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Peptides and proteins were identified during a controlled laboratory degradation of the
marine diatom Thalassiosira weissflogii by a surface seawater microbiome. Samples
from each time point were processed both with and without the protease trypsin,
allowing a partial differentiation between peptides produced naturally by microbial
enzymatic degradation and peptides produced from the laboratory digestion of intact
protein. Over the 12-day degradation experiment, 31% of the particulate organic carbon
was depleted, and there was no preferential degradation of the overall protein pool.
However, there was distinct differentiation in the cellular location, secondary structure
and modifications between peptides produced by microbial vs. laboratory breakdown.
During the initial period of rapid algal decay and bacterial growth, intracellular
components from the cytoplasm were consumed first, resulting in the accumulation
of membrane-associated proteins and peptides in the detrital pool. Accompanying
the enrichment of membrane protein material was an increase in the importance
of A-helix motifs. Methylated arginine, a post-translational modification common in
cell senescence, was found in high amounts within the microbially produced detrital
peptide pool, suggesting a link between in-cell modification and resistance to immediate
degradation. Another modification—asparagine deamidation—accumulated within the
detrital peptides. Protein taxonomies showed the bacterial community decomposing
the algal material was rich in Proteobacteria, and protein annotations showed abundant
transportation of solubilized carbohydrates and small peptides across membranes. At
this early stage of diagenesis, no changes in bulk amino acids (THAA) were observed,
yet a proteomic approach allowed us to observe selective changes in diatom protein
preservation by using amino acid sequences to infer subcellular location, secondary
structures, and post-translational modifications (PTMs).

Keywords: marine organic matter, amino acids (AA), protein recycling, protein degradation, marine
metaproteomics, post-translational modifications (PTM), early diagenesis, phytoplankton bloom degradation

INTRODUCTION

The application of “omics” to marine systems has accelerated in recent decades and contributed
to a deeper understanding of the roles microorganisms play in global biogeochemical cycles
(Kleiner, 2019; Saito et al., 2019). Meanwhile, geochemical techniques have shown that some of the
largest pools of carbon in the ocean are the detrital remains of these organisms, both in dissolved
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(Aluwihare et al., 1997; Benner and Kaiser, 2003; Jiao et al.,
2010) and particulate organic matter (Wakeham et al., 1997;
Hedges et al., 2001; Lee et al., 2004). Though largely unexplored,
analytical advances are increasing the potential for “omic”
approaches to illuminate carbon cycling in marine detritus
(Nunn et al., 2010; Moore et al., 2012, 2014).

Much of the identifiable detrital organic matter in the ocean
is proteinaceous (Mayer et al., 1988; Wakeham et al., 1997; Lee
et al., 2004). This composition may be unsurprising given the
abundance of proteins in living organisms: diatoms, one of the
major primary producers in the ocean, are approximately 25%
protein by dry weight (Olofsson et al., 2019). Photoautotrophic
bacteria, such as Prochlorococcus, can be as much as 70%
protein (Finkel et al., 2016). Determining the origins and
fates of protein in marine systems is therefore critical to a
predictive understanding of carbon transport and storage in
a changing ocean.

Proteins are often assumed to be labile and subject to
degradation (Nunn et al., 2003; Pantoja et al., 2009). Yet, some
proteins have been shown to survive long exposure in seawater
(Keil and Kirchman, 1994; Dong et al., 2010) and have been
identified in the detrital dissolved organic matter pool (Tanoue
et al., 1995; Suzuki et al., 1997; Yamada and Tanoue, 2003), in
coastal and open ocean marine sediments (Mayer et al., 1986,
1988; Estes et al., 2019) and in sediment pore water (Schmidt
et al., 2011; Abdulla et al., 2018; Fejjar et al., 2021). Algal
proteinaceous material has been shown to survive microbial
degradation in 4,000 year old sediments (Knicker et al., 1996).
Thus, the geochemical evidence implies that while many proteins
or constituents of proteins may indeed be labile, some component
of proteinaceous material has the potential to be preserved into
the geologic record. However, the underlying reasons that certain
proteins or their constituents are preserved while others are
rapidly degraded remain largely elusive.

The aquatic geochemical literature is rich in regards to
protein and amino acid degradation. Heterotrophic bacteria first
secrete free or tethered endoproteases to break larger proteins
to smaller peptides (Hollibaugh and Azam, 1983; Hoppe et al.,
2002; Obayashi and Suzuki, 2008). Exopeptidases then cleave
individual amino acids off the termini, as shown via mass spectral
detection of marine detrital protein (Nunn et al., 2003; Roth and
Harvey, 2006), and peptides under around 600 Da can be taken
up by heterotrophic bacteria and some phytoplankton (Weiss
et al., 1991; Mulholland and Lee, 2009). Encapsulation and/or
sorption interactions with organic matter and inorganic mineral
surfaces may limit bacterial enzyme access to (and degradation
of) protein and proteinaceous compounds (Mayer, 1994; Nagata
and Kirchman, 1996; Hedges et al., 2001; Knicker et al., 2001).

With the application of metaproteomics tools to marine
detirial systems, peptides sourced from algal organelles and
membranes have emerged as more resistant to rapid degradation
in environmental and laboratory studies (Yamada and Tanoue,
2003; Nunn et al., 2010; Moore et al., 2014). Certain secondary
structures such as A-helices and random coils appear to be
retained within detritus while other motifs are degraded (Nunn
et al., 2010), and peptides containing modified amino acids have
been shown to accumulate in detrital pools of marine organic

matter (Yamada and Tanoue, 2003; Liu et al., 2010; Abdulla et al.,
2018; Duffy et al., in press).

Previous studies that apply metaproteomic techniques
to marine detritus have generally added trypsin or other
proteolytic enzymes to break proteins into smaller constituent
peptides (Nunn et al., 2010; Moore et al., 2012, 2014). This
proteolytic approach is typical in liquid chromatography-
mass spectrometry (LC-MS) “bottom-up” proteomics
experiments which analytically require small, ionizable
peptides for detection rather than bulky and complex
intact proteins (Laskay et al., 2013; Saito et al., 2019).
However, this analytical requirement may obscure intriguing
dynamics of natural protein breakdown and digestion in the
environment. In the present study we complement existing
protein degradation studies by additionally looking for small
peptides produced solely by microbial degradation during the
experiment. This naturally produced peptide pool represents
a combination of endogenous small peptides and those that
have been liberated from larger proteins but are not yet fully
degraded. We leverage the amino acid sequences gained
from metaproteomic techniques to interrogate the subcellular
origins, secondary structures, modifications, and amino acid
compositions of the degrading algal proteinaceous material
over time.

MATERIALS AND METHODS

The experimental workflow can be divided into distinct phases:
the algal degradation experiment itself; amino acid and peptide
extraction; peptide identification via a combination of a
database searching and de novo peptide sequencing approaches;
and data analytics.

Algal Degradation
A culture of the centric diatom Thalassiosira weissflogii was
grown to approximately 1 × 106 cells/mL, concentrated by
centrifugation, and frozen at −80◦C to render the algal culture
non-viable. Aliquots were thawed and resuspended to 2 g/L by
dry weight using 1 µm filtered and UV sterilized seawater from
the Damariscotta Estuary, Gulf of Maine. Unsterilized seawater
filtered to 1 µm was used as an inoculum to induce bacterial
decomposition of the algal detritus, with 1 mL added to 15 L
of algal suspension. At each time point (1, 2, 5, and 12-days),
100 mL of the degradation slurry was vacuum filtered onto 25 mm
diameter 0.3 um pore size glass fiber membranes (Sterlitech
GF75) at 4◦C and stored frozen prior to proteomic extraction and
analysis. Further experimental details about the degradation can
be found in Adams et al. (2019).

Total Hydrolyzable Amino Acids
Approximately 30 mg of material scraped from a filter was
hydrolyzed in 6 N HCl as described in Cowie and Hedges (1992).
Amino acids were derivatized as in Gray et al. (2017) using
the AccQ Tag Ultra derivatization kit from Waters (Milford,
Massachusetts). Amino acids were separated and quantified via
LC-MS using a full scan method in positive ion mode, with a scan
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range of 100–600 m/z and a resolution of 60,000, on a Thermo
Scientific Q Exactive HF Orbitrap.

Proteomic Sample Extraction
Peptides were extracted with and without the use of the
serine protease trypsin, which specifically cleaves sequences
on the carboxyl side (or the “C-terminal side”) of lysine
and arginine, except when either is bound to a C-terminal
proline. Peptides created via trypsin digestion are usually
between 700 and 1,500 daltons (6–14 amino acids), an ideal
range for mass spectrometry detection (Laskay et al., 2013).
Approximately 100 mg of material was scraped from a
filter into detergent-free 50 mM ammonium bicarbonate lysis
buffer with 5 mM ethylenediaminetetraacetic acid (EDTA).
The chilled suspension was lysed via three cycles each of
mechanical disruption with silica beads (50% 100 µm diameter
and 50% 400 µm), freeze-thawing in a methanol-dry ice
bath, and 30 s in a high-power water bath sonicator. The
supernatant was removed after centrifugation at 4,800 rpm and
the protein concentration was determined using a modified
Lowry assay using reagents from Bio-Rad (Hercules, California).
Extracted protein was subjected to reduction of disulfides with
dithiothreitol and carbamidomethylation with iodoacetamide.
One half (300 µL) of the protein extraction was subjected to
in-solution digestion with trypsin (Promega Gold) overnight
at room temperature by a ratio of 1 µg trypsin: 25 µg
total protein in 50 mM ammonium bicarbonate buffer with
5 mM EDTA. The remaining 300 µL of protein extraction
was left untreated with trypsin. Both trypsin and no-trypsin
treatments were desalted using NestGroup macro-spin C18
columns (Southborough, Massachusetts) and resuspended in 5%
acetonitrile with 0.1% formic acid and Waters Hi3 E. coli peptide
standard mixture (100 fmol/L).

Reverse-phase liquid chromatography-high resolution mass
spectrometry (LC-HRMS) analysis was performed in duplicate
with a Thermo Science (Waltham, Massachusetts) EASY-nanoLC
system coupled to a Thermo Orbitrap Fusion Tribrid HRMS.
Peptides were separated on a home-packed analytical column
consisting of a 37 cm long, 75-µm i.d. fused-silica capillary
column packed with C18 particles (Magic C18AQ, 100◦A, 5
mm; Michrom) coupled to a 4 cm long, 100 m i.d. precolumn
(Magic C18AQ, 200◦A, 5 mm; Michrom). Solvents of 100%
LC/MS grade water with 0.1% formic acid (A) and 100%
LC/MS grade acetonitrile with 0.1% formic acid (B) were
used to elute peptides over a 120-min gradient from 5 to
35% solvent B. All analyses were carried out in positive
mode at an NSI spray voltage of 2 kV. Data-dependent
acquisition (DDA) on the top 10 ions was carried out using
first higher energy collision dissociation (HCD) and then
electron transfer dissociation (ETD) fragmentation methods for
duplicate injections. The MS1 (parent peptide ion) scan range
was 400–2,000 m/z.

Proteomic Data Analysis
Peptides were identified from the raw mass spectra using a
combination database-driven and database-independent de novo
sequencing approach. De novo peptide sequencing, where the

amino acid sequence of peptides is determined solely from
the mass spectra without comparison to a reference database
(Allmer, 2011), was advantageous in this study because we lacked
a paired metagenome to thoroughly characterize the microbial
community from the seawater inoculum (Muth et al., 2015, 2018;
O’Bryon et al., 2020). The combining of database and de novo is
termed de novo-directed proteomics, and was performed using
PeaksDB within Peaks Studio (v8.5; Bioinformatics Solutions,
Waterloo, Canada; Zhang et al., 2012). The de novo-directed
approach has been shown to significantly improve sensitivity and
accuracy in comparison to existing database search techniques
(Zhang et al., 2012).

For database searches we used a reference protein
database composed of 84,000 sequence entries predicted
from transcriptomes of 8 T. weissflogii strains contained in
the Marine Microbial Metatranscriptome Sequencing Project
(NCBI BioProject PRJNA248394, Keeling et al., 2014). We added
to the reference database two Gulf of Maine surface seawater
metagenomes (Yooseph et al., 2007) from the Global Ocean
Survey (GOS) as an aid in identifying the seawater microbes
degrading the algal detritus. Additionally, we searched against a
database of common mass spectral contaminants (Mellacheruvu
et al., 2013). Search parameters for both database searching and
de novo sequencing included 8 maximum modifications per
peptide, 15 ppm peptide mass tolerance, and 0.5 Da fragment
mass tolerance. For the trypsin-digested fractions, we performed
both tryptic (maximum 2 missed cleavages) and non-enzymatic
constraint searches, which means that all possible peptides up
to 60 residues were considered. For the fractions not treated
with trypsin, only non-enzymatic constraint searches were
performed. Results from technical replicates and fragmentation
strategies were combined.

Peptide identification confidences are calculated differently
between the database search-identified and de novo sequenced
peptides. For the de novo identifications, an amino acid-level
confidence score is calculated based on mass deviation from
spectral features and expressed as a percentage value. We
accepted de novo peptides>80% average residue local confidence
(ALC) with no single amino acid score<50%. For database
searches, a false discovery rate (FDR) was set<1.0% using a
reversed database target-decoy strategy (i.e., searching against
reversed reference protein sequences) (Elias and Gygi, 2010).
De novo sequencing was also incorporated into the database
searches, as PeaksDB first compares de novo sequences to the
reference database to find approximate matches and decrease
the search space. Agreement between de novo sequences and
database search hits are also used, in part, to generate peptide-
level confidence scores derived from the p-value indicating
the statistical significance of the peptide-spectrum match (the
−10 lgP score). The threshold was a −10 lgP score>20.
Such a score is equivalent to a p-value of 1%, signifying the
probability that the identification is to a false peptide sequence
(Zhang et al., 2012).

Protein identifications are notoriously difficult in samples
containing many different organisms because some peptides are
shared in proteins from multiple taxa. We required a minimum
of 1 unique peptide per protein identification. Matching of
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proteins from peptides found only by de novo sequencing
is detailed below.

Searching for Amino Acid Modifications
Since amino acids are frequently modified after translation,
either for cell-specific purposes or during degradation, a
computationally efficient method is needed to search for
the myriad possible post-translational modifications (PTMs).
We used the open modification search tool PeaksPTM (Han
et al., 2011), with parameters set to tryptic or non-enzymatic
constraint, 2 or fewer missed cleavages, 15 ppm peptide
mass tolerance, 0.2 Da fragment mass tolerance, minimum
A-score > 200 (a measure of modification location confidence),
fixed carbamidomethylation of cysteine, and variable oxidation
of methionine. Based on PeaksPTM results, the most frequently
occurring modifications were used to evaluate whether adding
additional PTMs to the overall searches altered the rate of
false discovery. That is, we sought the optimal balance between
searching for PTMs while avoiding a vast search space that
leads to decreased sensitivity (Noble, 2015; Timmins-Schiffman
et al., 2017). A series of PeaksDB searches and Peaks sequencing
runs of the combined data set (using same search parameters
as above) with increasing numbers of variable modifications
was performed to find the optimal set of PTMs to include in
searches (most peptide identifications<1% FDR). Using these
PTM ramping results, 10 optimal variable PTMs were selected
for the final searches. They included, in addition to methionine
oxidation: deamidation of asparagine, methylation of arginine,
oxidation of tyrosine, methylation of lysine, oxidation of lysine,
oxidation of arginine, oxidation of proline, acetylation of lysine,
and glutamine cyclization (the conversion of glutamine to
pyro-glutamine).

Mapping de novo Peptides to Proteins
The de novo-directed PeaksDB workflow used here outputs
peptides matched to the database and de novo peptides
(sequences only, no additional information). To identify peptides
that came from the diatom detritus or bacterial proteins not
found by database searching, the de novo peptides were aligned
to the reference database (T. weissflogii transcriptomes with GOS
Gulf of Maine metagenomes) using PepExplorer (Leprevost et al.,
2014). PepExplorer considers common de novo sequencing errors
and limitations (such as leucine and isoleucine equivalence or
other combinations of amino acids having the same mass) and
identifies regions of local similarity between sequences. We also
performed an alignment of the sequences against a reversed
version of the database to estimate a false discovery rate, which
was kept<1%. Alignments were accepted at a 95% identify
agreement cutoff and protein identification required at least one
unique peptide alignment.

Many de novo peptides did not match back to the reference
database, which was not unexpected given the low number of
sequences in the database for heterotrophic bacteria and the GOS
sampling locations being more open ocean (Yooseph et al., 2007)
compared to the estuarine seawater inoculum. To overcome
this limitation, I additionally mapped the de novo peptides
to proteins contained in the entire UniProt KnowledgeBase

database (The UniProt Consortium, 2018), which contains over
200 million sequences from thousands of taxa. The mapping
was performed using the UniPept lowest common ancestor
tool (Mesuere et al., 2016), which is built specifically for
metaproteomic data and determines the taxonomic origins of
peptides to the lowest possible phylogenetic rank (since some
peptides are highly conserved, they may match as to only
“Bacteria,” or even “Organism,” rather than to a species or genus
level). The UniPept output provides the best view of the bacteria
present in the experiment given the lack of genes or transcripts
from which to build an ideal reference database.

Gene Ontology Terms and Secondary
Structures
To identify gene ontology (GO) term annotations, the peptide
sequences were aligned to the UniProt protein database using
UniPept’s metaproteomic functional analysis tool (Gurdeep
Singh et al., 2019), which is built upon a lowest common
ancestor peptide search described above. The GO categories were
condensed from the broader set in order to eliminate redundancy
using the REViGO tool1 as well as manually.

Protein and protein secondary structures for all samples were
estimated using the Proteus2 algorithm (Montgomerie et al.,
2008) for the combination of proteins identified by PeaksDB
database searching and de novo sequencing with database
mapping with PepExplorer. Output is the highest likelihood of
individual amino acids being part of the following structure
classes: random coil, A-helices, β-strands, membrane A-helices,
and membrane β-strands.

Spectral files, databases, and peptide identification
(pepXML) files have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the data set
identifier PXD027843.

RESULTS AND DISCUSSION

General Characteristics of the
Degradation
As previously described (Adams et al., 2019), algal biomass
decreased by a factor of 2.4 during the 12-day incubation.
Meanwhile, bacterial abundance increased by a factor of 5. Total
particulate carbon decreased by 31% over the 12 days (Figure 1).
In total, the algal detritus was partly remineralized via respiration
and partly converted to bacterial biomass, but mostly remained
as necromass (Adams et al., 2019). The degradation experiment
started with a small inoculum of bacteria added to a detrital
slurry that contained some algal proteases present during diatom
cell harvesting. The algal detritus also likely contained small
amounts of bacteria (or bacterial necromass) from the diatom
culture, which was not confirmed to be axenic. The living bacteria
then responded to the detritus and began to grow exponentially
(Figure 1), during which time they released enzymes in order
to break down and take up the diatom organic matter. The

1http://revigo.irb.hr/
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FIGURE 1 | Progression of Thalassiosira weissflogii degradation experiment. (A) Algal and (B) bacterial cell counts over the 12-day incubation period; (C) chlorophyll
and its degradation product, pheophytin; and (D) particulate carbon and nitrogen (filtered on GF/F membranes). While algal cellular material is degrading between
days 2 and 5, the silica-based cell walls remain and are identifiable via microscopy, leading to the static or slightly increasing diatom cell counts (A). For more
information about algal degradation see Adams et al. (2019).

ratio of enzymatically hydrolyzable amino acids (a biomimetic
measurement of protein bioavailability, see Mayer et al., 1995)
to the organic carbon content remained constant throughout
the experiment (Adams et al., 2019) indicating that there was
no selective remineralization or preservation of proteins relative
to other organic material at this early stage of degradation.
However, by looking closely at peptides, we show that numerous
compositional changes occurred in the protein pool during
the 12 day period.

Our interpretation of protein dynamics during the
degradation experiment relies on the distinction between
two different pool of peptides: those produced in situ during
the experiment (not treated with trypsin, which we will refer to
as “naturally digested peptides”) and those produced artificially
by the laboratory digestion (referred to as “trypsin-digested
peptides”). We hypothesize that the naturally digested peptides
represent a mixture of proteinaceous material that is being
accessed by the heterotrophic bacteria and peptides that have
been released from larger proteins. The trypsin-digested peptides
should represent the total of all digestible proteinaceous material
present at each time point, including that which is not being
actively degraded (e.g., the material that has resisted degradation
thus far). Differences between these two diatom protein-derived

pools provides information about relative labilities of the
substrate proteins, in addition to information about the bacterial
strategies of degrading the diatom necromass.

Both the trypsin and naturally digested peptide pools should
also contain peptides sourced from the bacteria growing in the
experiment. Given cell counts and estimated carbon per diatom
and bacterial cells, there is about 150 times more algal protein
than bacterial protein in the day 0 time point, and this decreases
to 15 times more after 12-days (Adams et al., 2019). These
peptides can be used to determine the types of bacteria present
during the experiment, and the cellular functions that these
bacteria are performing (e.g., Bergauer et al., 2017; Mikan et al.,
2020). In the following section we examine the peptide results
with the goal of trying to better understand the degradative
processes occurring over the course of experiment and their
implications for detrital protein cycling in the marine systems.

Algal Peptide Identification and
Characteristics
The naturally digested and trypsin-digested peptides are
methodologically distinct yet analytically overlapping pools. The
naturally digested peptides are present in the background of
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the trypsin-digested fraction, since the incubation preceded
proteomic sample extraction and laboratory digestion. The
mass window of MS1 detection is 400–2,000 m/z. Typically,
peptides produced via trypsin digestion are between 6 and 14
amino acids in length; in this data, the average trypsin-digested
peptide length was 10.3 amino acids and the average peptide
(MS1) mass was 1,114 Da. By contrast, the average length of
peptides in the naturally digested fractions was 10.1 and the
average mass, 1,082 Da. Larger polypeptides created by microbial
degradation processes, if large enough, would likely have sites
available to cleavage by trypsin. Thus there is additional overlap
between these two pools because some larger naturally digested
peptides are further subjected to trypsin digestion in the trypsin-
digested fraction.

The number of identified diatom peptides and proteins peaked
at day 2 during the initial phase of exponential bacterial growth,
and then decreased to lowest values at day 12 (Table 1). We sorted
the algal peptides by their gene ontology cellular compartment
terms (GO Terms; Figure 2; see also Riffle et al., 2017; Mikan
et al., 2020). The data were aggregated into eight major cellular
compartments, and the three numerically dominant groups were
chloroplast, cell membrane, and cytoplasmic proteins (Figure 2).
In the case of membrane-bound subcellular compartments,
proteins associated with organellar membranes were counted
as from that organelles. For example, thylakoid membrane GO
terms were classified under “Chloroplast,” for simplicity. The
trypsin-digested day 0 fraction had a cellular component GO
term distribution consistent with that of living diatom cells:
alongside the degradation experiment’s algal GO terms we plot
those from peptides obtained from two Thalassiosira pseudonana
proteomes published by Dyhrman et al. (2012) (Figure 2).

The naturally digested peptides contained far fewer GO term
identifications after day 2, and by day 12 the only identifications
in that fraction were from chloroplast and cell membrane

TABLE 1 | Diatom and bacterial peptide and protein identifications.

Proteomic
time point and
treatment

PSM diatom
peptidesa

De novo
diatom

peptidesb

Diatom
proteinsc

Bacterial
peptidesd

Trypsin-digested Laboratory trypsin digestion

Day 0 1,217 585 528 404

Day 2 1,537 720 736 494

Day 5 820 370 321 389

Day 12 641 437 265 500

Naturally digested Natural microbial digestion

Day 0 252 130 112 86

Day 2 2,125 337 231 265

Day 5 232 116 78 117

Day 12 55 165 43 147

a<1% peptide false discovery rate.
bWith at least 1 unique peptide ID by database or de novo sequencing.
c>80% average local residue confidence and protein mapping using PepExplorer
at 95% similarity and 1% FDR.
dBy>80 ALC de novo and lowest common ancestor analysis with UniPept.

peptides. This indicates that peptides and proteins from other
cellular components were effectively degraded during the initial
phase of bacterial exponential growth (Figure 1) and were not
being actively degraded at day 12 because they were no longer
present. Consistent with this membrane recalcitrance hypothesis
is that the number of identifications of trypsin-digested peptides
sourced from larger proteins also decreased for most cellular
compartments other than membranes and the chloroplast
(Figure 2). However, there were still some trypsin-digested
peptides at day 12 for components from the mitochondria and
cytoplasm, suggesting that perhaps cellular location alone does
not necessarily determine whether a protein or peptide will
survive the initial stages of environmental degradation.

The number of trypsin-digested peptides of cytoplasmic
location also dropped precipitously after day 2, while chloroplast
and membrane peptides remained abundantly detectable
throughout the 12-day experiment (Figure 2). This pattern
indicates a shift in the detrital protein pool from one that mimics
an intact living cell to one that is dominated by proteins that
are associated with membranes. These findings are consistent
with Laursen et al. (1996), who showed membrane proteins to
be the more refractory fraction of phytoplankton protein by
physical separation of subcellular fractions of phytoplankton
cells. Their study reported higher proteolysis rate constants for
the cytoplasmic fraction (>1.2 h−1) than for the membrane
fraction (0.2–1 h−1), which correlated negatively with the ratio
of chlorophyll to pheophytin (Laursen et al., 1996).

Studies of algal nutritional value to zooplankton and other
animals also suggest preferential soluble protein consumption.
In an evaluation of elemental uptake from diatom detritus,
Reinfelder and Fisher (1991) showed that metal assimilation
efficiencies of marine copepods were directly related to the
cytoplasmic content of diatoms. This relationship indicates
that the copepods sourced nearly all of their nutrition
from the diatom cytoplasm rather than from other cellular
constituents (Reinfelder and Fisher, 1991). Our experiment
didn’t involve zooplankton grazing, so these results cannot
easily be extended to those settings since larger organisms’
gut enzymes and mechanical maceration strategies were not
part of our experimental system. However, the selective
consumption of cytoplasmic protein components does indicate
that membrane protein solubility or structure are factors in
differential consumption by bacteria.

Preserved Protein Motifs
To further interrogate the proteinaceous material that survived
the degradation, five classes of peptide secondary structure were
evaluated: random coil, A-helices, β-strands, transmembrane
A-helices, and transmembrane β-strands. Closely set A-helices
contain strong hydrogen bonding between weakly polar (Ser,
Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg,
Lys) amino acid residues of neighboring A-helices (Liu et al.,
2004). Helices are commonly found in transmembrane proteins
(Sakai and Tsukihara, 1998; Stevens and Arkin, 2000), and their
ability to bend can account for the hydrophobic mismatch of
the lipid bilayer (Yeagle et al., 2007). In contrast, β-strands lay
relatively flat and have been hypothesized in a marine context to
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FIGURE 2 | Bar plots showing the distribution of diatom peptides from different cellular compartments over a 12-day degradation experiment, as determined by
peptide gene ontology (GO) terms annotations. Peptide distributions are shown as overall percentages of peptides for each timepoint and for the reference
proteome. Shown as context are peptides identified in a proteome of Thalassiosira pseudonana cultures from Dyhrman et al. (2012) (A). Trypsin-digested (B) and
naturally digested fractions (digestion only by natural microbial community, (C) are shown separately. Numbers of peptides at each timepoint and treatment are
shown in Table 1. GO terms shown were condensed from a broader set to eliminate redundancy for ease of visualization using REViGO (http://revigo.irb.hr/) and
further manually organized into broad categories.

adhere to mineral surfaces—ultimately aiding to their protection
and resulting in enhanced preservation (Shamblin et al., 1998;
Oleschuk et al., 2000; Ovesen et al., 2011). “Random coil” is not
a true secondary structure, but rather is an aggregate term for
short sequences where there is an absence of a helix or sheet
character (Smith et al., 1996). Benchmarking of the Proteus2
machine-learning algorithm we use here showed per-residue
prediction accuracy to be 87–91% for transmembrane A-helices,
86% for transmembrane β-strands, and 88% for non-membrane
secondary structures (Montgomerie et al., 2008).

We note a progressive change in secondary structure
distribution as the degradation proceeded, with membrane A-
helices becoming more important (Figure 3). At the same time,
β-strands became a less common motif. This trend in secondary
structure distributions is consistent with the GO term evidence
indicating that membrane proteins are preferentially retained
in the system and suggests that their tightly wrapped, difficult
to denature, secondary structure could be a factor aiding in
preservation. Random coils are the most common motif, and they
do not change in relative importance over time, indicating that
they are not particularly prone to resistance or degradation in
this experiment, or that the coil category is too broad to capture
any selective processes. These results are generally consistent with
those of Nunn et al. (2010) in a similar degradation of a marine
diatom. They identified 23 and 4 diatom peptides after 10 and
23 days of incubation with a seawater microbiome, respectively.
Of the surviving 4 diatom peptides at the end of the experiment,
2 had transmembrane domains (Nunn et al., 2010).

To further investigate the theory that secondary structure
is related to enhanced preservation of membrane protein
components, we also compared the predicted secondary structure
of just algal chloroplast/integral component of membrane
peptides and algal cytoplasmic peptides that are identified at
each time point of the degradation (Figure 3). Chloroplast and
membrane peptides, the bulk of diatom peptide identifications
on day 12 (from 167 individual proteins across both trypsin
and naturally digested fractions), were 50.7% coil, 36.3% A-
helix, 3.02% β-strand, 9.93% transmembrane A-helix, and 0%
membrane β-strand. In comparison, the cytoplasmic peptides
(from 98 proteins across both trypsin and naturally digested
fractions) identified in the initial day 0 proteome were
comparatively more enriched in β-strands and depleted in A-
helices and transmembrane A-helices, with 48.3% coil, 23.8%
and. In compariβ-strand, 0% transmembrane A-helix, and 0%
transmembrane β-strand. Supporting the theory that A-helices
are linked to preservation is that the few surviving cytoplasmic
peptides on day 12 (3 proteins total, all in the trypsin-digested
fraction) had 10% more A-helix character than the initial day
0 cytoplasmic peptides, at 40.6% coil, 33.1% A-helix, 26.3%
β-strand, 0% transmembrane A-helix, and 0% transmembrane
β-strand (Figure 3). These findings are consistent with the
notion that hydrophobic interactions appear to be important in
preserving membrane-associated proteins and peptides during
early diagenesis (Nguyen and Harvey, 2001; Nunn et al.,
2010). Together, peptide subcellular localization annotations and
secondary structure analyses connect previous observations of
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FIGURE 3 | (A,B) Secondary structure predictions of algal peptides identified in trypsin-digested and naturally digested fractions at four points during the 12-day
degradation experiment. Secondary structure motifs (coil, A-helix, β-strand, membrane A-helix, membrane β-strand) were predicted from full protein sequences using
Proteus2 (Montgomerie et al., 2008) and the relative contribution of motifs determined by the identifying peptide’s relative peptide area abundance. (C,D) Secondary
structure predictions of just algal chloroplast and membrane peptides and algal cytoplasmic peptides that are identified at each time point of the degradation. For
this comparison, proteins identified in the trypsin-digested and naturally digested fractions were combined and adjusted by relative peptide area abundance.

membrane-associated protein selective preservation for bacteria
(Nagata et al., 1998; Kaiser and Benner, 2008; Jiao et al., 2010) and
phytoplankton (Laursen et al., 1996; Nguyen and Harvey, 2001;
Wolfe et al., 2006) to molecular characteristics like 3-dimensional
shape and hydrophobicity.

While subcellular location and secondary structure may be
significant components that allow certain proteins to resist
the early stages of degradation, two other factors have been
observed in the literature; an abundance of post-translationally
modified amino acids in degradation-resistant material and
the enrichment of certain amino acids, like glycine, in the
recalcitrant proteinaceous pool (by measurement of total
hydrolyzable amino acids).

Post-translational Modifications of
Amino Acids
Protein PTMs such as oxidation, phosphorylation, and
methylation, play critical roles in a diverse range of biological
processes like signaling, protein activity and transport, and
regulation of gene expression (Shen et al., 2008; Cain et al., 2014).

PTMs are also associated with in vivo protein recycling and cell
senescence (Cain et al., 2014; Dhillon and Denu, 2017). For these
purposes, the “PTM” umbrella includes modifications to amino
acids that could occur in detritus, including those due to protein
consumption or abiotic transformations.

In the marine environment, PTMs have been linked to
degradation and early diagenesis. For example, the amino
acid beta alanine accumulates in the hydrolyzable phase of
marine sedimentary organic matter via modification of aspartic
acid (Cowie and Hedges, 1994). Modification of the nitrogen-
containing side chains of glutamine, asparagine and arginine can
lead to the accumulation of peptides containing deaminated side
chains within anoxic marine sediment pore waters (Abdulla et al.,
2018). We recently observed deamidated peptides in the sinking
POM from the eastern tropical North Pacific oxygen deficient
zone (Duffy et al., in press), where Van Mooy et al. (2002)
hypothesized that amino acids could be selectively deaminated
in order to provide reduced nitrogen to fuel chemoautotrophic
processes (Van Mooy et al., 2002). In laboratory experiments,
Keil and Kirchman showed that methylated peptides were
accessed less efficiently by bacteria than non-methylated peptides
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(Keil and Kirchman, 1992). Glycan modifications of proteins
contribute to stability, a mechanism that’s been used to increase
the shelf life of protein and peptide-based pharmaceuticals
(Zhou and Qiu, 2019). Indeed, Keil and Kirchman showed that
glycosylated ribulose-1,5-bisphosphate (RuBisCo) was degraded
100 times more slowly than its unmodified counterpart (Keil
and Kirchman, 1993). All together, the marine literature suggests
that PTMs are highly relevant to protein degradation, as the by-
products of protein degradation processes and/or as potential
factors in degradation resistance.

In the present study, we first performed a non-discriminatory
“open” search of thousands of possible PTMs in the UniMod
database using PeaksPTM (see above in “Materials and
Methods”). We then selected only the 10 most frequently
occurring mass modifications in the open search results for the
suite of PTMs in the ultimate database and de novo peptide
searches. Our goal was to identify patterns in PTM distribution
to learn more about their roles in degradation and preservation.
To that end, we wanted to distinguish between PTMs present
in algal protein prior to degradation and PTMs associated with
the degradative process. We compared the PTMs observed in the
naturally digested peptide pool, which should represent proteins
being actively degraded by the bacteria, against the trypsin-
digested peptides. This comparison was done for only the algal
protein; no bacterial proteins were included in this differential
analysis of PTMs (Figure 4).

Oxidation PTMs were generally enriched in the trypsin-
digested component, implying that these modifications occurred
within the cell prior to heterotrophic attack. Generally, they
did not increase in relative abundance over time in the
trypsin-digested peptide pool, suggesting that oxidations don’t
meaningfully impact the lability of proteinaceous material
(Figure 4). It’s notable that during the experiment, chloroplast
protein-derived peptides increasingly became dominant among
identifications (Figure 2). The algal culture was exposed to light
before the degradation experiment in the dark. Photosynthesis
as an oxygenic process produces active oxygen species and
radicals which can cause damage to cells. Oxidations of amino
acids are frequent PTMs in photosynthesis-associated proteins
(Aro et al., 2005; Galetskiy et al., 2011). Similarly, lysine
acetylation of chloroplast proteins has been demonstrated in
plants (Lehtimäki et al., 2015) and in diatoms (Chen X.-H. et al.,
2018), though the PTM frequently occurs elsewhere in the cell
(Chen Z. et al., 2018). The abundance of thylakoid membrane
and chloroplast-associated proteins that accumulate due to
preferential preservation (Figure 2) is likely why oxidations and
lysine acetylations are dominant PTMs of the trypsin-digested
peptides (Figure 4).

In contrast, two PTMs were strongly associated with
the presumably more detrital naturally digested peptides:
deamidation of asparagine and arginine methylation (Figure 4).
This observation that asparagines and arginines are more
modified in detrital proteins has several possible explanations.
These modifications could have occurred within the living
cell, resulting in a pool of protein that was easily accessible,
which is why they were found more in the naturally degraded
peptide pool. Alternatively, these PTMs might have been created

FIGURE 4 | Post-translational modifications (PTMs) of algal peptides at four
time points along the 12-day incubation. Shown are the difference between
trypsin-digested naturally digested peptides for the 10 variable modifications
included in the database searches and de novo sequencing parameters,
which were selected from preliminary open modification searches of the mass
spectral data (see section “Materials and Methods”): (A) methionine oxidation,
(B) asparagine deamidation, (C) arginine methylation, (D) lysine methylation,
(E) glutamine cyclization (pyro-glutamation), (F) lysine oxidation, (G) arginine
oxidation, (H) proline oxidation, (I) tyrosine oxidation, and (J) lysine
acetylation. PTM distributions are expressed as the differences in percent of
residue modification in the entire peptide pool (database and de novo
sequences) as corrected by relative peptide area abundance. Thus, positive
values indicate the PTM is relatively enriched in the trypsin-digested peptides,
and negative values mean the PTM is relatively enriched in the naturally
digested peptides. Bacterial peptides were not included in the PTM analysis.
Y-axis scales are the same between columns (A–J).

during the degradation process and could accumulate because
once created they are further degraded slower than their
unmodified counterparts. This latter explanation would account
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for the effective accumulation of deamidated peptides in both
sediment pore waters (Abdulla et al., 2018) and in sinking
particulate matter (Duffy et al., in press). Thus, we hypothesize
that deamination occurs during degradation, though continued
research is warranted.

Unlike deamidation, methylation most likely occurs within
the living cell, where it is a common PTM that is used as
a control of numerous cellular functions (Ghesquière et al.,
2011). Methylated peptides have been shown to be inefficiently
assimilated and degraded by heterotrophic bacteria (Keil and
Kirchman, 1992), suggesting that PTMs produced within
living cells may also play a role in determining the rate of
protein degradation.

Our open PTM searches did not yield high levels of protein
glycosylation, a very broad classification of modification that
entails a sugar-amino acid bond. Though glycosylation is an
extremely common enzymatic PTM in both eukaryotes and
prokaryotes, the non-enzymatic form of the reaction (sometimes
called “glycation,” or the Maillard reaction) has been posited
as a mechanism of environmental protein preservation via
geopolymer formation (Collins et al., 1992; Burdige, 2007).
Glycosylation has been shown to decrease microbial protein
degradation rates in incubations (Keil and Kirchman, 1993)
and has been found in high abundance in seawater (Yamada
and Tanoue, 2003). Peptides with glycosylations are difficult to
ionize and detect under the mass spectral conditions we used
here (Alley et al., 2013), and to evaluate them more accurately
would require different proteomics preparation techniques (e.g.,
as performed by Moore et al., 2014). Given the findings here
and in the literature, more targeted work is needed to better
understand the effect that PTMs have during the early stages of
protein degradation.

We examined the PTM distribution across peptides from
different subcellular compartments (Supplementary Figure 1),
and found that (1) most modified peptides were from cell
membrane and cytoplasm proteins, and (2) the relative
distribution of PTMs across the subcellular compartments did
not change significantly over the 12-day degradation, even as the
overall distribution of peptides from the subcellular locations did
change to become more membrane- and chloroplast-dominated
(Figure 2). This result suggests that mechanisms other than
modification status may be more important to overall preferential
degradation pattern in this system, though the enrichment
of certain PTMs in the trypsin-digested peptides or naturally
digested peptides (Figure 4) points to subtler preferential
degradation patterns amongst modified peptides.

Amino Acid Compositions
One of the deepest sets of literature related to protein degradation
in marine systems is that of the “total hydrolyzable amino acid”
pool (Wakeham et al., 1997; Dauwe and Middelburg, 1998;
Dauwe et al., 1999; Lee et al., 2004). THAA analyses show clear
trends during long-term carbon degradation and preservation
including an accumulation of the amino acids glycine, serine and
threonine (Dauwe and Middelburg, 1998), and the creation of the
non-protein amino acids beta-alanine and gamma-aminobutyric
acid from aspartic and glutamic acids (Cowie and Hedges, 1994).

Despite the widespread use of degradation indices derived
from THAA analyses, it has been difficult to reconcile changes
in bulk amino acid compositions to known protein amino
acid compositions, especially during the very early stages of
degradation (Keil et al., 2000). We compared the amino acid
composition of the peptides identified during the degradation
experiment to the THAA pool, which I measured independently.
To facilitate this comparison, we plotted mole fractions of
amino acids in the THAA against those in the identified
algal peptides, combining the naturally and trypsin-digested
amino acid compositions adjusted for relative peptide abundance
(Figure 5). The near 1:1 agreement between the two approaches
indicates two things: (a) the protein amino acid compositions
measured using the newer “omic” approach can be effectively
integrated into the large body of literature based on THAA
analysis, which will become useful as peptidomic approaches are
applied to samples further along the degradation pathway (e.g.,
sediment samples); and (b) while the omic approach identifies
specific ways in which protein undergoes degradation in the
ocean, the early stages remain remarkably “non-selective” at the
bulk molecular level (Hedges et al., 2001).

Bacterial Community
The microbial inoculum for the degradation experiment was
sourced from the Damariscotta River Estuary, whose marine
waters come from the Gulf of Maine. Heterotrophic bacteria
grew exponentially through the middle stages of the experiment
(Figure 1). A peptide-based lowest common ancestor analysis
was performed using UniPept (Gurdeep Singh et al., 2019) to
assign bacterial taxa to the lowest phylogenetic level possible. The
taxonomic hits were then adjusted to account for peptide spectral
abundance and aggregated at the class level (Figure 6A). There is
precedence for using label-free metaproteomic data for microbial
biomass determinations (Kleiner et al., 2017), and here we use the
approach to learn about the community of microbes degrading
the algal detritus.

There is taxonomic overlap of the initial composition in
this study to that of a pyrosequencing survey of planktonic
microbes at three stations in the Gulf of Maine (Li et al., 2011),
though it is worth noting that no estuarine sites were included
in that work. We found the microbial community at the initial
time point was dominated by Gammaproteobacteria (∼60% of
the peptides), with notable contributions of Cytophaga (∼5%),
Bacteroidia (∼2%), and Alphaproteobacteria (∼2%) (Figure 6A).
While Li et al. (2011) survey found clades of SAR11 to dominate
surface seawater in the open waters of the Gulf of Maine,
some Gammaproteobacteria are symbionts of diatoms (Amin
et al., 2012). Since we didn’t sample the seawater itself for
peptidomics, just the filtered diatom rot slurry, the dominance of
a diatom symbiont makes sense. During the 12-day experiment,
the microbial community composition changed minimally, with
two exceptions: Firstly, there was a 10-fold increase of peptides
that were bacterial but could not be uniquely identified at the class
level or below, from 2.2% of peptides on day 0 to 22% of peptides
by day 12 (Figure 6A). At the same time, the contribution of
low abundance (<0.5% of all peptides) classes increased from
0.53% on day 0 to 5.4% on day 12 (Figure 6A). Both increases,
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FIGURE 5 | Mole fractions of individual amino acids from all four degradation time points as derived from total acid hydrolyzable amino acid analysis (THAA, x-axis)
and tandem MS/MS-based proteomics (Peptide, y-axis). The dashed 1:1 line represents perfect agreement between approaches. The peptide amino acid
compositions plotted here are derived from both trypsin-digested and naturally digested proteomics fractions. Label-free peptide quantitation was determined by the
relative peptide area abundance.

in non-specific bacterial peptides and in low-abundance class
peptides, are potential indications that the diversity of the
bacterial community was increasing during the experiment.

The increase of non-specific bacterial peptides can be
explained in two ways. Most likely, a true increase in diversity
and richness resulted from a broader array of shared, conserved
proteins being produced in the system by related bacteria.
An alternative hypothesis is that there was an ingrowth of
bacterial necromass generating degraded bacterial peptides that
are no longer very taxonomically specific. Bacterial necromass
in this case could be from organisms in the seawater inoculum
or bacteria present during the diatom culture growth. For
instance, Gammaproteobacteria are known to thrive within the
phycosphere of diatoms (Amin et al., 2012), and their peptide
abundance peaked at day 2 when the active bacteria were growing
exponentially. It is difficult to discern which of these hypotheses
is correct and further work will need to be done to evaluate the
processing of bacterial detritus by other bacteria. Nonetheless, the
overall taxonomic changes observed in the bacterial peptidome
during the 12 days were minimal.

Unlike the somewhat ambiguous taxonomic information
within the bacterial peptidome, biological process GO terms
associated with the bacterial peptides provide a clearer view
of how the bacterial community responded to the algal
detritus (Figure 6B). The most commonly detected GO terms

are associated with transmembrane transport, carbohydrate
metabolism, and DNA replication and transcription (Figure 6B).
These are the terms most strongly associated with bacterial
growth (Mikan et al., 2020) and suggest that most of the bacterial
peptides detected are from living bacteria. This strengthens
support for the hypothesis that the Gammaproteobacteria in the
samples are for the most part living and not detrital.

Our bacterial functional data are generally consistent with
recent work by Mikan et al. (2020), who used metaproteomic
tools and a GO-term based functional analysis to evaluate
the heterotrophic bacterial response to a pulse of detrital
organic matter in two Arctic microbiomes during 10-day
shipboard incubations. In that study, the bacterial community
increased protein synthesis, carbohydrate degradation, and
cellular redox processes while simultaneously decreasing C1
metabolism (Mikan et al., 2020). Throughout this experiment we
observe steady levels of transmembrane transport and protein
metabolism terms. Carbohydrate metabolic process GO terms
maximize in the first 2 days of the degradation, with increasing
biosynthesis GO terms by day 12 (Figure 6B). Mikan et al.
(2020) suggested that the bacterial community shifted their
carbon acquisition strategies intracellularly before there were
large shifts in the taxonomic structure of the community.
Without a paired metagenome or metatranscriptome with which
to perform proteomic database searches, these bacterial peptide
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FIGURE 6 | Bacterial progression of the 12-day algal degradation. (A) Relative abundance contribution of the major bacterial taxonomic classes (>0.5%) from the
time point proteomes adjusted by relative peptide area abundance. (B) The percentage of the total number of bacterial peptide biological process gene ontology
(GO) terms. GO terms shown were condensed from a broader set to eliminate redundancy for ease of visualization using the REViGO (available http://revigo.irb.hr/)
and further manually organized into broader categories.

data and paired GO term data are not as complete, but show
the same general trends, lending further support to the notion of
Mikan et al. (2020) that functional composition and redundancy,
not taxonomy, may be the most relevant factor when evaluating
how effectively organic matter is or will be processed by
bacteria in the ocean.

CONCLUSION AND FUTURE
DIRECTIONS

In this study we evaluated proteinaceous material in a marine
system both with and without the use of trypsin as an extraction
and identification tool. To our knowledge, this is the first
such attempt to disentangle proteins that are being degraded
by microbes from those that are resistant to degradation.
We show that proteins from specific cellular locations are
preferentially preserved during the initial stages of degradation.
As has been hypothesized and demonstrated for bacterial

membrane proteins (Nagata et al., 1998; Kaiser and Benner,
2008; Jiao et al., 2010) and algal membrane proteins (Laursen
et al., 1996; Nguyen and Harvey, 2001; Wolfe et al., 2006),
we conclusively illustrate that proteins associated with diatom
chloroplasts and membranes resist initial degradation better
than those without such association. The many membrane-
associated and few cytoplasm peptides that resist degradation also
are relatively enriched in A-helices and depleted in β-strands,
consistent with the cellular location data since A-helices are
enriched in membrane proteins. However, the extent to which
A-helices themselves lead to degradation resistance remains
to be more thoroughly evaluated, as (1) A-helices are not
exclusive to membrane proteins and (2) there could be other
reasons for membrane protein survival over time that causes
membrane proteins’ A-helix rich motifs to become enriched in
detrital material.

The novel application of proteomics without the use of
trypsin also allowed for the evaluation of how PTMs relate to
protein degradation. We found that the oxidation and acetylation
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PTMs observed likely originated within the living cell, with
only asparagine deamidation and arginine methylation being
predominantly associated with the degraded peptide pool. We
hypothesize that PTMs have an impact on the bioavailability of
peptides during early diagenesis, but again more work is needed
to evaluate the extent to which PTMs provide protection. In
all, we add to earlier evidence of selective protein degradation
mechanisms enabled by proteomic techniques (Dong et al., 2010;
Nunn et al., 2010; Moore et al., 2012, 2014; Bridoux et al., 2015).
Continued advancements in metaproteomic instrumentation
and computational capabilities have great potential to better
our understanding of protein degradation and preservation
dynamics in the ocean.
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