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Saline-alkaline waters are stressful environments where most aquatic animals can’t
survive normally, and alkalinity is one of the key limited environmental factors.
Due to strong adaptability to environment,the ridgetail white prawn Exopalaemon
carinicauda is a potential good species suitable for large-scale culture in saline-
alkaline waters. Exploring its alkaline adaptability mechanism will help to guide more
marine crustaceans to saline-alkaline culture. In this study, an integrative analysis of
the gill-specific transcriptome and proteome at 0, 12, and 36 h after alkalinity stress
was performed to identify important regulators and pathways involved in alkalinity
adaption of E. carinicauda. A total of 3,157 differentially expressed genes (DEGS)
and 443 differentially expressed proteins (DEPs) were identified at 12 and 36 h
compared with O h. Base on the transcriptome analysis, the Gene Ontology (GO)
enriched terms were mainly related to ion transport, including “calcium-transporting
ATPase activity,” “ATPase coupled ion transmembrane transporter activity,” “divalent
inorganic cation transmembrane transporter activity,” etc., and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways mainly refer to the processes of endocrine
system at both 12, and 36 h. Based on the proteomic analysis, KEGG pathways
related to lipolysis and amino acids metabolism were significantly enriched at 12 h,
and carbohydrate metabolism and immune response were significantly enriched at
36 h. There were significantly up-regulated expressions of ion transport related genes
including aquaporin, carbonic anhydrase, ammonium transporter Rh type A-like,
Nat/HT-exchanger, etc., as well as ion transport proteins including V-type proton
ATPase 116 kDa subunit a-like isoform X1, sodium-potassium ATPase beta, vesicle
associated membrane protein, etc. after alkalinity exposure, which indicating their
important roles in response to alkalinity stress. The results of integrated analysis
between proteome and transcriptome showed that up-regulated DEG/DEP (aldehyde
dehydrogenase) was significantly enriched at 12 h and the up-regulated DEG/DEP
(peptidylglycine alpha) was significantly enriched at 36 h, suggesting the two molecules
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may be critical in response to alkalinity change. This study reveals the first time-course,
gill-specific, combined transcriptomic and proteomic profiling associated with alkalinity
adaption of E. carinicauda and provides new insights into the mechanisms underlying
the molecular response to alkalinity stress in shrimp.

Keywords: Exopalaemon carinicauda, alkalinity stress, transcriptomic, proteomic, adaption mechanism

INTRODUCTION

With the influence of climate, topography and other natural
and human factors, the global soil and water salinization is
increasing, which can be found in more than 100 countries on
six continents (Chang and Liang, 2020). There are 244 million
acres of saline-alkaline land and 114 million acres of low-lying
saline-alkaline water area in China, which are widely distributed
in 19 provinces, cities and autonomous regions in northwest,
northeast and north China (Yao et al., 2010; Lin et al., 2013; Fan
et al., 2021). Saline-alkaline waters are stressful environments in
which only relatively few organisms are able to survive and breed,
such as Gymnocypris przewalskii, Leuciscus waleckii, etc. (Wang
et al., 2003; Dong et al, 2020; Li H. et al., 2020). Alkalinity
is one of the key environmental factors in saline-alkaline water
that can have direct effects on the physiological status of aquatic
animals (Yao et al., 2010, 2012; Gonzédlez-Vera and Brown, 2017;
Zhao et al., 2020). Maoxiao et al. (2018) increased saline-alkaline
water from 1.22 to 45.00 mmol-L~! and found that the survival
rate of Sinonovacula constricta decreased significantly. When
the carbonate alkalinity was 8.0 and pH was 8.2 for the long-
term saline—alkaline toxicity test, S. constricta highly toxic death
and growth inhibition occurred in the first month (Maoxiao
et al., 2018). Through an experiment of sodium bicarbonate
alkalinity stress, the gill filament of L. waleckii became fuller,
the gill lamella became longer as well as the interval between
lamellae became larger (Shan et al., 2020). When fish are exposed
to water with high alkalinity, the surface of fish would secrete
a lot of mucus, resulting in hemorrhoids bleeding and even
death occur (Tiffany et al., 2009; Ouellet et al., 2013). Sun et al.
(2020) reported that carbonate alkalinity can change the normal
metabolism of crucian in terms of changing the osmotic pressure
regulation capacity, antioxidant capacity, ammonia metabolism
at low concentrations, and as the concentration of alkalinity
increases, various metabolic processes are inhibited, causing
chronic damage to the body (Sun et al, 2020). Therefore,
exploring more species suitable for saline-alkaline aquaculture
is an effective strategy for the development and utilization of
saline-alkaline water.

As one of the important shrimp species, the ridgetail white
prawn Exopalaemon carinicauda is widely distributed in the
Yellow Sea and Bohai Sea, which occupies a key position in
the field of shrimp mariculture in eastern China (Feng et al.,
2019a). This species has many advantages such as rapid growth,
good reproduction capabilities and strong disease resistance (Li
et al, 2015). In addition, it adapts well to a wide variety of
environmental conditions (salinity 3-30, pH 4.8-10.5, alkalinity:
1.4-10.0) (Ge et al, 2019). Recently, E. carinicauda has been
successfully cultured and bred in the saline-alkaline ponds at

Dongying City, Shandong province (approximate salinity 5-
8, pH 8.5-9.5, carbonate alkalinity 1.4-8.0 mmol-L™!) and
Cangzhou City, Hebei province (approximate salinity 10-25,
pH 8.3-9.2, carbonate alkalinity 3.5-13.0 mmol-L™!), China,
suggesting that it has a high tolerance to saline-alkaline stress
(Ge et al., 2019). In view of these, E. carinicauda is a potential
good species suitable for large-scale cultivation in saline-alkaline
waters. Exploring its saline-alkaline adaptability mechanism will
help to guide more marine economic crustaceans to saline-
alkaline aquaculture.

At present, the studies on the mechanism of saline-alkaline
tolerance mainly focus on the fish survived in this harsh
environment. For example, Magadi tilapia (Alcolapia grahami),
which inhabits in Magadi lake (pH = 10.0, salinity 18),
increases tolerance to high pH in blood and tissues facilitated
by high water alkalinity, furthermore it has developed unique
strategies to overcome problems related to ammonia excretion.
E.g., excretion of nitrogen mainly in form of urea instead of
NH;3/NHy ™" (contrary to almost all other teleosts) (Pértner et al.,
2010). G. przewalskii have the capacity to tolerate combined
high salinity and alkalinity, which is the core of the entire
ecosystem in Qinghai Lake (salinity 13-15, alkalinity 26-
32 mmol-L~1, pH 9.1-9.5) (Yao et al,, 2016; Li H. et al., 2020).
The previous experimental results showed that alkaline stress
inhibited the ammonia excretion of the naked carp, and deal
with environmental changes by antioxidant and phosphorylation
stress response (Yao et al., 2016). Recently, studies on L. waleckii
that inhabit Dari Lake (alkalinity 53.57 mmol-L~!, pH 8.25-
9.6) have been performed, and findings revealed that there are
substantial genome and expression changes that allow L. waleckii
to cope with extreme alkaline environments (Chen et al,
2019; Dong et al., 2020), and unveiled significant expression
differences in genes that encode important modulators of stress
adaptation and tolerance, including carbonic anhydrases, heat
shock proteins, superoxide dismutase, etc. (Xu et al., 2013; Lee
etal.,, 2017). As for crustaceans, there are many researches on the
alkalinity tolerance range and physiological change of crustacean,
but few researches on the molecular mechanism of saline-
alkaline tolerance. Gonzédlez-Vera and Brown (2017) found
that alkalinity levels of 250 mg-L™! as CaCOj; were lethal for
Macrobrachium rosenbergii (Gonzalez-Vera and Brown, 2017).
Yang et al. (2004) conducted carbonate alkalinity toxicology
experiments on juvenile Litopenaeus vannamei and found that
the safe concentration (SC) was 2.90 mmol L~! under the
conditions of pH 7.50-8.72 and salinity 3.29-4.84 (Yang et al,,
2004). By using suppressive subtractive hybridization, Yao et al.
(2010, 2012) found that under high carbonate alkalinity stress,
L. vannamei controlled homeostasis by increasing ion regulation,
and the immune function was inhibited. Ge et al. (2019) found
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that three kinds of carbonic anhydrase (CA) were cloned in
E. carinicauda, and CAc and CAg were proved to be important
regulators under saline-alkaline stress. More information on the
mechanisms of saline-alkaline tolerance in crustaceans needs
to be uncovered.

Recently, RNA sequencing (RNA-seq) transcriptomics and
Tandem Mass Tags (TMT) proteomics have been widely used
to study gene and protein expression profiles for understanding
biological processes of crustaceans in response to environmental
stress (Buckley et al., 2016; Christie et al., 2017). Thus in this
study, we employed RNA-Seq and TMT technics to reveal the
transcriptome and proteomics differences of E. carinicauda at
different alkalinity stress time. The genes, proteins and pathways
responding to alkaline stress were analyzed comprehensively.
The discoveries of this study will be contributed to illustrate
the molecular mechanism of crustaceans adapting to saline-
alkaline stress.

MATERIALS AND METHODS

Sample Collection

The healthy adult E. carinicauda (body length 5.65 £ 0.5 cm,
body weight 1.52 + 0.38 g) were collected from the Haichen
Aquaculture Co., Ltd., in Rizhao, China. All shrimps were
acclimated in the normal sea water (salinity 30, pH = 8.2,
carbonate alkalinity 1.0-2.0 mmol-L™!) for 2 weeks before the
experiment. According to the 72 h half lethal concentration
of carbonate alkalinity (LCsg) 8.26 mmol-L~! explored by our
research group in the past, the experimental shrimps were
subjected to acute carbonate alkalinity stress (Li M. D. et al,
2020). Before formal experiment, the salinity-alkalinity solution
was firstly prepared using sodium bicarbonate (NaHCO3) power
for precipitation at least 24 h, and the concentrations were
expressed as 1 mmol-L~!. In formal experiment, we adjusted the
water alkalinity by NaHCOj3 saturated solution twice a day for
maintaining the original concentrations at 8-9 mmol-L™!. We
sampled the gills subject to treatment for 0, 12, and 36 h, and
frozed them in liquid nitrogen as well as stored them at -80°C for
extracting protein and RNA. Gills from three shrimp were pooled
into one biological replicate and six biological replicates for each
time point were prepared. Half of the samples were sequenced for
transcriptome and half for proteome.

RNA Extraction, Sequencing, and de

novo Assembly

The TRIzol® reagent (Invitrogen, Carlsbad, CA) was used to
extract the total RNA from gill samples according to the
manufacturer’s protocol and then detected by 2100 bioanalyzer
(Agilent) and nd-2000 (nano drop technologies) to concentration
and quality of total RNA. ¢cDNA library was constructed for
each of the three pooled samples and sequenced on an Illumina
HiSeq Xten/NovaSeq6000 according to the manufacturer’s
instructions at the GENEWIZ (Genewiz, Suzhou, China).
Before assembly, the lower quality sequences and 5 adaptor
contaminants from the sequence raw reads were removed by
data cleaning analysis. Subsequently, the high-quality reads

were pooled together and assembled using Trinity package with
default parameters to construct a pool of unique consensus
sequences to serve as a reference sequence set. In this study,
the original transcriptome data were stored in the National
Center for Biotechnology Information (NCBI), with the accession
number PRJNA756619.

Protein Extraction, Tandem Mass Tags
Labeling, and LC-ESI-MS/MS Analysis

Fifty milligrams tissue was separated from each frozen specimen
on dry ice. Subsequently, these tissues were used for proteomic
analyses. The gill tissues samples were ground into a fine power
in liquid nitrogen. Then, the power was suspended in lysis
buffer [1% sodium deoxycholate (SDS), 8 M urea] for inhibiting
protease activity. The mixture was submerged at 4°C for 30 min
and immediately homogenized using an ultrasound for 2-3 cycles
at a speed (40 kHz vibrational frequency and 40 W) at 60 s per
cycle. Samples were centrifuged at 16,000 x g for 30 min at 4°C
after ultrasonicated. The supernatant was collected for extracting
the desired 2 mg ml~! of protein into a clean Eppendorf tube,
which followed by BCA Protein Assay Kit (Pierce, Thermo
Fisher Scientific, United States) in line with the instructions of
manufacturer. Finally, these samples were storage at -80°C.

Sixty micrograms protein from each sample with the master
mix were added to cold acetone (sixfold volumes of sample) at
-20°C for 4 h. After centrifugation at 10,000 x g for 20 min
at 4°C, the pellet was re-suspended with 100 pL 50 mM
riethylammonium bicarbonate (TEAB) buffer. Subsequently, it
was digested overnight at 37°C by adding 1.1 pg of sequencing
grade modified porcine trypsin (Promega, V5113). TMT reagents
were reconstituted in 40 wL anhydrous acetonitrile. Then the
digested peptides were transferred to the TMT reagent vial, while
incubated at room temperature for 1 h. In our study, nine samples
of gills were harvested and labeled as (0 h)-1, 2, 3, (12 h)-1, 2,
3 and (36 h)-1, 2, 3. Finally, all samples were pooled, desalted
and vacuum-dried.

For data acquisition, Proteome Discoverer (Thermo Fisher
Scientific, Version 2.2) was used for generating raw data.
ProteomeXchange dataset PXD028137 has been reserved by the
PRIDE repository for a dataset. Labeled peptides were analyzed
by online nano flow liquid chromatography tandem mass
spectrometry performed on an 9RKFSG2_NCS-3500R system
(Thermo Fisher Scientific, United States) connected to a Q
Exactive Plus quadrupole orbitrap mass spectrometer (Thermo
Fisher Scientific, United States) through a nanoelectrospray ion
source. The Q Exactive Plus was operated in the data-dependent
acquisition mode (DDA) to automatically switch between full
scan MS and MS/MS acquisition. The survey of full scan MS
spectra (m/z 350-1,300) was acquired in the Orbitrap with 70,000
resolutions. The automatic gain control (AGC) target at 3e6 and
the maximum fill time was 20 ms. Then the top 20 most intense
precursor ions were selected into collision cell for fragmentation
by higher-energy collision dissociation (HCD). The MS/MS
resolution was set at 35,000 (at m/z 100), the automatic gain
control (AGC) target at 1e5, the maximum fill time at 50 ms, and
dynamic exclusion was 18 seconds.
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Data Analysis

In order to remove technical sequences, including adapter, poly-
N and the quality of bases lower than 20, the pass filter data
in the fastq format were processed by Trimmomatic (v0.30) to
provide high-quality, clean data. Meanwhile, all the downstream
analyses depended on high-quality clean data. Firstly, he trimmed
reads were aligned to the databases [NR, Swiss prot, Pfam,
COG, Gene Ontology (GO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG)]. It allows multiple alignments and
up to two mismatches when mapping reads to the reference.
Secondly, differentially expressed gene (DEG) was screened by
the DESeq2 and Edger. FPKM (Fragments Per Kilobases per
Millionreads) was used to normalized the data. After adjusting by
BH for controlling the false discovery rate, the differential gene
screening criteria was P < 0.05 and |log,FC| > 1. Differentially
expressed proteins (DEPs) were those exhibiting P < 0.05 and
fold change (FC) > 1.20 or < 0.87 between groups. Finally,
gene Set Enrichment Analysis (GSEA) was also used to detect
the expression changes of the whole gene set. Annotation of
all identified proteins was performed using GO'-* and KEGG
pathway.’

Real-Time Quantitative PCR Analysis

To validate the differential expression of mRNAs identified by
high-throughput sequencing, 12 DEGs in transcriptome were
randomly selected for Quantitative PCR (qPCR) analyses
at 12 and 36 h, respectively. In addition, 8 transcripts
were selected from consistent DEGs/DEPs to verify the
expression trend of DEGs/DEPs identified after combined
analysis. Primers of mRNAs used for the qPCR analysis
are shown in the Supplementary Table 1. With the 18S
rRNA as the internal reference, the primers were designed
as follows: 5-TATACGCTAGTGGAGCTGGAA-3/, and 3'-
GGGGAGGTAGTGACGAAAAAT-5. In short, qPCR was
performed using the SYBR Green PCR Master Mix (Life
Technologies, United States) according to the manufacture’s
protocol in a 7,500 fast Real-Time PCR System (Applied
Biosystems, Foster City, CA). The three samples of transcriptome
at each time point were used to perform the qPCR, and each
biological repeat was performed technical replicates in triplicate.
The relative expression of target genes was calculated using
CT method (2722€t method) (Tapia et al, 2017). The
data were analyzed on the online Majorbio Cloud Platform
(Shanghai, China).

RESULTS

Transcriptome Analysis of Exopalaemon
carinicauda in Response to Alkalinity

Stress
A total of 24,112 transcripts/unigenes were generated from RNA-
seq analysis in the gills of E. carinicauda after 0, 12, and 36 h

http://www.blast2go.com/b2ghome
*http://geneontology.org/
Shttp://www.genome.jp/kegg/

alkalinity stress. A total of 3,157 DEGs were identified at the
three time points. Compared with 0 h, 427 up- and 734 down-
regulated genes at 12 h, 379 up- and 1,602 down-regulated genes
at 36 h were, respectively, detected (Figure 1A). Overall, 1,161
and 1,981 DEGs were detected at 12 and 36 h compared with
0 h, respectively (Figure 1A). Obviously, alkalinity stress led to
dramatic alteration of gene expression with time point. Venn
diagram of the DEGs illustrated that 182 genes were shared in
both 0 vs. 12 h and 0 vs. 36 h (Figure 1B). Hierarchical clustering
results revealed that alkalinity stress response varied dramatically
at the three time points (Figure 1C).

GO annotation analysis showed that 43 GO terms (P < 0.05)
in total were classified into 17, 14, and 11 sub-categories of three
major categories: biological processes, cellular components and
molecular function, respectively (Supplementary Figure 1). In
0 vs. 12 h, 7 of the top 20 GO enriched terms were related to
ion transport, including “coupled to transmembrane movement
of ions, phosphorylative mechanism,” “calcium-transporting
ATPase activity,) “calcium ion transmembrane transporter
activity,” “cation-transporting ATPase activity,” “ATPase coupled
ion transmembrane transporter activity,” “divalent inorganic
cation transmembrane transporter activity” (Figure 2A). In 0
vs. 36 h, 4 of the top 20 GO enriched terms were related to
ion transport, including “calcium ion transmembrane transporter
activity;,” “active ion transmembrane transporter activity,” “metal
ion transmembrane transporter activity,” and “divalent inorganic
cation transmembrane transporter activity” (Figure 2B).

KEGG pathway analysis was performed to investigate
pathways that were significantly altered following exposure
to alkalinity stress. The 43 KEGG pathways can be divided
into seven categories, including Metabolism (11), Genetic
Information Processing (4), Environmental Information
Processing (3), Cellular Processes (4), Organismal Systems
(10), Human Diseases (11). The top 4 KEGG pathways
with the most amount of annotation sequences were “signal
transduction,” “endocrine system,” “cardiovascular disease;
and “circulatory system” (Supplementary Figure 1B). Besides,
a comparative analysis of the KEGG pathways revealed that
36 pathways were shared in 0 vs. 12 h and 0 vs. 36 h. Among
the first 20 pathways that are co enriched, we found that
the top five of pathway enrichment as “Adrenergic signaling
in cardiomyocytes,” “Cardiac muscle contraction,” “Thyroid
hormone signaling pathway;,” “cGMP-PKG signaling pathway,”
and “Viral myocarditis” (Figure 3). In addition, compared with
12 h, there were more DEGs enriched in these five pathways at
36 h. It is worth noting that three of five pathways refer to the
processes of endocrine system.

In addition, some important ion transport related genes
have been identified in DEGs, including sarco/endoplasmic
reticulum calcium ATPase isoform, glycosyl phosphatidylinositol
linked carbonic anhydrase, sodium chloride cotransporter,
sodium and chloride dependent GABA transporter, glycosyl
phosphatidylinositol linked carbonic anhydrase, aquaporin,
Nat/K*-ATPase, sodium calcium exchanger. Some ion
transport related genes were significantly different in 0 vs. 12 h
and 0 vs. 36 h, such as aquaporin, proton channel, glycosyl-
phosphatidylinositol-linked carbonic anhydrase, ammonium
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FIGURE 1 | Distributionlocations of differentially expressed genes in the transcriptome. (A) Distribution of differentially expressed genes (DEGs) following different
time effects in gills of E. carinicauda. (B) DEGs number and Venn diagram of overlap of the different groups. (C) Hierarchical cluster analysis of differentially

transporter Rh type A-like, etc. were up-regulated in 0 vs.
12 h (Figure 4A). Besides, gene related to sodium/hydrogen
exchanger, calcium/calmodulin-dependent protein kinase,
sodium-dependent multivitamin transporter, pre-mRNA-
splicing factor ATP-dependent RNA helicase PRP1 were
up-regulated in 0 vs. 36 h (Figure 4B). Thus it can be seen that
the DEGs are mainly related to inorganic ion transport at early
time point (12 h), and then related to the transport of organic
macromolecules at later time point (36 h).

Proteomic Analysis of Alkalinity Stress

To further understand the effects of alkalinity stress on
E. carinicauda, label-free LC-MS/MS analysis was used to
evaluate the expression at three time points. TMT analysis of
the gills proteome in E. carinicauda showed 58,224 queries in
the database (a total of 429,067 spectra) and resulted in 3,334
protein hits. A total of 443 DEPs were identified at the three time

points. Compared with 0 h, 239 DEPs were identified at 12 h,
with 164 (68.6%) up- and 75 (31.4%) down-regulated proteins
(Figure 5A). Two hundred thirty-six DEPs were identified at
36 h, with 136 (57.6%) up- and 100 (42.4%) down-regulated
proteins (Figure 5B). Similarly, the protein expression at 36 h
showed variations compared with 12 h (Figure 5C). Compared
with 12 h, 85 DEPs were identified, with 47 (55.3%) up- and
38 (44.7%) down-regulated proteins at 36 h. In proteomic data,
there were more up-regulated proteins than down-regulated
proteins in protein expression, which is different from the
result that down-regulated genes account for the majority in
transcriptome data. Here, 85 proteins (37 up- and 48 down-
regulated) were significantly expressed (P < 0.05) at both 12 and
36 h (Figure 5D).

Twenty-four GO terms were significant, including 10
molecular function, 3 cellular component, and 11 biological
process sub-categories (Supplementary Figure 2). Based
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on the DEPs data in 0 vs. 12 h, GO enrichment analysis assembly involved in morphogenesis,” “myofilament,” “striated
was conducted and the most significantly enriched GO muscle myosin thick filament” “myosin filament, “M band,
terms are shown in Figure 6A, only “retrograde transport, and “myosin complex” were the most dominant GO terms
endosome to Golgi” had a significant difference (P < 0.001). (P < 0.001).

Based on the DEPs data in 0 vs. 36 h, “actomyosin structure In addition to the GO term analysis, KEGG pathway analysis
organization,” “myofibril assembly,” “cellular component was also conducted to assign the DEPs to six categories. The
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number of secondary category of KEGG is the same as that
in the transcriptome. The annotation results of KEGG pathway
are similar to those of transcriptome. Obviously, the signal
transduction pathway in environmental information processing
and the transport and catabolism pathway in cellular processes
annotated the most proteins (Supplementary Figure 2B).
KEGG-enrichment analyses were conducted on the DEGs, and
the top 20 significant KEGG pathways in 0 vs. 12 h and 0
vs. 36 h are shown in Figure 6. Among the KEGG pathways
in 0 vs. 12 h, lipolysis and amino acids metabolism (Fatty
acid degradation, PPAR signaling pathway, Valine, leucine and
isoleucine degradation, Histidine metabolism, etc.) and immune
system (“Phagosome,” “Apoptosis,” “Dilated cardiomyopathy,”
“Hypertrophic cardiomyopathy,” “Leishmaniasis,” “Lysosome,”
etc.) related pathways were identified to be enriched (Figure 6A).
Among the KEGG pathways in 0 vs. 36 h, carbohydrate
metabolism (“Glycolysis/Gluconeogenesis,” “Starch and sucrose
metabolism,” “Pentose phosphate pathway”) and immune
system (Antigen processing and presentation, Hypertrophic
cardiomyopathy, Dilated cardiomyopathy) were significantly
enriched (P < 0.01) (Figure 6B).

We compared the DEPs among gill tissue at different time
points under the same alkalinity stress. The comparison of 0
vs. 12 h and 0 vs. 36 h rendered the resemble number of
DEPs. And the up-regulated DEPs are more than the down-
regulated ones. Based on the criteria that P < 0.01, some
proteins that may play important roles in alkalinity stress were
listed in Figure 7. These DEPs were considered as relating to
alkalinity stress, we mainly pay close attention to these DEPs in
up-regulated. In the present study, sodium-potassium ATPase,
sodium- and chloride-dependent GABA transporter, vacuolar
protein sorting-associated protein and chloride intracellular
channel were up-regulated in 0 vs. 12 h. Meanwhile, alkalinity
stress related signaling pathways as hemocyanin, cathepsin, and
V-type proton ATPase 116 kDa subunit were significantly up-
regulated in 0 vs. 36 h.

Integrated Analysis Between Proteome

and Transcriptome

In total, 18,170 mRNAs and 6,159 proteins were quantified.
Analysis for relationship between gene and protein resulted
in the identification of 2,825 mRNAs to the corresponding
proteins. Accession numbers with coverage in both protein
and mRNA data sets were identified to accurately compare
protein and mRNA regulation. DEGs and DEPs relationship
analysis of 0 vs. 12 h and 0 vs. 36 h based on the data of log
ratio fold change. Consistent and differential expression analysis
of transcriptome and proteome was carried out to study the
relationship between DEGs and DEPs of E. carinicauda under
alkalinity stress. This study identified only 21 and 60 significantly
regulated matching DEGs/DEPs in 0 vs. 12 h and 0 vs. 36 h
comparisons, respectively, which indicated that gill protein and
mRNA expression had a moderate level of overall correlation
(Figures 8, 9). In 0 vs. 12 h, 3 DEGs/DEPs were consistent up-
regulated, 15 DEGs/DEPs were consistent down-regulated and
3 DEGs/DEPs were opposite expression (Figures 8, 9A). In 0

vs. 36 h, 3 DEGs/DEPs were up-regulated, 52 DEGs/DEPs were
down-regulated and 5 DEGs/DEPs were opposite expression
(Figures 8, 9B). The entries which were significantly regulated
at both mRNA and protein levels represent clear coordinated
and essentially linear gene expression although the 0 vs. 12 h
was higher than 0 vs. 36 h (compare A and B in Supplementary
Figure 3). A correlation analysis of these data sets identified
most of them were respectively changed with the same trend
(Supplementary Figure 3).

Consistently up-regulated DEGs/DEPs in 0 vs. 12 h
mainly included aldehyde dehydrogenase (ALDH), pyruvate
dehydrogenase and cell adhesion, and consistently down-
regulated DEGs/DEPs in 0 vs. 12 h were primarily concerned
with metabolism, especially “Pyruvate metabolism,” “Alanine,
aspartate and glutamate metabolism,” “Thiamine metabolism,”
and “Sphingolipid metabolism” (Figure 9A). The consistently
up-regulated DEGs/DEPs in 0 vs. 36 h were mainly involved in
peptidylglycine alpha (PPG), obstructor E1 and "no description,"
while the consistently down-regulated DEGs/DEPs in 0 vs.
36 h included Calphotin, heat shock protein, troponin and
aquaporin (Figure 9B). However, there were a few genes,
including Intermediate filament protein, delta-latroinsectotoxin,
GTP binding, Chitin binding, hemicentin, and decapping and
exoribonuclease protein were regulated with the opposite trend
at the mRNA and protein levels (Figures10A, B). Correlation
analyses of DEGs/DEPs between 0 vs. 12 h and 0 vs. 36 h showed
10 same DEGs/DEPs, but there were no groups related to ion
transporters/channels (Figure 10C).

The 247 GO terms were enriched in 0 vs. 12 h.
Disappointingly, the top 20 GO terms were not matched
DEGs/DEPs (Figure 10A). Meanwhile, 315 GO terms were
significantly enriched in 0 vs. 36 h, and the only highly
enriched GO term was myosin complex in the top 20 GO terms
(Figure 10B). KEGG analyses were performed for two groups,
as well as lists the top 20 of significantly regulated proteins
and mRNAs (Figures 10C,D). We found that the up-regulated
DEG/DEP-ALDH in 0 vs. 12 h were identified (Figure 10C),
which was also enriched in the Histidine metabolism pathway.
In addition, the up-regulated DEG/DEP-PPG in 0 vs. 36 h,
which was also enriched in the PI3K-Akt signaling pathway
(Figure 10D). Highly enriched KEGG pathways for significantly
up-regulated DEGs/DEPs, apart from signal transduction
already mentioned, also involved immune system including
“Antigen processing and presentation” and “NOD-like receptor
signaling pathway”.

Quantitative Verification of Differentially
Expressed Genes Related to Alkalinity

Response

To verify the accuracy of the RNA-seq data, 12 transcripts
were randomly selected from transcriptome data for qPCR
(Figures 11A,B). The expression changes generally agreed with
those from the RNA sequencing analysis, showing that the RNA-
Seq data were reliable for reflecting the response of E. carinicauda
to salinity-alkalinity stress. To better understand the regulation of
expression of transcription associated proteins, eight transcripts
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were selected from consistent DEGs/DEPs in 0 vs. 12 h and
0 vs. 36 h for qPCR (Figures 11C,D). The results of gPCR
were compared with the RNA-Seq analysis results. gPCR showed
that the candidate genes have the same tendency, which further
verified the reliability of the multi-omics analysis results.

DISCUSSION

Saline-alkaline water aquaculture has become one of the effective
ways to use saline-alkaline water resources. Environmental
factors including salinity, alkalinity and pH cause stress to the
aquatic animals by interfering with physiological homeostasis.
As a result, only a few species can survive under the natural

conditions of saline-alkaline water. Therefore, it is important for
the aquaculture to study the molecular adaptation mechanism
in aquatic animals over the course of adapting to saline-alkaline
water. Using transcriptomic and proteomic data analysis, we
sought to determine the molecular events under alkalinity stress.

In the present study, 3,157 DEGs was identified by
transcriptomic analysis in alkalinity stress. GO and KEGG
analysis were conducted to identify genes and pathways that
mainly related to ion transport and metabolism. GO analysis
results indicated that GO enriched terms were mainly related to
ion transport, including “calcium-transporting ATPase activity,”
“ATPase coupled ion transmembrane transporter activity,
“divalent inorganic cation transmembrane transporter activity,”
etc., which indicated that the ion-regulated function of lots
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data were up-regulated and down regulated DEGs and DEPs.

FIGURE 8 | Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) distribution in transcriptome and proteome association analysis.
(A) The differences between 0 vs. 12 h correlated data were up-regulated and down regulated DEGs and DEPs. (B) The differences between 0 vs. 36 h correlated
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of DEGs. Accordingly, numerous ion transport enzymes and
ion transporters associated with osmoregulation were identified
after alkalinity stress. KEGG pathways related to the processes
of endocrine system were extensively enriched at both 0

vs. 12 h and 0 vs. 36 h, such as “Adrenergic signaling in
cardiomyocytes,” “Thyroid hormone signaling pathway,” “cGMP-
PKG signaling pathway.” In addition, the energy metabolic

pathways in the 0 vs. 36 h group were unexpectedly rich,
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which indicated that the alkalinity adaptability of E. carinicauda
not just depend on osmoregulatory capacity but also depend
on metabolic reorganization to make related energetic support.
“Adrenergic signaling in cardiomyocytes,” “Thyroid hormone
signaling pathway,” “cGMP-PKG signaling pathway” play vital
roles in lipid, carbohydrate and protein metabolism (Fabbri
and Moon, 2016; Guo et al., 2018; Si et al, 2019). More
importantly, at some segments, some ion transport enzymes
activity of the gills and the density of epithelium of cells riched
in mitochondria can be significantly raised by hormones during
the environmental acclimation (Marshall et al., 2000). As stated
above, endocrine system related signaling pathways are likely
to be critical because their stimulation on basal metabolic rate
and energy supply. In addition, ion transport related genes, such

as aquaporin, carbonic anhydrase, ammonium transporter Rh

have been reported in many studies. Aquaporins are a class of
water channel proteins that specifically transport water, glycerol,
ammonia, and urea across cell membranes and affect different
osmoregulation in many physiological functions and cellular
processes (Lema et al., 2018; Cao and Shi, 2019). Ma et al.
(2020) found that the mRNA expression levels of aquaporins were
significantly up-regulated after salinity stress in Trachidermus
fasciatus. In our results, aquaporin content increased significantly
after 12 h of alkalinity stress. We speculate that this alleviated
alkalinity stress through this water-specific channel from the gills
in order to balance osmotic pressure in vivo, leading to a more
active osmoregulatory activity in this treatment. Interestingly,
down-regulated that occurred in the aquaporin in the 36 h-
treatment in the gills were accompanied by an increase in the
time. Such an effect does come in agreement with previous
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studies that claim a limited osmoregulatory role of this gene
in the gills (Kokou et al., 2019). Carbonic anhydrase (CA)
is considered to be one of the central molecular components
of the systemic process of ion transport and osmoregulation
(Han et al, 2018). Ali et al. (2015) suggested that carbonic
anhydrase is involved in the response to changes in pH and in
systemic acid-base balance in freshwater crayfish. Ammonium
transporter Rh involved in the ammonia excretory process have
been identified in crustaceans (Si et al., 2018). It has been
reported that the expression of Rh protein increased significantly
in the gill of Eriocheir sinensis, Portunus trituberculatus, and
L. vannamei after abiotic stress, and ammonia excretion was
inhibited after Rh protein knockdown in Caenorhabditis elegans
and P. trituberculatus (Martin et al., 2011; Ren et al., 2015;
Aida et al, 2016; Si et al, 2018). The Na™/H™ exchanger
in gill cells creates an electrochemical gradient for regulation
osmotic pressure, which can help aquatic organisms balance
the changes of osmotic pressure in vivo (Castaldo et al., 2020).
The potential promotion of ammonia secretion also in Na™/H*
exchanger (Fehsenfeld and Wood, 2018). In our analysis, we
found upregulation of expression of the Nat/H™-exchanger at
36 h which agrees with values previously reported for Sydney
rock oysters (Parker et al., 2017). This might be due to a high

salinity-alkalinity, potentially resulting in upregulation of apical
acid extruding mechanisms in order to maintain intracellular pH
in the gill epithelium. Combined with the results of this study, it
can be speculated that Rh was a regulated promote ion transport
in white shrimp after salinity-alkalinity stress. According to the
above, alkalinity stress can cause a large number of ion transport
processes in the shrimp, such as bicarbonate ion, ammonium ion
and hydrogen ion.

Based on the proteomic analysis, 443 DEPs were identified
after alkalinity stress. In the transcriptome, the results of GO
enrichment and KEGG enrichment in 0 vs. 12 h and 0 vs.
36 h are similar, but there are significant differences in the
proteome. In general, signal transduction pathways such as ion
transport were significantly enriched in the proteome in the
early stage of alkalinity stress. In addition, it also contained
some immune and metabolic pathways. However, the transport
routes of organic macromolecules were significantly enriched
at 36 h. Similar results have been obtained in previous studies
exploring environmental stress (exposure) in shrimps and crabs,
in which the metabolic and immune enzyme activities is
altered in proportion to stress duration (Duan et al., 2019;
Zhang et al.,, 2021). After 36 h of alkalinity stress, the enriched
energy metabolism process increased significantly. In the process
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of translation from mRNA to protein, it will undergo multiple
modifications to lead to the non-linear relationship between
them, including the stabilization and degradation of mRNA
(Christian and Ivan, 2019), as well as the modification of protein
translational initiation, elongation, and termination (Tahmasebi
et al, 2018). In agreement with this notion, a substantial
percentage of proteins were associated with lipolysis and amino
acids metabolism at 12 h, while most pathways were related
to carbohydrate metabolism and immune system at 36 h.
We speculated that the gill cells of shrimp were engaged in
adjusting the osmotic pressure balance by increasing free amino
acid content at the early stage of alkalinity stress, but at the
later stage, gill cells tended to acclimate the environmental
stress. In addition, ion transport related genes, such as V-type
proton ATPase 116 kDa subunit a-like isoform X1, sodium-
potassium ATPase beta and chloride intracellular channel were
also identified in proteome. As a pH stress response enzyme,
V-ATPase can adapt to environmental changes by changing
its structure, state and quantity under stress conditions, and
effectively reduce the damage of stress to organisms. Wang et al.
(2012) found that under pH 9.3 stress, the gene expression
of V-ATPase in L. vannamei increased at 3 h, which was
10 times higher than that of the control, and then down-
regulated. This is similar to the results of high pH stress
in Cherax quadricarinatus (Ali et al., 2017). A significant
upregulation of V-type proton ATPase 116 kDa subunit a-like
isoform X1 was observed in the present study, which was
in agreement with our hypothesis that a high carbonate
alkalinity leads to the increase of pH in water, and high pH
further promotes the regulation of hydrogen ion in order to
maintain ionic balance. Vesicle associated membrane protein
is capable of regulated exocytosis and play an important role
of maintaining homeostasis, cell growth and development,
and polarity (Brumshtein et al, 2014; Singh et al, 2018).
Furthermore, a micro tubule dependent ammonia excretion
mechanism with vesicle associated membrane protein was
verified in P. trituberculatus (Ren et al., 2015). Similarly, the
protein expression of vesicle associated membrane protein was
also increased in this study. Acting as membrane localized
protein, sodium-potassium ATPase (NKA) is responsible for
establishing electrochemical gradients by providing the driving
force (Lietal., 2021). The accumulation of NKA was indicative of
increased need for ATP in order to maintain the acid-base balance
when exposed to alkalinity stress.

In our analysis, we found a weak but not insignificant
correlation between expression patterns of molecular phenotype
of mRNA and protein. As demonstrated by many studies,
systematic comparisons between transcriptome and proteome
level responses have revealed generally poor correlation between
mRNA and protein regulation in invertebrates (Schenk et al.,
2019; Yang et al., 2020; Root et al., 2021). It has been reported
that this may be due to different regulatory mechanisms involved
in gene expression and protein synthesis, regulatory factors and
technical limitations in the methods used (Lundberg et al., 2010;
Haider and Pal, 2013; Tavares et al., 2018). Among physiological
mechanisms with low correlations between transcriptome and
proteome, post-transcriptional mechanisms such as translation,

protein degradation and modification have been described (Ahn
etal., 2017; Tavares et al., 2018). Of which, most of these proteins
were respectively changed with the same trend in the combined
analysis of DEGs and DEPs in this study. This indicating that
the expression alterations of these proteins are mainly controlled
by transcriptional changes (Ding et al., 2019). Nevertheless,
actually the transcripts are not always consistent with the proteins
which are the final products. A few genes were regulated with
the opposite trend at the mRNA and protein levels. This may
be due to the transport of proteins between cells and tissues,
indicating the involvement of post-transcriptional regulation
for these genes/proteins (Li and Wang, 2021). To be specific,
as we all know, such inconsistency is possibly caused by the
posttranscriptional and translational processing which regulates
the protein location, quantity, as well as efficiency in the cell
(Du et al., 2021). Besides, accumulating evidence has shown the
involvement of miRNAs, methylation and alternative splicing
in environment stress (Cao et al., 2019; Feng et al., 2019b; Ng
et al., 2020). Even so, there was still several consistently up-
regulated DEGs/DEPs significantly enriched, such as aldehyde
dehydrogenase (ALDH) at 12 h and peptidylglycine (PPG) alpha
at 36 h. ALDHs are a superfamily of NADP™ -dependent enzymes
that various aldehydes to the corresponding carboxylic acids
using the coenzyme NAD' or NADP* (Perozich et al., 1999;
Fong et al, 2003). The ALDH is involved in the histidine
metabolism, and the main metabolic pathways in organisms
are deamination by histidine deaminase, histamine formation
by decarboxylase and amino transfer reaction (Fong et al,
2003). An increase in blood HCO3~ concentration leads to an
increase in pH after the aquatic animals enter high alkalinity
water. Due to the decrease of H' in the blood, the balance of
H* + NH; = NHy" disorder, and ammonia mainly exists in
the form of NHj3. At the same time, H in the environment is
too low to form NH, 1 with NH; transported outside the body,
which inhibits the process of ammonia transport and eventually
leads to the accumulation of NHj3 in aquatic organism. This
study points that ALDH may promote the transfer of amino
groups from in vivo to in vitro. The up-regulated expression of
ALDH in this paper confirms this statement. PPG is another up-
related DEG/DEP in our study. It not only participates in signal
transduction, but also interferes with the immune system. PPG is
a key enzyme in the bioactivation of neuropeptides, which control
intracellular transport, targeting, and enzyme activity (Donlon
and Ryan, 2019; Back et al, 2020). These two DEGs/DEPs
are up-regulation in the proteome and transcriptome in this
study. We speculate that ALDH and PPG play a key role in
alkalinity stress.

In summary, comparative transcriptomic and proteomic
analysis of E. carinicauda in response to alkalinity stress at
0, 12, and 36 h revealed molecular adaption mechanisms. In
transcriptome, DEGs were extensively enriched into GO terms
related to ion transport, and KEGG pathways related to the
processes of endocrine system in both 0 vs. 12 h and 0 vs. 36 h.
In proteome, DEPs were highly enriched into KEGG pathways
related to lipolysis and amino acids metabolism in 0 vs. 12 h,
and carbohydrate metabolism and immune system in 0 vs. 36 h.
Upregulated expressions of genes or proteins related to ion
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transport were identified by DEGs and DEPs after alkalinity
stress. Although there was poor correlation between mRNA
and protein regulation, there was still several consistently up-
regulated DEGs/DEPs significantly enriched, including aldehyde
dehydrogenase and peptidylglycine alpha, which may play the
key role in alkalinity adaption. This study may provide valuable
information on the adaption mechanism of the shrimp gill under
alkalinity stress.
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