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The symbiosis of coral-Symbiodiniaceae is the quintessential basis of the coral
reef ecosystem, and its breakdown results in coral bleaching, one of the most
severe ecological catastrophes in the ocean. Critical to the establishment of the
symbiosis is the host’s specific recognition of the symbionts through the binding of
the coral host’s pattern recognition receptors (PRRs) to the symbiont cell surface’s
glycoconjugates. However, the molecular basis for this recognition process is poorly
understood. The present study investigated the binding affinities of the coral galectin
PdGLT-1 to different symbiodiniacean species under different temperatures. At 25◦C,
the PdGLT-1 recombinant protein (rPdGLT-1) exhibited different binding affinities to
different symbiodiniacean species from five genera, with a significantly higher binding
affinity (p < 0.05) to Fugacium kawagutii (2.6-fold) and Cladocopium goreaui (1.9-
fold) than Symbiodinium microadriaticum. The binding topology of rPdGLT-1 differed
among the five symbiodiniacean species; for S. microadriaticum, Breviolum minutum,
and Durusdinium trenchii, the binding was on some specific sites on the cell
surface, whereas for C. goreaui and F. kawagutii, the binding signals were detected
over the whole cell surface. Interestingly, PdGLT-1 binding induced agglutination of
F. kawagutii cells but not of C. goreaui, explaining why C. goreaui was the most
dominant symbiodiniacean symbionts in corals. Moreover, the affinity of rPdGLT-1 to
Symbiodiniaceae was affected by temperature, and the highest binding affinities were
observed at 30, 20, 30, 35, and 30◦C for S. microadriaticum, B. minutum, C. goreaui,
D. trenchii, and F. kawagutii, respectively. The optimal binding temperatures were
consistent with the current understanding that D. trenchii was the most thermal resistant
among these species. These results suggest that the binding affinity of the PRR PdGLT-
1 may determine the specificity of host-symbiont pairing and explain why Cladocopium
is the dominant symbionts of coral P. damicornis at normal temperature, and corals with
Durusdinium symbionts may survive better at high temperature.
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INTRODUCTION

Due to the unrelentless global warming, coral reefs are facing
the danger of massive bleaching predicted for the end of
this century (Hoegh-Guldberg et al., 2007; Magel et al., 2019;
Weis, 2019). Thus, there is an urgent need to preserve the
remaining reefs and help restore the lost or degraded ones.
The establishment and maintenance of coral-Symbiodiniaceae
symbiosis are of vital importance for the coral holobiont
functioning, which is initiated by the chemical recognition
between the coral host and the Symbiodiniaceae (Berkelmans
and van Oppen, 2006; Iguchi et al., 2011; Bellantuono et al.,
2012; Kita et al., 2015). The cell surface of Symbiodiniaceae
is populated with glycoconjugates, such as mannose-mannose
and galactose-β(1-4)-N-acetylglucosamine (Markell et al., 1992;
Tortorelli et al., 2021). These glycoconjugates, which form
the microbe-associated molecular patterns (MAMPs), can be
recognized by the pattern recognition receptors (PRRs) such
as lectins on the surface of coral cells (Wood-Charlson et al.,
2006; Weis et al., 2008). Such glycan-lectin interaction is critical
for initiating the coral-Symbiodiniaceae symbiosis (Tortorelli
et al., 2021). The adaptive evolution of the symbiont’s glycan
structure and the biochemical complementarity between the
coral host and its symbionts are believed to determine the
host specificity (Lin et al., 2015). For example, it has been
shown that glycan ligands on the cell surface of Cladocopium
C1f play a role in recognition during the initial contact at
the onset of symbiosis with the coral Fungia scutaria larvae
(Rodriguez-Lanetty et al., 2004; Wood-Charlson et al., 2006).
Lectins in Sinularia lochmodes and Acropora millepora (Millectin)
can recognize Symbiodiniaceae through the binding to their
D-galactose and mannose (Kvennefors et al., 2008; Jimbo et al.,
2013). Also, the recognition of coral host lectin induces the
morphological transformation of Symbiodinium (Fransolet et al.,
2012). Lectin in the coral Ctenactis echinata mediates the
transformation of the flagellated motile form of Symbiodiniaceae
into the non-motile coccoid form (Jimbo et al., 2010), a common
form of coral symbionts. However, the molecular mechanisms
and factors affecting the establishment and maintenance of
the symbiosis between corals and Symbiodiniaceae are still
poorly understood.

How lectins’ binding affinity to symbiont’s MAMPs differ
among different species of Symbiodiniaceae is a fundamental
question, and the answer can help address how the host
corals selectively recruit symbionts from the surrounding
environments. The symbiotic dinoflagellate algae in the family
Symbiodiniaceae includes nine Clades named A-I (Pochon and
Gates, 2010; LaJeunesse et al., 2018; Gonzalez-Pech et al.,
2021). Out of the nine clades, Symbiodinium (Clade A) to
Durusdinium (Clade D) are generally associated with the reef-
building corals (Baker, 2003; Traylor-Knowles, 2021). Usually,
there is one dominant species of Symbiodiniaceae in a host,
which shapes the physiological performance of the corals under
environmental stress (Silverstein et al., 2012). For instance, Clade
D (Durusdinium) has been reported as a thermally tolerant
symbionts. The thermal tolerance of coral Acropora millepora
increases by 1–1.5◦C when the dominant Clade C symbiont

(Cladocopium) is replaced by Clade D (Berkelmans and van
Oppen, 2006). Thus, to better protect or restore coral reefs under
increasing seawater temperature, there is an urgent need to screen
for the most heat-resistant coral-Symbiodiniaceae association,
which requires a good understanding of the recognition process
mediated by coral lectins.

Another critical issue is how environmental variables affect
the establishment of the coral-Symbiodiniaceae symbiosis (Stat
and Gates, 2011; Suggett and Smith, 2020). Seawater temperature,
eutrophication, ocean acidification, and microplastic pollution
are the most common factors affecting the health of corals
(Hughes et al., 2003; Sully et al., 2019; Barott et al., 2021),
among which heat stress is the most severe stressor. Recent
studies have implicated lectins in the establishment of coral-
Symbiodiniaceae symbiosis under heat stress. For instance, the
C-type lectin from P. damicornis was found to be critical
for the symbiont acquisition and sequestration under heat
stress (Vidal-Dupiol et al., 2009). Furthermore, the galectin
in P. damicornis (PdGLT-1) was shown to recognize both
pathogenic bacteria and Symbiodiniaceae, and its binding activity
was dramatically suppressed by high temperatures (>30◦C) (Wu
et al., 2019). However, how the binding activities of coral lectins
to different genera of Symbiodiniaceae differ under heat stress has
never been reported.

This study investigated the binding affinity of a previously
identified coral lectin (PdGLT-1) (Wu et al., 2019) to five species
from different major genera of the family Symbiodiniaceae.
PdGLT-1 was a galectin from P. damicornis, a scleractinian
coral belonging to Pocilloporidae, one of the most abundant
and widespread corals (Schuttenberg and Hoegh-Guldberg,
2007). The five species of Symbiodiniaceae were Symbiodinium
microadriaticum (Clade A), Breviolum minutum (Clade B),
Cladocopium goreaui (Clade C), Durusdinium trenchii (Clade D),
and Fugacium kawagutii (Clade F), which belong to the
symbiont genera in P. damicornis (Cunning et al., 2018;
Tang et al., 2018; Lin et al., 2019; Chankong et al., 2020;
Li et al., 2021). The binding affinity of PdGLT-1 to these
symbiodiniacean species was examined under a gradient of
temperatures. Results in this study help us better understand
the molecular mechanism underlying the initial establishment
of the coral-Symbiodiniaceae symbiosis and lectins’ potential
roles in coral survival or recovery after a heat stress-induced
bleaching event.

MATERIALS AND METHODS

Cultures of Symbiodiniacean Species
The five symbiodiniacean species, S. microadriaticum strain
CCMP828, B. minutum strain CCMP830, C. goreaui strain
CCMP2466, D. trenchii strain CCMP3428, and F. kawagutii
strain CCMP2468, were provided by the National Center for
Marine Algae and Microbiota (Bigelow Laboratory for Ocean
Sciences, East Boothbay, Maine, United States). These strains
were cultured in the L1 medium at 25◦C in a light incubator
(photon flux of 110 µmol photons m−2 s−1) at 12 h/12 h
light-dark cycle until logarithmic growth stage.
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Preparation of PdGLT-1 Recombinant
Protein and Determination of Binding
Affinity of PdGLT-1 Recombinant Protein
to Symbiodiniaceae
The expression and purification of the recombinant PdGLT-
1 protein were carried out as previously reported (Wu et al.,
2019). Briefly, the coding gene was isolated from P. damicornis
and inserted in-frame into an expression plasmid to yield the
recombinant construct PdGLT-1 (pEASY-E1-PdGLT-1), which
was transformed into E. coli BL21 (DE3)-Transetta (TransGen,
China). Positive transformants were screened using antibiotic
resistance and sequencing, and one of them was selected and
grown in the LB medium. The recombinant protein (designated
rPdGLT-1) with 6 × His-tag was purified by a Ni2+ chelating
Sepharose column (GE Healthcare).

In each binding affinity experiment, cells from the five
symbiodiniacean species were harvested from 1 mL cultures by
centrifugation at 5,000 g for 5 min at 4◦C. The cell pellets were
suspended in fresh medium and serially diluted to 105, 104, 103,
102, and 10 cells mL−1. From each of these cell suspensions, 300
µL of cell suspension was transferred to a fresh 1.5 mL microfuge
tube and co-incubated with 300 µL of 0.1 mg mL−1 rPdGLT-1
at 25◦C for 1 h. For the negative control, bovine serum albumin
(BSA) was used in place of rPdGLT-1 to be co-incubated with
each symbiodiniacean species. After incubation, the algal cells
were pelleted by centrifugation at 1,600 g for 6 min to eliminate
the unbound proteins. After washing with PBST three times to
remove the non-specifically binding rPdGLT-1, the cells were
pelleted and resuspended in PBS.

In order to compare the binding affinity of rPdGLT-1 to
different symbiodiniacean species, 300 µL of algal cells (104

cells) for each species were co-incubated with 300 µL of 0.2 mg
mL−1 rPdGLT-1 at 25◦C for 1 h. For the negative control,
BSA was used in co-incubation with an even mixture of five
symbiodiniacean species. The washing and resuspension were
conducted as mentioned above.

The bound rPdGLT-1 on the symbiodiniacean cell surface
was dissociated in 50 µL loading buffer by boiling and the
resulting protein solution was loaded to a SDS-PAGE gel. A blank
control was set up using the loading buffer. After electrophoretic
separation, the target protein was transferred to the PVDF
membrane at 200 mA for 1.5 h. After blocked for 2 h at 25◦C,
PVDF membrane was incubated with His-tag mouse monoclonal
antibody (1:1,000 dilution, AH367, Beyotime, China) at 4◦C
overnight, and then incubated with AP-labeled goat-anti-mouse
antibody (1:5,000 dilution, A0258, Beyotime, China) at 25◦C
for 2 h. After each combination, the membrane was washed
three times with PBST on a concentrator for 10 min, and the
membrane was subjected to processing with BCIP/NBT Alkaline
Phosphatase Color Development Kit (C3206, Beyotime, China)
at 25◦C for 5–30 min until clear bands were observed. The
reaction was terminated by adding distilled water to the PVDF
membrane, and each band’s optical density was measured using
image processing software Image J (1.53c). In the comparison
experiment of different symbiodiniacean species, incubation
and western blotting were repeated three times (N = 3). The

binding activity of rPdGLT-1 to a symbiodiniacean species
was defined as the band intensity ratio of that species to
S. microadriaticum.

Observation of Binding Site Topology of
PdGLT-1 Recombinant Protein on
Symbiodiniacean Cells
The binding area of rPdGLT-1 on the five symbiodiniacean
species was observed using the immunofluorescence method. In
brief, 105 algal cells from each species were resuspended in 200
µL of PBS. They were incubated with 200 µL of 0.1 mg mL−1

rPdGLT-1 at 25◦C for 1 h. For negative and blank controls, BSA
and PBS were used in place of rPdGLT-1, respectively. After
incubation, the algae were washed by PBST three times and
then centrifuged at 4,000 g for 5 min to eliminate the unbound
protein. Twenty microliters of His-tag mouse monoclonal
antibody (AH367, Beyotime, China) diluted at 1:200 was added
to resuspend the algal cell pellets. After incubation at 25◦C
for 1 h and centrifugation at 1,600 g for 6 min, algal cells
were washed three times with PBST. Next, algal cells were
incubated with 20 µL of Alexa Fluor 488-labeled Goat Anti-
Mouse IgG(H + L) diluted at 1:200 (A0428, Beyotime, China)
in darkness at 25◦C for 1 h. After triple washes with PBST,
the algal cells were collected by centrifugation, resuspended
in 20 µL of PBS, and observed under the IX71 Olympus
fluorescence microscope.

Measurement of the Binding Activity of
PdGLT-1 Recombinant Protein Under
Different Temperatures
The binding activity of rPdGLT-1 to the five symbiodiniacean
species was examined at the temperatures of 20, 25, 30, and
35◦C. Briefly, each symbiodiniacean species from stock culture
was split into 4 subsamples, and then 300 µL of 105 cells mL−1

of each symbiodiniacean species were incubated with 300 µL of
0.1 mg mL−1 rPdGLT-1 for 1 h at 20, 25, 30, and 35◦C. For
the negative control, BSA was used instead of rPdGLT-1. Each
incubation was conducted in triplicate, and the subsequent SDS-
PAGE and western blotting were performed as mentioned above.
Loading buffer was used as the blank control. The band intensity
of the incubation at a temperature was normalized to that of the
incubation at 20◦C.

Statistical Analysis
All data were expressed as mean ± standard deviation (SD).
Before analysis, data were tested for normality using the
Shapiro-Wilk test. When the variance was verified to be
homogeneous, data were subjected to one-way analysis of
variance (ANOVA) followed by multiple comparisons (S-N-
K) to evaluate the significance of differences among different
symbiodiniacean species or temperatures by using software IBM
SPSS 20.0 (IBM, Inc.). Differences were considered significant at
p < 0.05.
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RESULTS

Comparison of Binding Affinity of
PdGLT-1 Recombinant Protein Among
Symbiodiniacean Species
A binding band was observed for each of the five
symbiodiniacean species examined at 25◦C, and the band
intensity increased with increasing algal concentration from 10
to 105 cells mL−1, especially for B. minutum and D. trenchii

(Figure 1). The highest relative band intensity (2.6-fold) was
observed in F. kawagutii, which exhibited a significantly higher
binding affinity than other symbiodiniacean species (one-way
ANOVA, F = 22.841, p < 0.05). C. goreaui exhibited the
second highest band intensity, 1.9-fold higher than that of
S. microadriaticum, and 1.4-fold higher than that of D. trenchii
(p < 0.05 in both cases). No significant difference was found
among S. microadriaticum, B. minutum, and D. trenchii.
There were no detectable bands in the negative or blank
control (Figure 2).

FIGURE 1 | Binding activity of PdGLT-1 recombinant protein to five symbiodiniacean species of different concentrations (10, 102, 103, 104, and 105 cells mL−1) at
25◦C, including S. microadriaticum, B. minutum, C. goreaui, D. trenchii, and F. kawagutii. BSA (bovine serum albumin) is employed as the negative control, while
loading buffer is used as blank control.

FIGURE 2 | Binding of PdGLT-1 recombinant protein to S. microadriaticum, B. minutum, C. goreaui, D. trenchii, and F. kawagutii at 25◦C. The figure above shows
the binding band obtained by western blotting, and the figure below shows the gray scale ratio. The gray scale of the binding band of S. microadriaticum is used as
the basis to calculate the gray scale ratio. The column represents mean ± standard deviation (N = 3), and the column with different letters represents significant
difference (p < 0.05).
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FIGURE 3 | The binding region of rPdGLT-1 to S. microadriaticum, B. minutum, C. goreaui, D. trenchii, and F. kawagutii at 25◦C through immunofluorescence
method. His-tag mouse monoclonal antibody and Alexa Fluor 488-labeled Goat Anti-Mouse IgG(H + L) are used as primary and second antibodies, respectively.
BSA is employed as negative control and PBS as blank control. Scale-bars are 20 µm.

PdGLT-1 Recombinant Protein Binding
Site Topology on Symbiodiniacean Cells
For C. goreaui and F. kawagutii, clear positive signals were
widespread over the whole cell surface, and rPdGLT-1 bound
F. kawagutii cells were agglutinated. In contrast, the positive
signals were concentrated in smaller discrete regions on the cell
surface of S. microadriaticum, B. minutum, and D. trenchii. No
positive signals were observed in the negative (BSA) and blank
(PBS) control (Figure 3).

Effects of Temperature on the Binding
Affinity of PdGLT-1 Recombinant Protein
The relative band intensity of rPdGLT-1 bound to D. trenchii
was highest at 35◦C (1.5-fold), which was significantly higher
than that at 30◦C (1.4-fold; one-way ANOVA, F = 38.712,
p < 0.05). The lowest intensities occurred at 20 and 25◦C
(1.0-fold, 1.0-fold, respectively), which were significantly lower
(p < 0.05) than that at 30◦C (Figure 4). The relative band
intensity of rPdGLT-1 to S. microadriaticum was highest at 30◦C
(1.8-fold), slightly lower at 35◦C (1.7-fold). The relative band
intensities at 20 and 25◦C were markedly lower, between which
that at 25◦C was significantly higher (1.4-fold; one-way ANOVA,
F = 44.272, p < 0.05) than that at 20◦C (Figure 5). Similar

to S. microadriaticum, the highest band intensity of C. goreaui-
bound rPdGLT-1 was detected at 30◦C, which was 1.3-fold of that
at 20◦C, and significantly higher (one-way ANOVA, F = 9.062,
p < 0.05) than those at 20, 25, and 35◦C (1.1- and 1.0-fold;
Figure 6). The highest relative band intensity of rPdGLT-1 bound
to F. kawagutii also occurred at 30◦C (1.5-fold), which was higher
than that at 20◦C (one-way ANOVA, F = 5.183, p < 0.05).
The relative band intensities at 25 and 35◦C (1.2- and 1.3-
fold, respectively) were between that at 20 and 30◦C, with no
significant differences (Figure 7). In contrast, the highest relative
band intensity of rPdGLT-1 bound to B. minutum was observed
at 20◦C, the lowest temperature among the five species examined.
It was significantly higher than those at 25 and 35◦C (one-way
ANOVA, F = 4.555, p < 0.05). Furthermore, the band intensity
at 30◦C (0.8-fold) appeared to be higher than those at 25 and
35◦C, but there were no significant differences among the three
temperatures (Figure 8).

DISCUSSION

The establishment of the coral-Symbiodiniaceae symbiosis
is essential to the prosperity of the coral reef ecosystem
(Wood-Charlson et al., 2006). Recognition between corals and
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FIGURE 4 | Binding of PdGLT-1 recombinant protein to D. trenchii at different temperatures. The figure above shows the binding band obtained by western blotting,
and the figure below shows the gray ratio. The gray scale of the binding band of 20◦C is used as the basis to calculate the gray scale ratio. The column represents
mean ± standard deviation (N = 3), and the column with different letters represents significant difference (p < 0.05).

Symbiodiniaceae is the very first and critical step, which
requires the involvement of corals’ lectins such as C-type lectins,
galectins, rhamnose-binding lectins, and D-Galactose-binding
lectins (Zhou et al., 2017, 2018; Weis, 2019; Wu et al., 2019).
Besides, the binding of lectins to Symbiodiniaceae can be affected
by temperature (Vidal-Dupiol et al., 2009; Bellantuono et al.,
2012; Wu et al., 2019), and high temperature might decrease
the binding affinity of coral lectins and further suppress their
abilities to acquire and sequestrate the free Symbiodiniaceae
to repopulate the bleached coral (Vidal-Dupiol et al., 2009).
Therefore, information on the differential binding affinity of
coral lectins to different genera of Symbiodiniaceae, and the
differential effects of temperature on the binding capacity, is
essential to understanding the underlying regulatory mechanism
for the initial establishment of coral-Symbiodiniaceae symbiosis.

In the present study, a previously identified lectin (PdGLT-
1) was expressed in E. coli, purified, and used to investigate
the recognition of the coral P. damicornis to five species
of Symbiodiniaceae. The results showed that rPdGLT-1 could
bind to all five species of Symbiodiniaceae. Recognizable
by PdGLT-1, these algae have the potential to establish
symbiosis with P. damicornis. Consistent with this finding, high
throughput sequencing studies on the symbiont communities of
P. damicornis have indicated the presence of these five genera in
this species of coral (Boulotte et al., 2016). Besides, the present
study reported the differential binding affinities of PdGLT-1 to
different symbiodiniacean species. A higher binding affinity was

found to C. goreaui and F. kawagutii than S. microadriaticum,
B. minutum, and D. trenchii. This result agrees with the
mainstream academic view that clade C is the dominant
Symbiodiniaceae in P. damicornis (Magalon et al., 2007).

To further explore the recognition characteristics between
PdGLT-1 and Symbiodiniaceae, differences among five species
of Symbiodiniaceae in the rPdGLT-1 binding pattern were
carefully examined using immunofluorescence. Interestingly,
rPdGLT-1 was generally bound to discrete loci on the surface
of S. microadriaticum, B. minutum, and D. trenchii, while the
binding sites of rPdGLT-1 to C. goreaui and F. kawagutii were
widespread over the cell surface. These results were consistent
with the higher binding affinity to C. goreaui and F. kawagutii
measured by Western blotting. Intriguingly, rPdGLT-1 not only
exhibited a higher binding affinity to F. kawagutii but also had an
agglutinating effect (Figure 2). This finding suggests that PdGLT-
1 is more likely to induce agglutination than endosymbiosis in
F. kawagutii, which explains why F. kawagutii is not a dominant
symbiont species in P. damicornis or other corals, and its role
as an endosymbiont remains obscure. On the contrary, PdGLT-
1 had high binding activity to C. goreaui but hardly with any
agglutination effect. As such PdGLT-1 is more likely to induce
symbiosis with C. goreaui than agglutination, consistent with the
reports that Cladopodium spp. are dominant Symbiodiniaceae in
P. damicornis (Magalon et al., 2007).

Furthermore, the establishment and maintenance of the
coral-Symbiodiniaceae symbiosis are strongly influenced by
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FIGURE 5 | Binding of PdGLT-1 recombinant protein to S. microadriaticum at different temperatures. The figure above shows the binding band obtained by western
blotting, and the figure below shows the gray ratio. The gray scale of the binding band of 20◦C is used as the basis to calculate the gray scale ratio. The column
represents mean ± standard deviation (N = 3), and the column with different letters represents significant difference (p < 0.05).

FIGURE 6 | Binding of PdGLT-1 recombinant protein to C. goreaui at different temperatures. The figure above shows the binding band obtained by western blotting,
and the figure below shows the gray ratio. The gray scale of the binding band of 20◦C is used as the basis to calculate the gray scale ratio. The column represents
mean ± standard deviation (N = 3), and the column with different letters represents significant difference (p < 0.05).
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FIGURE 7 | Binding of PdGLT-1 recombinant protein to F. kawagutii at different temperatures. The figure above shows the binding band obtained by western
blotting, and the figure below shows the gray ratio. The gray scale of the binding band of 20◦C is used as the basis to calculate the gray scale ratio. The column
represents mean ± standard deviation (N = 3), and the column with different letters represents significant difference (p < 0.05).

FIGURE 8 | Binding of PdGLT-1 recombinant protein to B. minutum at different temperatures. The figure above shows the binding band obtained by western
blotting, and the figure below shows the gray ratio. The gray scale of the binding band of 20◦C is used as the basis to calculate the gray scale ratio. The column
represents mean ± standard deviation (N = 3), and the column with different letters represents significant difference (p < 0.05).
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temperature, the severe coral bleaching in recent years have
been attributed to heat stress (Sampayo et al., 2008; Stat and
Gates, 2011; Klepac and Barshis, 2020). From the PdGLT-1
binding in five temperature (20, 25, 30, and 35◦C) experiments,
clear species-specific optimal PdGLT-1 binding temperature was
noted. Interestingly, the highest optimal temperature (35◦C)
was found in D. trenchii (Clade D), the second highest (30◦C)
in S. microadriaticum (Clade A), C. goreaui (Clade C), and
F. kawagutii (Clade F), and the lowest (20◦C) was found
in B. minutum (Clade B). These results suggest that coral
lectins have variable potentials to acquire and sequestrate
Symbiodiniaceae in a temperature-dependent manner. This
might affect the differential repopulation of the symbionts in the
bleached corals.

Accumulating evidence has indicated that a higher relative
abundance of Clade D Symbiodiniaceae in corals contributes
to the heat resistance of corals, and Clade D Symbiodiniaceae
are regarded as the as most heat-tolerant clade among all
Symbiodiniaceae clades (Abrego et al., 2009; Keshavmurthy et al.,
2017; Thinesh et al., 2019). Moreover, symbionts type-switching
from Clades A, B, C, or F to Clade D following a bleaching
event is believed to be the strategy of corals to recover from
bleaching (Thinesh et al., 2019). Results in the present study
show that the binding affinity of PdGLT-1 to D. trenchii remains
relatively high under thermal stress (35◦C). This property may
facilitate symbiosis establishment of P. damicornis with Clade D
Symbiodiniaceae under high temperatures and the survival of
the holobiont after thermal stress. This should be verified in the
future using infection experiments.

In summary, the binding affinity of coral lectin PdGLT-1 to
five genera of Symbiodiniaceae was investigated to shed light on
the molecular recognition for symbiosis establishment. PdGLT-1
exhibits a greater binding affinity to C. goreaui and F. kawagutii
than B. minutum, D. trenchii, and S. microadriaticum, implying
a higher likelihood for those two species to be recruited by
P. damicornis as symbionts. However, as PdGLT-1 binding
induces cell agglutination in F. kawagutii, the potential of
F. kawagutii to become symbionts is undermined. These findings

explain why C. goreaui is the most dominant Symbiodiniaceae in
P. damicornis. Furthermore, we find that the PdGLT-1’s binding
affinity to symbiodiniacean cells was affected by temperature,
and the optimal binding temperature differed with species. The
high binding affinity of PdGLT-1 to D. trenchii (thermal-tolerant
Symbiodiniaceae) under heat stress (35◦C) can explain why corals
with D. trenchii as dominant symbionts are more heat-resistant.
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