jelly,” “Marine snow,” “Nauplii,”
“Ophiuroida,” “Pilidium,” “Pluteus,” and “Polychaeta.”

Transect diagrams were generated using Ocean Data View
(ODV, Schlitzer, 2020) with the embedded spatial interpolation
software DIVA (Troupin et al., 2012) and exported as grids
with a resolution of ∼ 25 m length × 1 m depth. Abiotic
measurements as well as density values were normalized and
rescaled to range from −1 to 1. This was necessary since deep
learning models generally perform better with homogeneous,
small values (Bishop, 1995).

To check for multicollinearity between our variables
we calculated the variance inflation factor (VIF) in R

1http://www.emodnet-bathymetry.eu
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FIGURE 1 | Sampling transects from HE429 (black) and HE534 (blue) in the German Bight of the North Sea. Green dots: Wind turbines. Depth ranges from 10 m
(red) to 50 m (yellow). The red box marks the location of the bigger map.

(R Core Team, 2020) using functions provided by Zuur et al.
(2009). A threshold of VIF > 3 was applied to identify highly
collinear variables and exclude them from further analyses (Zuur
et al., 2010). The exported grids for each selected parameter
were stacked and transformed into feature-vectors where each
grid cell became one vector with four features (1 parameter = 1
feature). In our definition, a pelagic micro-habitat with a
spatial extent of ∼25 m × 1 m corresponds to one of those
feature-vectors (Figure 2).

Based on these feature-vectors the AE was trained to
reconstruct the original micro-habitats and thereby learn relevant
abstractions that represent important patterns in the pelagic
environment. We used a GPU supported TensorFlow backend
(Abadi et al., 2015) for Keras (Chollet, 2015) under Python 3.7
(Van Rossum and Drake, 2009) to build and train our AE.

Model Description
The AE consisted of two fully connected layers in the Encoder
and Decoder, respectively. The Decoder used the transposed
weights of the Encoder in reversed order, e.g., the weights of
the first Encoder-Layer were shared with the last Decoder-Layer.
The first layer of the Encoder inflated the 4-dimensional feature-
vector to a 100-dimensional feature-vector, which was reduced to
a 2-dimensional feature-vector by the second layer (4 – 100 – 2).
The Decoder did the same in reverse (2 – 100 – 4). The batch
size (number of inputs that are processed simultaneously) was
set to 38 and the learning rate followed a sawtooth-like scheme,
initialized at 5e−8. Each input feature-vector corresponds to one

micro-habitat and includes 1 measurement of each parameter
selected for the analyses. The model was trained using the data
from HE429 exclusively. Approximately ∼ 13% of the data was
separated to validate the training process based on the remaining
87%. Data from HE534 was used as a final test set. As an AE
is a gradient-based method, the chosen starting point may be
crucial for the final fit of the model (Hinton, 2006), and one
way of assessing and reducing the effect of start conditions are
multi-start approaches (Subbey, 2018). Therefore, we trained
multiple models and selected the one with the smallest final
validation RMSE.

Habitat Segregation
By applying the trained Encoder only, we projected all micro-
habitats into a xy-coordinate system using the 2-dimensional
intermediate output. We will refer to the encoded outputs
as “Encoded Components” in the following. Micro-habitats
with similar characteristics were projected closer to each other
than micro-habitats with different characteristics. We used the
Euclidean distance to calculate the dissimilarity matrix for the
Encoded Components of the micro-habitats, which was clustered
by the HDBSCAN algorithm (McInnes et al., 2017). HDBSCAN
uses a density-based linkage function, defining clusters by the
size of the area in which a certain number of neighbors
is found. Micro-habitats in “sufficiently dense” regions were
assigned to a macro-habitat. Obviously, the parameters “size
of the neighborhood” (Epsilon) and the “critical number of
neighbors” (min_samples) are determining the resulting clusters
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FIGURE 2 | Schematic data processing from measurements to feature-vector. Step 1: original measurements; Step 2: gridded parameter table; Step 3: stacked
grids; Step 4: feature-vector for 1 of the 91 grid-cells.

(dense areas) with HDBSCAN. Thus, we checked the resulting
macro-habitats for multiple different combinations of these
two parameters as well as “min_cluster_size.” The parameter
“min_cluster_size” is the threshold that separates “sufficiently
dense” regions (clusters) from the random background noise.
All micro-habitats that were not assigned to a specific macro-
habitat by HDBSCAN got the label “−1.” Homogeneous regions
in the transect produced more dense regions in the 2-dimensional
surface that were more likely to trespass the “min_cluster_size”
threshold and were separated from other homogeneous water
masses by less dense regions. We used the silhouette method
(Rousseeuw, 1987) to select the best segregation of micro-
habitats. The silhouette score ranges from “−1” to “1” and
indicates how well each point fits into the assigned cluster
(macro-habitat) and is one of the best performing indices
available (Arbelaitz et al., 2013). “−1” is probably wrong labeled,
“0” is close to the decision boundary of two clusters and “1”
means this specific point is far away from points of other
clusters. The silhouette scores were calculated using the scikit-
learn module (Pedregosa et al., 2011) for python.

Analyses
We used ODV to add a transect plot of the identified
macro-habitats to the original measurements and plankton
densities. Isolines of selected parameter measurements were
overlayed on the macro-habitat plots to investigate which feature
characteristics contributed to the segregation and to assess the
associated plankton communities.

We furthermore described the macro-habitat plankton
communities by modified Species-Abundance-Plots (SAP). We
calculated the relative number of micro-habitats by plankton
density and taxonomic group for each cluster. As is common for
SAPs we used a log2 scale for density. That way we visualized the
shift in specific species densities between the macro-habitats of
different segregations of the same ROTV survey transect.

Pelagic submesoscale features often are highly productive
areas and aggregate particles (Levy and Martin, 2013; Lévy
et al., 2018). Therefore, we calculated Lloyd’s mean crowding
(Lloyd’s MC) and Lloyd’s index of patchiness (Lloyd’s IP) with
the R-function “agg_index” from the “epiphy” package (Gigot,
2018) and compared the results for different segregations of the
same transects. Lloyd’s index is >1 if species were aggregated, 1
if the distribution is random and <1 indicates an overdispersed

distribution compared to a homogeneous distribution. The Index
of aggregation proposed by Bez (2000) (Bez’s IoA) was calculated
in addition to Lloyd’s IP.

Data handling was done with R (R Core Team, 2020) and some
tidyverse packages (Wickham et al., 2019), namely purrr, tibble,
dplyr, ggplot2, and tidyr.

RESULTS

In the initial VIF analysis with the full dataset a couple of
parameters had VIF > 3. After removing “density” which had
the highest score, no further parameter exceeded this threshold
(Supplementary Table 1). After a detailed analysis of model
sensitivities and reconstruction quality we decided to limit the
final parameter selection to (1) vertical temperature difference to
the grid cell above, (2) salinity, (3) oxygen, and (4) chlorophyll-
a concentration.

Model Training
The root mean squared error (RMSE) after the first epoch ranged
roughly between 0.7 and 1.0. Each training epoch took 10–15 s
using a graphic card with 768 gpu-cores and we trained each
model for 15 epochs until a plateau was reached (Supplementary
Figure 1). The final training and validation RMSE of our selected
model were RMSETr ∼ 0.33 and RMSEVal ∼ 0.35 (Figure 3).

FIGURE 3 | History of model training. Black: validation, blue: training, gray:
learning rate (sec. axis).
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Clustering
Depending on the HDBSCAN parameter selection, micro-
habitats were grouped into 2–20 macro-habitats that ranged
in size from <0.1 to 97% of all micro-habitats in a transect.
We present exemplary the results for the segregation of T3
into different numbers of macro-habitats. Different parameter
combinations could lead to an identical number of segregations.
We chose an inverse size-cluster-relationship in the figure
since more macro-habitats were usually ecologically less
plausible (Figure 4). Mostly, “epsilon” had a great impact on
the segregation with specific combinations of “min_cluster_size”
and “min_samples” but less influence with other tested
combinations of those two parameters, indicating that
segregations changed discontinuously with slopes and plateaus
(Supplementary Figure 2).

Even though the label “−1” is used by HDBSCAN to
indicate the lack of belonging to a specific cluster, we observed
a close relationship between micro-habitats labeled “−1” and
exceptionally strong chlorophyll-peaks throughout all transects.
Therefore, we decided to treat “−1” as a macro-habitat of its own
instead of unclassified micro-habitats. Micro-habitats labeled as
“−1” were also frequently located between the BL and the SL.

Projections
While cluster-labeling was not consistent in that cluster “0”
always referred to, e.g., the “surface mixed layer,” the projections
of the “surface mixed layer” micro-habitats were always located
in a similar position throughout all projection plots. Thus, while
the cluster denotations related to a macro-habitat were not
consistent, the position indicated the affiliation to a specific
macro-habitat (Figure 5).

Silhouette Method
The segregation into three macro-habitats gave the highest
average silhouette-scores in most cases: notably high chlorophyll-
peaks were merged into one macro-habitat (1) and two further
macro-habitats were separated at around 17◦C in an upper
surface mixed layer (2) and a lower bottom layer (3). There
was only one exception from this rule in T1 where in the

northern, deeper area the bottom layer (3) was replaced with
the layer including the chlorophyll-peaks (1). Another anomaly
occurred in T2, where one of the basic macro-habitats was further
separated into two “sublayers” so that a total of four macro-
habitats were segregated. The highest silhouette-scores ranged
from 0.35 (T1) to 0.59 (T5) (Table 1).

In the following we will use abbreviations for the three main
layers and their sublayers, namely “PL” for the productive layer
with the high chlorophyll values, “BL” for the bottom layer and
“SL” for the surface mixed layer. A segregation into more than
one layer is indicated using numbers, e.g., “SL1”/“SL2” instead
of “SL.”

Habitat Maps
We present T2 exemplarily for all transects of HE429 (Figure 6).
Segregating the output of the Encoder into 3 macro-habitats, we
got the typical scheme of a SL with temperatures above 17◦C, a
macro-habitat which was strongly associated with extraordinary
high chlorophyll-peaks (PL) and a BL as a third macro-habitat.
The average silhouette-score for the entire transect was 0.54
(Table 1). However, this clustering did not account, e.g., for the
intrusion of marine snow particles into the SL in the eastern
half of the transect. When accepting 4 different macro-habitats,
the BL and PL macro-habitats were mostly unaffected, while
the SL was further separated into 2 different macro-habitats.
One corresponded to the area where marine snow particles were
predominant while the second macro-habitat corresponded to
the area where pluteus larvae were observed in high densities.
Segregating characteristics of the two macro-habitats were a
salinity difference of 0.2 and a shallowing of the thermocline
from 10 m to 5 m water depth. Notably, this change around
section distance 18–20 km was located at the entry point of the
transect into the Offshore Wind Farm BARD. This segregation
increased the average silhouette-score for the entire transect to
0.56 (Table 1).

Species Abundance Plots
The segregation into four macro-habitats was further supported
by the modified SAPs. The relative amounts of PL and

FIGURE 4 | Number of segregated macro-habitats. The Figure was produced with Epsilon = 0.32. Yellow cross: selected segregation.
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FIGURE 5 | Projections for different segregations of all transects from HE429. The number of segregated macro-habitats is indicated by the last digit in the panel
header. BL, Bottom layer (blue); SL, Surface mixed layer (yellow-red); TC, Thermocline Layer; PL, Productive layer (black). Numbers were used to indicate that, e.g.,
more than 1 “Bottom layer” was segregated (e.g., B1/B2 instead of BL).

BL did not change much between 3 and 4 macro-habitats.
However, SL1 included all micro-habitats with copepod densities
>8 N l−1 and basically all micro-habitats where pluteus
larvae occurred. SL2 instead included micro-habitats with

TABLE 1 | Silhouette method to select the best clustering.

Transect Silhouette score Segregation

HE429 T1 0.35 14583_21220_22015

HE429 T1 0.11 24657_21940_1949_9272

HE429 T1 0.07 12983_596_682_589_21028_21940

HE429 T2 0.54 5221_24912_12213

HE429 T2 0.56 6548_25232_5138_5428

HE429 T3 0.44 18748_21014_56730

HE429 T3 0.34 21660_56167_1371_15859_1435

HE429 T4 0.46 2054_5928_8107

HE429 T4 0.39 3202_5928_605_6354

HE429 T5 0.59 1729_4823_9331

HE429 T5 0.39 4582_5148_990_5163

HE429 T6 0.45 5558_14792_12965

HE429 T6 0.18 14589_12789_1229_4708

HE534 T1 0.40 7488_15344_53469

HE534 T2 0.26 21737_15535_123541

HE534 T2 −0.08 22248_4062_2099_132404

HE534 T2 −0.04 24788_15535_4115_1977_113215_1183

HE534 T3 −0.08 18944_2382_1156_1597_7140_9128

The numbers in “Segregation” give the number of micro-habitats by macro-habitat,
e.g., X_Y_Z indicates 3 macro-habitats with X, Y, and Z micro-habitats, respectively.

copepod densities <8 N l−1 and generally less chlorophyll,
but most micro-habitats where Appendicularia occurred. Thus,
the SL1 and SL2 plankton communities were clearly distinct
(Figure 7).

Lloyd
Lloyd’s mean crowding underpinned the SAP results. Patchiness
in PL and BL did not change for “marine snow” and “pluteus” but
differed clearly between SL1 and SL2, indicating a higher pluteus
aggregation in SL1 and a higher aggregation of marine snow in
SL2 (Table 2).

Test Dataset HE534
The temperature maximum during HE534 was around 15◦C,
i.e., 2◦C lower than the threshold that separated SL and BL
in HE429. Consequently, no thermal stratification was detected
by the Encoder trained with HE429 measurements. However,
this model segregated an oxygen-rich layer that, based on the
projections of the Encoder, resembled a similar habitat as the SL
in HE429. This oxygen driven stratifications were not consistent
over the entire range of a transect and in some areas the macro-
habitat with projections similar to BL in HE429 comprised the
entire water column, indicating a mixed water column closer
toward the coast. Notably, plankton aggregations were commonly
located at the border between oxygen-stratified and mixed water
columns (Figure 8). The highest average silhouette-scores were
reached with three segregated macro-habitats. However, the
scores were much lower compared to HE429 with a maximum
between 0.26 and 0.40.
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FIGURE 6 | HabitatMap of T2 (HE429) with marine snow density (A,B) and pluteus density (C,D) as isolines. The OWF BARD is located between the vertical red
lines. (A,C) 3 segregated macro-habitats, (B,D) 4 segregated macro-habitats. Different colors represent different macro-habitats. Different numbers are the
respective densities indicated by the isolines.

FIGURE 7 | Relative count of density by macro-habitat for selected species on transect T2 (HE429). (A) 3 macro-habitats, (B) 4 macro-habitats. App,
Appendicularia (N l−1); Chl-a, chlorophyll-a (RFU); Cop, Copepoda (N l−1); Mar snow, marine snow (N l−1); Plu, pluteus (N l−1).
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TABLE 2 | Lloyd’s mean crowding and Bez’s Index of aggregation for 3 and 4
segregated macro-habitats for transect T2 (HE429).

Number of
macro-habitats

Macro-
habitat

Plankton
group

Lloyd’s
MC

Presence Index of
aggregation

3 PL ms 0.79 0.37 5.61e-04

3 BL ms 2.35 0.78 6.72e-05

3 SL ms 0.43 0.25 2.67e-04

4 PL ms 0.65 0.34 4.50e-04

4 BL ms 2.35 0.77 6.66e-05

4 SL1 ms 0.23 0.07 1.02e-03

4 SL2 ms 0.43 0.41 4.14e-04

3 PL plu 2.19 0.14 2.10e-03

3 BL plu 0.00 0.01 6.75e-04

3 SL plu 3.56 0.36 3.78e-04

4 PL plu 3.39 0.20 1.51e-03

4 BL plu 0.00 0.01 6.58e-04

4 SL1 plu 3.56 0.67 4.63e-04

4 SL2 plu 0.36 0.06 1.57e-03

Presence gives the relative number of micro-habitats with density >0. ms, marine
snow; plu, pluteus.

DISCUSSION

Selection of Parameters
When training the model, we got the best results with a limited
selection of parameters compared to the entire set of available
data. The selected parameters are, however, in accordance with
previous findings that physical properties contribute most to
differences in habitat utilization by plankton organisms (Schulz
et al., 2012; Friedland et al., 2020). In contrast to Alvarez-
Berastegui et al. (2014), we did not benefit from the combination
of gradients with the original measurements. However, a prior
wavelet analysis as in North et al. (2016) could help to identify
relevant spatial scales for the derivation of gradients. It is also
possible, that the architecture of the model limited the amount
of compressed information accessible to the clustering algorithm.
In convolutional AEs, the size of the bottleneck (intermediate
output) limits the generalization of the model (Manakov et al.,
2019). This is also true for the fully connected AE architecture
of this model and might limit the potential of including more
variables like species densities and environmental gradients.

Reconstruction Loss
The loss for the optimization of an AE is based on the
difference between the reconstruction and the original input.
However, driving forces behind habitat partitioning vary with
study region and season and specific parameters have a higher
contribution than others (Schulz et al., 2012; Espinasse et al.,
2014; Friedland et al., 2020). Thus, we deemed it more important
to accurately reconstruct specific features (parameters) compared
to entire vectors (micro-habitats). Accordingly, we calculated
the sum of the batchwise RMSE between the specific feature-
values (e.g., temperature) of each input and the corresponding
feature-values of the reconstructions and not the RMSE of
an entire feature-vector (micro-habitat) and its reconstruction.
This forced the AE to learn all parameters individually and
furthermore made it possible to give specific parameters a higher
priority if appropriate.

Aggregation
Lloyd’s IP is an area-related quality measure for Lloyd’s MC and
thus sensitive to zeros. As can be seen in our example (Table 2),
the “spillover” from a crowded to an empty macro-habitat in
the area of the decision boundary leads to misleadingly high
Lloyd’s IP, and to a lesser degree, misleadingly high Bez’s IoA,
even though this Index is supposedly insensitive to zeros. In
accordance with the recommendation by Bez (2000) we therefore
suggest Lloyd’s MC as a measure of aggregation within a macro-
habitat. Lloyd’s IP and Bez’s IoA might still be informative if the
overall colonialization of the macro-habitat is considered.

Pelagic Habitats
The model segregated three (four) distinct pelagic habitats in
HE429: (1) a SL (SL1/SL2) mainly characterized by temperatures
>17◦C, (2) a BL on the other side of that threshold, and (3) a
PL dominated by high chlorophyll concentrations. In contrast
to SL and BL, PL was not a true cluster by the definition of
HDBSCAN, which indicates a great variability within the micro-
habitats belonging to PL. That makes them “special” or at least
“different” from common micro-habitats in SL and BL. Micro-
habitats of PL were usually located around the 17◦C isoline and
at the occurrence of exceptionally strong chlorophyll-peaks.

In the North Sea, peaks of primary production following
the spring bloom were observed in subsurface layers

FIGURE 8 | Habitat maps for T1 and T2 from HE534. The isolines give the densities (N l−1) of pluteus for T1. Isolines in the figure of T2 include pluteus, marine
snow, and dinoflagellates (all in N l−1). (A) T1 and (B) T2. Different colors represent different macro-habitats. Different numbers are the respective densities indicated
by the isolines.
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(Richardson et al., 1998, 2000). The PL most likely resembles
such areas of subsurface productivity.

Furthermore, the model detected an upward doming of the
thermocline within an OWF, probably caused by enhanced
vertical mixing (Segtnan and Christakos, 2015; Floeter et al., 2017;
Schultze et al., 2020). The upward doming and the resulting
temperature differences are comparable to those observed within
cyclonic eddies (Dong and McWilliams, 2007; Marmorino et al.,
2018), indicating that OWF’s can influence the pelagic realm
in the same order of magnitude as natural (sub-) mesoscale
processes like eddies. The doming of colder, nutrient-rich water
can produce chlorophyll peaks (Munk et al., 1999), indicating the
potential for an enhanced primary production in this area.

Cumulative effects of single foundations might lead to a
blocking effect around OWF’s, similar as observed for islands
(Simpson et al., 1982), which has the potential to produce
submesoscale eddies (Dong and McWilliams, 2007) in addition to
local upwelling fronts (Floeter et al., 2017). Common properties
that are used to describe hydrographic eddies and fronts include
water velocity, vorticity and the Rossby number (e.g., Lévy et al.,
2012; Marmorino et al., 2018), all of which were not available to
us, which makes it less likely to detect such features.

The situation during HE534 was fundamentally different
from HE429, most likely due to the weather conditions prior
to the cruise that dispersed a thermal stratification. However,
the projections indicated that similar SL and BL as in HE429
were detected. In case of HE534, segregations occurred along an
oxygen isoline (>235 µmol l−1) instead of temperature (>17◦C)
as during HE429. This is in accordance with findings of Friedland
et al. (2020) and references within that the predictive power of
variables might change. This variable nature inherently present
in pelagic data (Hinchey et al., 2008; Thompson et al., 2016)
makes it so challenging to accurately predict pelagic habitats. The
temperature isolines in T1 and T2 (Supplementary Figure 3)
clearly indicate the presence of a tidal mixing front (see Hill et al.,
1993). A convergence slick, which is typically associated with
such tidal mixing fronts (Hill et al., 1993), would also explain the
observed aggregation of plankton particles at the intersection of
the two macro-habitats (Figure 8).

There exists plenty of evidence that physical properties
also structure the marine plankton communities (e.g.,
Swalethorp et al., 2015; Van Leeuwen et al., 2015; Lindegren
et al., 2020). However, the generated habitat maps have only
limited explanatory power considering the observed plankton
communities. This is not unexpected since physical properties
are merely incomplete predictors for the community structure
which is most likely further shaped by niche-based processes and
interactions (Houliez et al., 2021).

Top predators aggregate in areas with the highest prey-
patch densities (not to be confused with the area of highest
prey densities!) (Benoit-Bird et al., 2013) and peak abundances
of zooplankton and fish larvae are frequently observed in
the direct vicinity of frontal convergence zones (Munk et al.,
1995, 2002; Höffle et al., 2013; Munk, 2014; Swalethorp et al.,
2015). In addition to the horizontal agglomerations, thermo-,
and haloclines can produce further vertical structuring (Höffle
et al., 2013; Lindegren et al., 2020). Thereby, more pronounced
differences lead to a stronger niche separation and less overlap

between different species (Lindegren et al., 2020). Changes in
nitrate (Scharfe and Wiltshire, 2019) and silicate (Wiltshire et al.,
2015) availability produce a temporal succession of different
dominant taxa in the tidal advected phytoplankton community.
Especially the plankton community is thus shaped by complex
spatio-temporal dynamics and local prey patches have the
potential to shape the distribution of higher trophic levels (Pope
et al., 1994; Burkhard et al., 2011; Benoit-Bird et al., 2013; Defriez
et al., 2016), even though this might be of less importance for
ecosystem services in a highly diverse and partly functionally
redundant plankton communities like that of the North Sea
(Atkinson et al., 2015).

COMMENTS AND RECOMMENDATIONS

Future work should aim to include species densities and water
current related measurements in order to accurately predict not
only physical habitats but also realized ecological niches and
hopefully improve our understanding of the complex dynamics
shaping the pelagic realm.

Our approach offers beneficial properties to solve this
challenge: the AE is a highly non-linear tool to reduce the
dimensionality of a nearly unlimited amount of data that can
be extended as needed. Additionally, HDBSCAN is a cluster
algorithm that makes as few assumptions as possible, i.e.,
regarding number or shape of clusters. HDBSCAN can also
handle outliers on it’s own in opposite to, e.g., k-means, and even
enables to treat them in our case as an own macro-habitat. While
machine learning might not give insight into the underlying
mechanistic, it can give a starting point from which to begin
future investigations (Friedland et al., 2020).
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