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Marine imaging has evolved from small, narrowly focussed applications to large-

scale applications covering areas of several hundred square kilometers or time series

covering observation periods of several months. The analysis and interpretation of the

accumulating large volume of digital images or videos will continue to challenge the

marine science community to keep this process efficient and effective. It is safe to say

that any strategy will rely on some software platform supporting manual image and video

annotation, either for a direct manual annotation-based analysis or for collecting training

data to deploy a machine learning–based approach for (semi-)automatic annotation. This

paper describes how computer-assisted manual full-frame image and video annotation

is currently performed in marine science and how it can evolve to keep up with the

increasing demand for image and video annotation and the growing volume of imaging

data. As an example, observations are presented how the image and video annotation

tool BIIGLE 2.0 has been used by an international community of more than one thousand

users in the last 4 years. In addition, new features and tools are presented to show

how BIIGLE 2.0 has evolved over the same time period: video annotation, support

for large images in the gigapixel range, machine learning assisted image annotation,

improved mobility and affordability, application instance federation and enhanced label

tree collaboration. The observations indicate that, despite novel concepts and tools

introduced by BIIGLE 2.0, full-frame image and video annotation is still mostly done in

the same way as two decades ago, where single users annotated subsets of image

collections or single video frames with limited computational support. We encourage

researchers to review their protocols for education and annotation, making use of newer

technologies and tools to improve the efficiency and effectivity of image and video

annotation in marine science.
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1. INTRODUCTION

Marine imaging is an increasingly important technique for environmental monitoring and
exploration of the oceans (Solan et al., 2003; Bicknell et al., 2016; Durden et al., 2016b). Today,
technological advances in high-resolution digital imaging, mobile underwater carrier systems and
digital storage technology make it possible to acquire vast volumes of imaging data in a short period
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of time (Morris et al., 2014). While the sustainable curation and
management of large volumes of marine imaging data has been
recently addressed (Schoening et al., 2018), the analysis of the
data continues to be a major challenge. Marine imaging data
is traditionally analyzed through manual image annotation by
marine biologists and other domain experts. In this context,
image annotation refers to the assignment of labels (e.g., a species
name selected from a certain taxonomy) to points or regions in
a full-frame image or video (in contrast to part-frame imaging
such as pre-segmented pelagic imaging) (Durden et al., 2016a;
Schoening et al., 2016). This is a time-consuming and error-prone
task (Culverhouse et al., 2003; Schoening et al., 2012; Seiler et al.,
2012). As a consequence of the rapidly increasing rates at which
marine imaging data is acquired today and the highly limited
availability of domain experts, time-consuming purely manual
image annotation is no longer acceptable as the only method
of analysis.

Multiple paths could lead to a mitigation of this bottleneck of
image annotation that the field of marine imaging currently faces.
One path is specialized software that aims to support human
observers and make manual image annotation as efficient and
effective as possible. Annotation software for marine imaging
already has a history (Durden et al., 2016a) starting with
offline desktop applications supporting only single users and
gradually shifting to multi-user web-based applications that can
be deployed at scale [e.g., CoralNet (Beijbom et al., 2015),
SQUIDLE+ (Proctor et al., 2018), or BIIGLE 2.0 (Langenkämper
et al., 2017)]. These applications provide a multitude of features
and tools to make manual marine image annotation easier,
faster and more accurate. However, annotation by human
observers is expensive and the availability of domain experts
is highly limited so that sometimes only a small fraction of
the collected imaging data can be analyzed. Therefore, the
question of the efficiency of purely manual annotation needs to
be addressed.

A second path to deal with the bottleneck of marine image
annotation is to automate it (to a certain degree and on a
particular scale) (MacLeod et al., 2010). Recent advances in
computer vision through deep learning (LeCun et al., 2015)
promised a new era of fully automated image processing. While
this promise has yet to be fulfilled for many imaging domains,
computer vision through deep learning certainly produced
impressive results that other computer vision techniques have
not been able to match. Deep learning has also been employed
in various recent approaches to marine image processing (Li
et al., 2015; Beijbom et al., 2016; Mahmood et al., 2016) (the
reviews of Moniruzzaman et al. (2017) and Xu et al. (2019)
provide a comprehensive overview). However, even with deep
learning, a computer vision system that works as accurately as
human observers in all possible scenarios of marine imaging
remains an unrealistic achievement for the near future. The
performance of deep learning algorithms can depend heavily
on the size (as well as composition and quality) of the training
data (Sun et al., 2017). This is a big challenge for applications
in marine imaging, since training data cannot be acquired as
easily as in other imaging domains such as everyday images
(e.g., planes, cars, trees, etc.) where deep learning achieved its

most impressive results so far. Even if there came to be an
alternative to deep learning for computer vision in the future, it
is very likely that it would also heavily depend on high-quality
training data.

Thus, it becomes apparent that the two possible paths of
specialized annotation software and automated image processing
to mitigate the bottleneck of marine image annotation are
tightly interlinked. On the one hand, state-of-the art methods
for automated image processing require large training datasets
with high-quality image annotations. These datasets can only be
created efficiently with specialized software. On the other hand,
specialized software for manual image annotation alone is not
sufficient to cope with the increasing volume of imaging data and
requires the integration of (semi-)automatic methods for efficient
and effective image analysis. Still, fully automated processing of
marine imaging data may never be achieved in all conceivable
scenarios of marine imaging, and manual image annotation
will likely continue to play an essential role in this field.
With a growing interest in marine environmental monitoring
and exploration, as well as continuing technological advances,
the demand for both annotation software and methods for
automatic processing will continue to increase in the foreseeable
future. Both must continually and jointly evolve to keep up
with demand.

In this paper, we want to describe how annotation software
and methods for automatic processing of marine imaging can
evolve. We present examples and observations from BIIGLE 2.0
(Langenkämper et al., 2017) which has been publicly available
and operating for more than 4 years at biigle.de, and which
is used by an international community of over one thousand
users (see Figures 1, 2). We present new features and tools of
BIIGLE 2.0 that have been developed on the basis of user requests
and feedback as an example how a marine image and video
annotation software can evolve. In addition, we present usage
statistics which have been collected from biigle.de to show how
image annotation is currently performed. These observations
indicate not only how software such as BIIGLE 2.0 could be
further improved but also how the marine imaging community
could evolve to make the analysis of marine imaging data more
efficient and effective in the future.

In the following, BIIGLE 2.0 will be referred to simply as
BIIGLE. In the next section of this document, new features
and tools of BIIGLE are presented. In section 3, we present
observations and statistics on the use of both the existing and the
new features and tools of BIIGLE. The implications of the usage
observations are discussed in section 4. The paper is concluded in
section 5, with recommendations on how computerized support
systems for manual and automated image annotation as well as
the marine imaging community could evolve to cope with the
increasing demand for image annotation in this field.

2. MATERIALS AND METHODS

After the redesign and full reimplementation of BIIGLE in
2017 (Langenkämper et al., 2017), the software included features
and tools that were largely based on lessons learned from the
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FIGURE 1 | Development of the number of users (top) as well as image and video annotations (bottom) in the BIIGLE instance at biigle.de since 2017. The dotted

line represents the number of users with at least one image and/or video annotation.
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FIGURE 2 | Countries from which annotation requests have been sent to biigle.de between March and September 2021. The countries are split into four groups

depending on the number of annotation requests that were sent from the respective country. The group of countries with 0− 103 requests also includes countries

from which any requests were sent between August 2019 and February 2021.

previous version of BIIGLE (Ontrup et al., 2009). Since the
publication of the new version, the community of BIIGLE users
has grown substantially and has increasingly expressed requests
for new features. Based on these user requests, BIIGLE has been
continuously extended over the years. Here, we present the major
new features and tools.

2.1. Video Annotation
The video annotation tool of BIIGLE was first made available
at biigle.de in 2019. It was implemented to have a similar
user interface (UI) than the existing image annotation tool
(Langenkämper et al., 2017, section 3) to keep the learning
effort for users shifting between image and video annotation low.
However, some key components of the video annotation tool are
different. The most notable difference is that video annotations
can span multiple video frames and change their position
and/or shape along with the objects of interest (OOIs) that
they mark.

The UI of the video annotation tool consists of a main view
which displays the video, colored outlines of video annotations
and an overview minimap (see Figure 3A). At the bottom of
the main view there is a control panel with buttons for video
playback and annotation instruments (see Figure 3B). To the
right of the main view there is the sidebar with tabs such as a
list of all annotations on the video or all “label trees” that are
available for annotation (see Figure 3C). In BIIGLE, label trees
refer to hierarchical lists of labels for OOIs. In addition to these
UI elements that are similar to the image annotation tool, the

video annotation tool also includes a “timeline” below the main
view (see Figure 3D). The timeline was inspired by UI elements
of professional video editing software (e.g., DaVinci Resolve R©)
and offline video annotation tools [e.g., ANVIL (Kipp, 2001) or
VCode (Hagedorn et al., 2008)]. It provides an overview over all
annotations on the video, indicating the positions (i.e., times)
of “single-frame” annotations, that mark an OOI in a single
video frame, as well as the start and end positions or gaps of
“multi-frame” annotations, which span a specific period of time
of the video. Gaps in multi-frame annotations can be used if,
for example, the OOIs that they mark disappear from the visible
area of the video and reappear later. Annotation indicators are
grouped by label and colored in the color associated with the label
that is attached to each annotation. The timeline also indicates
the current time of the video and allows users to freely move the
video playback to a specific point of time or to a time associated
with an annotation.

A video annotation consists of one or more “key frames.”
Each key frame combines a specific point of time in the video
with the spatial coordinates of the video annotation. Single-
frame video annotations consist of only one key frame and
are comparable to still image annotations. Multi-frame video
annotations consist of many key frames. During video playback,
the spatial coordinates of multi-frame annotations are linearly
interpolated between key frames. The concept of multi-frame
video annotations with gaps and interpolated spatial coordinates
was inspired by the Computer Vision Annotation Tool (Sekachev
et al., 2020). The more key frames a multi-frame annotation has,
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FIGURE 3 | User interface of the BIIGLE video annotation tool: (A) Main display of the video showing the colored outlines of the annotations and the overview

minimap. (B) Buttons for video playback and to toggle annotation instruments. (C) Timeline showing the current time of the video as well as indicators for all

annotations in the video (indicators for annotations that mark the whole video frame are crosshatched, gaps in annotations are shown as dotted lines). (D) Sidebar

with the open tab containing a list of all annotations on the video. Source of the annotated video: (Purser et al., 2016), licensed under CC BY NC 3.0 (https://

creativecommons.org/licenses/by-nc/3.0/).

the more accurately it can follow and mark an OOI in the video.
Tomake the annotation ofmanymovingOOIsmore efficient, the
video annotation tool offers computer assisted object tracking.
Starting with an initial single-frame annotation that marks the
OOI, the object tracking algorithm (Lukezic et al., 2017) attempts
to follow the position and size of the OOI as long as it is visible in
the video, automatically extending the annotation with additional
key frames.

Based on user feedback, a new WholeFrame annotation
shape was implemented in BIIGLE which can be selected from
the annotation instruments and is only available for video
annotations (see Figure 3B). A WholeFrame video annotation
marks one or more entire video frames and is visually
distinguished through a crosshatch pattern from annotations
with other shapes in the video timeline (see Figure 3D).

In the initial version of the video annotation tool, single videos

were directly associated to annotation projects. This was changed

later with the implementation of “video volumes” which behave
similar to the existing “image volumes.” In BIIGLE, a “volume”

refers to a collection of images or videos which is associated
to an annotation project. Video volumes now offer most of the
features already available for image volumes, e.g., sorting and
filtering of video collections, tools for quality control or export
of annotation reports.

2.2. Gigapixel Image Annotation
Some areas of biology, including marine biology, observe a
shift from traditional microscopy to high-resolution digital
microscopy. This became apparent when BIIGLE users requested
the support for virtual microscopy slides—large images in the
gigapixel range—in the image annotation tool. Support for
gigapixel image annotation was implemented in BIIGLE in
late 2017 and already supported several studies in the marine
biology community (Kloster et al., 2020; Burfeid-Castellanos
et al., 2021). Gigapixel images differ from regular, smaller images
since the original image files cannot be displayed unmodified in
a web browser. BIIGLE detects gigapixel images when they are
created and preprocesses them to extract smaller image “tiles” for
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different resolutions of the image. These image tiles are displayed
by the annotation tool, which dynamically loads new tiles based
on the viewport and zoom level (see Figure 4).

2.3. Machine Learning Assisted Image
Annotation
The Machine learning Assisted Image Annotation method
(MAIA) (Zurowietz et al., 2018) has been developed to automate
the time-consuming detection of OOIs in deep sea images. In a
small study with three marine imaging datasets, the authors of
MAIA found that collections with more than 200 images can be
annotated much faster using MAIA than using traditional purely
manual annotation—with the trade-off of missing an estimated
16% of OOIs. The MAIA method consists of four consecutive
stages: 1. novelty detection, 2. filtering of “training proposals,” 3.
instance segmentation and 4. filtering of “annotation candidates.”
The individual stages and their implementation in BIIGLE are
described below.

MAIA has been fully integrated into BIIGLE and is available
at biigle.de since 2019. Users can configure and start a “MAIA
job” that guides the user through the four stages of MAIA for
a given image collection in BIIGLE. Among the configuration
options for a MAIA job are tunable parameters for the first stage
(novelty detection) and the third stage (instance segmentation).
By default, a newly initialized MAIA job starts to automatically
process the images in the first stage with unsupervised novelty
detection. The novelty detection algorithm attempts to find
image regions that might contain OOIs without prior knowledge
what actually represents an OOI in the images. This is done
by applying an autoencoder network (Baldi and Hornik, 1989)
to discriminate the “common” sea floor from “novel” potential
OOIs in the images. Once complete, this stage returns a set
of potential OOIs called “training proposals” that can be used
to train a more accurate machine learning model for object
detection in the third stage (instance segmentation).

In the second stage of MAIA, the training proposals are
manually filtered and refined by a human observer who selects
only those proposals that actually show OOIs relevant to the
current research question. In BIIGLE, only a maximum of 50,000
training proposals are displayed in this stage, since an unlimited
number could take too long to manually filter. As with the video
annotation tool, the UI of MAIA in BIIGLE adheres as much
as possible to existing UI elements and interaction patterns.
To this effect, the training proposals are displayed in a regular
grid (see Figure 5A), similar to the existing Label Review Grid
Overview (Largo) tool of BIIGLE (Langenkämper et al., 2017,
section 3.3). As in Largo, users can quickly scroll through the list
of training proposals and select those that show relevant OOIs.
Next, users are guided to refine the selected training proposals,
adjusting their size and position, since they may not always
perfectly enclose the OOIs that they mark. This is done in a
view that largely resembles the image annotation tool of BIIGLE
(see Figure 5C). Adding to the MAIA workflow described in
the original publication, unselected training proposals are also
shown in the refine view and can be selected there. This feature
was implemented because sometimes OOIs can be identified

better within the context of the full image. The refine view only
offers a very limited set of annotation instruments for this task,
though. Users should be encouraged to quickly step through
the selected training proposals but not spend much time on
searching and annotating additional OOIs that were missed by
the novelty detection.

The selected and refined training proposals are used to train
a machine learning model for instance segmentation in the
third stage of MAIA. The instance segmentation is performed
on all images of the image collection to find a single object
class “interesting,” using a variant of the Mask R-CNN deep
neural network (He et al., 2017). As the machine learning model
of this stage is trained in a supervised way with examples of
actual OOIs, the object detections returned by this process are
more accurate than the training proposals of the first stage of
MAIA. The object detections produced by this stage are called
“annotation candidates.”

In the fourth stage of MAIA, the annotation candidates are
again manually filtered and refined by a human observer. This
process is done in a similar way and with a similar UI than the
filtering and refinement of the training proposals in the second
stage of MAIA. The only difference is that the user now also
chooses a label from a label tree to select and classify a relevant
annotation candidate (see Figure 5B). As in the second stage of
MAIA, users can select annotation candidates both in the regular
grid and in the refine view. Selected and refined annotation
candidates are finally converted to regular image annotations.

In contrast to a fully automatic method where detection
results would be accepted blindly, MAIA still requires user
interaction and manual validation of the detection results to
ensure high quality annotations. In addition, manual validation
mitigates the tradeoff between the recall (i.e., the ratio of
successfully detected OOIs) and the precision (i.e., the ratio of
correct detections) of a machine learning method, as often an
optimized recall results in a lower precision or vice versa. With
MAIA, the recall can be optimized and a lower precision is
compensated with manual validation.

A feature that was frequently requested by BIIGLE users in
the context of MAIA was the ability to apply a trained machine
learning model of the third stage of a finished MAIA job to
a new image collection. This idea inspired the development
of Unsupervised Knowledge Transfer for Object Detection in
Marine Environmental Monitoring and Exploration (UnKnoT)
(Zurowietz and Nattkemper, 2020). Research leading to the
development of UnKnoT found that the transfer of an object
detection model from one image collection to another is not
straight forward. With UnKnoT, however, this transfer can
be achieved for cases where similar OOIs are visible in the
images and the relative area shown by the images is known.
This information is used to adapt the (annotated) source
image collection to the scale of the (unannotated) target image
collection, and then by retraining the machine learning model
on the adapted/scaled annotations. In the original publication
of UnKnoT, the relative image area was estimated based on the
distance of the camera to the sea floor. In the implementation in
BIIGLE, the image area can also be directly imported in the image
metadata or calculated using automatic laser point detection, as
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FIGURE 4 | Annotated gigapixel image (virtual microscopy slide, 55,354× 28,112 px). (A) Overview of the full image in the image annotation tool of BIIGLE. (B) Crop

of the image in the original resolution (not part of the user interface).

this metadata information turned out to be more common than
the distance to the sea floor.

UnKnoT has been implemented in BIIGLE and is available at
biigle.de since 2020. It offers an alternative to novelty detection to
provide training data for the third stage of MAIA if an annotated
source dataset meeting the requirements of UnKnoT is available.
In addition to that, users can also choose to use (a subset of)
the existing image annotations of the given image collection
as training data for the machine learning model of the third
stage. The original implementation of MAIA was limited to the
application on deep sea image datasets, owing to the way the
novelty detection of the first stage works. UnKnoT and the option
to select existing annotations as training data extend the potential
applications of MAIA in BIIGLE to possibly any other marine
imaging domain.

2.4. Mobility and Affordability
Among the requirements that have been identified for marine
image annotation software such as BIIGLE is the ability for
universal deployment (Gomes-Pereira et al., 2016). Part of this
requirement is the goal to deploy the software in different
scenarios such as a mobile off-shore deployment on a research

ship or an on-shore deployment in a research institute. Also,
capacity building in scenarios where special hardware and
internet access are unavailable or unaffordable is becoming
increasingly important in the context of biodiversity research
(Schmeller et al., 2017; Gustafsson et al., 2020). Since 2017, the
application architecture of BIIGLE has been improved to allow
a flexible (mobile) deployment (Zurowietz et al., 2019). BIIGLE
can now run on a wide variety of hardware platforms, ranging
from large cloud-based operations to the deployment on amobile
and cheap single chip computer such as a Raspberry Pi, which is
still powerful enough to serve as a multi-user annotation system
on a smaller scale. In addition to the main instance on biigle.de,
BIIGLE has now been deployed as a mobile instance on multiple
research cruises and several research institutes maintain their
own stationary instance.

2.5. Application Instance Federation
One requirement for marine image annotation software that
has not been identified by Gomes-Pereira et al. (2016) is the
ability to transfer and synchronize information between different
application instances. This need arises naturally whenever there
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FIGURE 5 | User interface of MAIA in BIIGLE. (A) Training proposals and annotation candidates are shown as thumbnails in a large regular grid (this picture shows

annotation candidates). (B) Labels to select annotation candidates can be chosen from a list of label trees in the sidebar. (C) Exemplary interaction with an annotation

candidate thumbnail. First, the user inspects the candidate to identify an OOI. Next, the user selects the candidate with the appropriate label. Then the annotation

candidate is refined in the original image to exactly mark the OOI (unselected annotation candidates are shown with a dashed outline). Finally, the candidate is

converted to a real annotation and locked in the MAIA user interface.

is fragmentation of data between multiple application instances
that are deployed in different settings (see section 2.4).

The ability to transfer and synchronize data between multiple
application instances has been added to BIIGLE in 2018. It
allows to transfer user accounts, label trees and/or image or
video collections (including annotations) between application
instances. In the case of user accounts and label trees, the
information is synchronized and merged with existing user
accounts and label trees in the target instance. A typical use
case for data synchronization is a temporary application instance
that is set up for the duration of a research cruise. When the
temporary instance is prepared, existing users and label trees
are transferred from a permanent application instance of the
research institute. During the research cruise, images, videos,
annotations andmaybe new user accounts or label trees are added
to the temporary application instance. Once the research cruise is
finished, all data gathered in the temporary application instance
is transferred and merged back into the permanent application
instance of the research institute.

Another benefit of the ability for universal deployment of
image annotation software is that research institutes canmaintain
their own (internal) application instances. This allows them to
implement their own policies for user and data management,

and to keep possibly confidential datasets in-house. This causes
another type of data fragmentation than between permanent
and temporary application instances described above, which
cannot be easily solved with data transfer and synchronization.
Still, users of BIIGLE requested a way to share data between
permanent application instances, aiding collaboration between
research institutes. To this end, the federated search feature was
added to BIIGLE in 2020. The federated search connects two or
more BIIGLE application instances which regularly share a search
index of their database. This allows users of one application
instance to find annotation projects, image or video collections
as well as label trees of all connected application instances
with a single search query in their own instance. Search results
redirect to the respective resources of the BIIGLE instance in
which they are stored, saving users the time to search in each
individual instance.

2.6. Label Tree Collaboration
Labels that are used to classify annotations are an essential
component of marine image annotation and there is a continued
effort to establish standardized label collections in the field
(Howell et al., 2019). To aid this effort, BIIGLE introduced the
concept of label trees—collections of hierarchically organized
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labels that can be created and edited collaboratively by multiple
users. In addition, standardized labels can be imported from the
WoRMS database of marine species (WoRMS Editorial Board,
2021). Label trees have been continuously enhanced since the
original publication of BIIGLE in 2017.

Since 2019, label trees support versions which mark a fixed
state of a label tree at a specific point of time. Label tree versions
can ensure that the exact same set of labels is reused throughout
different studies. Furthermore, label tree versions can be exported
as a ZIP archive file and be associated with an external digital
object identifier (DOI). This allows users to publish the ZIP
archive of a label tree (version) in a long term archive such
as Zenodo (zenodo.org) which can assign a DOI to the label
tree [e.g., the CATAMI (Althaus et al., 2015) v1.4 label tree
(Zurowietz, 2019)]. Such a published label tree can be referenced
in publications—along with complementing guidelines on the
identification of the OOIs referenced by the label tree—to aid
reusability and reproducibility of research studies. Label trees can
also be imported in BIIGLE using the same ZIP archive format,
which was a frequently requested feature by users. Often, research
institutes already maintain their own taxonomic catalogs and the
import is a convenient way to reproduce existing catalogs as label
trees in BIIGLE.

For enhanced collaboration, label trees in BIIGLE can now be
copied, modified and then merged back into the original label
tree. This workflow was inspired by software development best
practices, where source code is copied (“forked”), the copy is
modified and then the modifications are reviewed and merged
back into the original source code. This practice is very successful
for large communities of software developers and could be
equally successful for collaboratively created and maintained
label trees.

3. RESULTS

Since the initial publication in 2017, we observed an increasing
interest in BIIGLE with continuously rising numbers of users
and annotations in the main instance at biigle.de. Here, we
have collected usage statistics of the main instance between
January 1st, 2017 and May 26th, 2021 that we found of most
interest for the marine imaging community. The usage statistics
indicate how image annotation is currently performed with a tool
such as BIIGLE and how image annotation tools as well as the
marine imaging community could further evolve.

3.1. Development of Usage
As of May 26th, 2021, the BIIGLE instance at biigle.de had 1,125
users, of which 1,061 have logged in at least once. The users
created more than 8.4 Million image annotations on more than
1.2 Million images and almost 240,000 video annotations on
more than 830 h of video material (additional information can be
found in the Supplementary Material). These annotations were
created from more than 40 different countries worldwide (see
Figure 2). Of the 1,061 active users, 518 (49%) have created at
least one annotation and half of these have created more than 205
annotations (see Figure 6). About 200 users have created more
than 1,000 annotations each and 825,000 is the highest number
of annotations created by a single user.

The development of the number of users and annotations
shown in Figure 1 indicates a linear increase between the
beginning of 2019 and the end of 2020. After that, the rate of
new user registrations seems to rise substantially, while the rate of
new image and video annotations stays the same. Also in 2020 we
have observed an increased interest of users to apply BIIGLE in
teaching. In courses with up to 50 participants, students practiced
the identification and annotation of OOIs in videos, regular
images and virtual microscopy slides (see section 2.2).

3.2. Popular Annotation Shapes
BIIGLE provides six different geometric shapes for image and
video annotations (see Figure 7, WholeFrame is only available
for video annotations and Ellipse is only available for image
annotations). Point, Circle, Polygon, Rectangle and Ellipse are
basic geometric shapes. The LineString shape can be a simple
line with two vertices but can also include more vertices (like
a polygon that is not closed). WholeFrame marks an entire
frame of a video. With more than 60%, the vast majority
of image and video annotations use the Point shape, even if
laser point annotations—which are most often annotated with
points—are excluded. With the exception of the LineString
shape (as well as WholeFame and Ellipse), the ranking of
annotation shapes by their usage percentage is the same for
image and video annotations. LineString is used more often
than Rectangle for video annotations but less often for image
annotations. The Ellipse shape has a very low share of 0.2%
among image annotations.

3.3. Video Annotation Types
Video annotations can be either single-frame or multi-frame
annotations (see section 2.1). About 85% of the almost 240,000
video annotations on biigle.de are single-frame annotations.

3.4. Average Annotation Time
To assess the time a user needs to create a new image or
video annotation, we have determined the average time between
any two consecutive annotations of a user. We excluded image
annotations that were created usingMAIA, as well as annotations
with a time distance of less than 1 s, as these were likely
also created in an automated way through the BIIGLE API.
In addition, we excluded all annotations with a time distance
larger than 15 min, as these likely no longer belong to the
same annotation “sequence.” With these restrictions, a total of
4,622,274 image annotations of 441 different users and 236,561
video annotations of 89 different users were collected.

Most new image annotations were created in a time window of
1–30 s (see Figure 8). The number of users who took longer than
30 s to create new image annotations gradually decreases and
only few users took longer than 3 min. The median time between
two new image annotations of a user is 40.3 s. Different to
image annotations, most users took 60–120 s to create new video
annotations. Only after 2 min the number of users decreases
substantially for video annotations. With 87.6 s, the median
time between two new video annotations of a user is more
than twice as high than the median time between two new
image annotations.
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FIGURE 6 | Number of users grouped by the number of image and video annotations they have created on biigle.de. Out of a total of 1,061 users who have ever

logged in, 518 (49%) have created at least one annotation. Half of these have created more than 205 annotations. No user has created more than 106 annotations.

FIGURE 7 | Comparison of the percentage of annotation shapes used for image annotations and video annotations. The WholeFrame shape is only available for video

annotations and the Ellipse shape is only available for image annotations. Image annotations for laser points or created by using MAIA (see Section 2.3) are excluded.

The vast majority of annotations have the Point shape.

3.5. Collaboration
Image and video volumes in BIIGLE and can be annotated
collaboratively by many users. On biigle.de about 60% of the
1,775 annotated image volumes and about 70% of the 152
annotated video volumes were annotated by only a single user

(see Figure 9). Almost 20% of the annotated image and video
volumes were annotated by exactly two and 12–21% bymore than
two different users.

BIIGLE provides a feature for “annotation sessions”
(Langenkämper et al., 2017, section 3.4). In an annotation
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FIGURE 8 | Percentage of users grouped by the average time between any two of their consecutively created annotations, which are at least 1 s and at most 15 min

apart. Image annotations created by using MAIA (see section 2.3) are excluded. The median of the average time it takes to create a video annotation is more than

twice as high as the median for image annotations.

session, users can choose to hide their previous annotations
and/or the annotations of other users to annotate the same
images or videos again. After annotation, reports can be
exported for each annotation session and users can determine
the intraobserver and/or interobserver agreement (Schoening
et al., 2016) of the annotations. Only 9.3% of the annotated
image volumes and 13.1% of the annotated video volumes used
annotation sessions. Notably, only 6.6% of the image volumes
and 15.0% of the video volumes with a single annotator used
annotation sessions. A single annotator could use annotation
sessions to reannotate images (with previous annotations
hidden) and use the two sets of annotations to determine their
own intraobserver agreement.

Label trees in BIIGLE can also be created collaboratively and
shared across multiple annotation projects. Of the relevant label
trees (see Figure 10), about 60% are used by only a single project
and curated by only a single user. Thirty-eight percent of the
label trees (140) are used by more than one project and the
most shared label tree is used by 22 different projects. Forty-four
percent of the label trees (161) are curated by more than one
user and the highest number of collaborators on a single label
tree is 30.

3.6. Use of Automated Assistance
Of all image volumes that have been created on biigle.de,
2,217 non-empty ones were created since MAIA has been
made available as the first method for automated assistance for
image annotation in BIIGLE. Six percent of these volumes (129)
have used MAIA to generate a total of 1,899,545 annotation
candidates. Twenty percent of the annotation candidates
(376,837) were manually converted to real annotations, which
amount to 7.2% of the total 5,214,280 image annotations that
were created on biigle.de since MAIA has been made available.

4. DISCUSSION

Since the initial publication of BIIGLE, many new features have
been implemented and made available on the main instance at
biigle.de (see section 2). A large proportion of the updates and
new features was done based on feedback and requests of users.
Over the years, the international community of users has been
growing continuously along with the number of annotations
(see Figure 1). The substantial increase of the rate of new users
beginning in 2020 could be explained with the simultaneous
increasing interest in the application of BIIGLE for teaching.
With the sudden increase in online and remote teaching courses
because of the Corona pandemic during the year, more teachers
in higher education discovered the advantages of a multi-user
web application for image and video annotation. The increased
application for teaching could also be an explanation for the
distribution of annotations per user shown in Figure 6. Teaching
classes are likely to introduce many new users who do not create
many annotations. Related to this is also the development of
new techniques and workflows for digital microscopy (Burfeid-
Castellanos et al., 2021a, in review)1 that were enabled through
gigapixel image annotation support in BIIGLE (see section 2.2).
Other established software tools such as OMERO (Allan et al.,
2012) in this field focus more on data management, whereas
BIIGLE focuses on fully-featured and collaborative annotation.
Students are now taught how to annotate virtual microscopy
slides directly in BIIGLE, which also leads to increasing numbers
of users with a background in teaching.

1Burfeid-Castellanos, A. M., Kloster, M., Beszteri, S., Postel, U., Spyra, M.,

Zurowietz, M., et al. (2021). Digital microscopy can improve the reproducibility

and taxonomic precision of diatom identification. (in review).
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FIGURE 9 | Percentage of annotated image and video collections (volumes) on biigle.de, grouped by the number of distinct users who created annotations in the

volume. The majority of volumes was annotated by only a single user. Only a low percentage of the volumes used annotations sessions that allow to determine the

intraobserver and/or interobserver agreement.

A surprising observation was that only about half of
the active users on biigle.de have created annotations (see
section 3.1). One possible explanation could be that BIIGLE is
not only used for annotation but also in a large part for the
exploration and presentation of images, videos and annotations.
As there is no concept of making data from BIIGLE directly
available without a login, a user account is required to access
the data. This interpretation also confirms the utility of an
annotation tool as a web application, as it enables data sharing
and collaboration across the research institutes, universities,
countries and continents.

Overall, the acceptance of BIIGLE as an image and video
annotation tool in the marine imaging community seems to
increase. In part, this could hint at the rising demand in
annotation systems in general, caused by rapidly increasing
volumes of marine imaging data. Another contributing factor
could be that one fundamental design principle of BIIGLE is a
high-quality and efficient user interface (UI). Our concept of a
high-quality and efficient UI consists of a consistent color scheme
for the UI, the reuse of familiar UI elements and interaction
patterns where possible (e.g., image and video annotation tool,

see Figure 3, or Largo and MAIA, see Figure 5) as well as a
reduced information density of the UI that can be optionally
increased where necessary. Furthermore, the UI should support
and encourage efficient workflows, e.g., in the filtering and
refinement steps of MAIA (see section 2.3). We believe that such
a high-quality UI is critical for efficient and effective annotation
workflows and the acceptance of a tool such as BIIGLE in general.
This is confirmed by feedback of users who recommend BIIGLE
because of its efficient UI.

Another notable observation is the dominance of point
and circle annotations both for image and video annotations
(see Figure 7), as well as single-frame annotations for video
annotations (see section 3.3). In all cases, users chose the simplest
annotation shape and annotation type that requires the least
effort (i.e., number of mouse clicks) to create. Effectively, this
means that video annotation is mostly performed like image
annotation on single video frames. Still, video annotation seems
to be used for different tasks than image annotation, as indicated
by the difference in the average time to create image and video
annotations (see Figure 8). Another contributing factor could
be the additional time a user needs to browse for a specific
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FIGURE 10 | Percentage of label trees on biigle.de, grouped by the number of projects sharing the label tree (top) and the number of users contributing to the label

tree (bottom). The majority of label trees is used by only a single project and is curated by only a single user. The following label trees were excluded for this figure:

The global label tree attached to new projects by default, the label tree of the “demo” project, label trees without labels, label trees without project and label trees

called “test”.

frame that should be annotated in the video, compared to image
annotation where this is not necessary. One of the supposedly
biggest advantages of videos over still images is the ability to
identify moving OOIs in videos much better than motionless
OOIs in images. While the OOIs might never be identified
(as accurately) in still images, the identification in videos takes
more time. This leads to different use cases for image and video
annotation. Image annotation can be faster for studies that count
OOIs (e.g., biodiversity assessment), whereas video annotations
can be more accurate for the detection of rare events (e.g., the
occurrence of a rare species) or for habitat classification.

The very high percentage of point annotations both for
image and video annotations could indicate that most annotation
studies are only interested in the occurrence of OOIs and not
the area or size. Another explanation could be that annotation
protocols prescribe the use of point annotations because they
were created for older annotation software with more limited
capabilities. Users could stick to point annotations out of habit
or the need to maintain comparability with previous annotation
studies. This could also be true for the high percentage of
single-frame video annotations. Users could stick to this type of
annotation because no previous video annotation tool for marine
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imaging exists that offers annotation types such as multi-frame
annotations with automatic object tracking. This presumption is
supported by the fact that—after more than 2 years of operation
and increasing usage—we have received very little feedback and
user requests on the video annotation tool. Users seem to have
no reference for an “ideal” video annotation tool or a “standard”
video annotation workflow for marine imaging and hence are not
missing any features that they might require for their work. Since
the video annotation tool in its current form was only our best
guess at how video annotation could work for marine imaging,
there could be a huge potential for improvements to tools and
workflows for marine video annotation based on user feedback.

Another key observation is the distribution of the number of
distinct annotators of a given volume (see Figure 9). By far the
most volumes were annotated by only a single user. Likewise,
most label trees are curated by only a single user and used in only
a single annotation project (see Figure 10). On the other hand,
about 40% of the image and video volumes were annotated by
more than one user and about 40% of the label trees are used
in up to 22 different projects and curated by up to 30 users.
While this observation highlights the need for annotation tools
to support collaboration as indicated by Gomes-Pereira et al.
(2016), it also shows that the majority of annotation tasks are
still done by only a single researcher. Furthermore, only a small
fraction of the volumes used annotation sessions which enable
the assessment of intra- and interobserver agreement of one or
more annotators. This is contrary to recommended annotation
best practices (Schoening et al., 2016) where repeated annotation
to determine the intraobserver agreement of a single annotator is
the minimum requirement for reliable annotations. Even of the
volumes with two or more different annotators almost none used
annotation sessions to determine the interobserver agreement.
The most likely reason for the observed predominance of little
collaboration and annotations not adhering to best practices
is tight time constraints for researchers and studies. Any
annotation task is time-consuming and a doubled time because
of repeated annotation is likely not acceptable in many scenarios.
Some studies may have access to multiple annotators who
can annotate in parallel and—using annotation sessions—
determine the interobserver agreement afterwards to produce
reliable annotations. In other cases, automated assistance such
as MAIA could be an alternative where a single annotator
could perform multiple repeated annotation sessions faster than
without automated assistance. In addition, BIIGLE does not yet
offer a way to calculate the intra- and interobserver agreement
automatically. Matching between annotations that should mark
the same OOI is not an easy problem to solve and can also be
done differently depending on the type of annotation study. For
now, BIIGLE leaves this calculation up to the users which may
contribute to the little adoption of annotation sessions.

The current state of automated assistance for marine
image and video annotation leaves much room for further
improvements or new computer vision approaches to this task.
MAIA for automated annotation assistance has been employed
in BIIGLE to some success (see section 3.6) but still the majority
of annotation studies are conducted purely manually. In the same
reasoning as outlined previously, users could stick to manual

annotation out of habit or the need to maintain comparability
with previous annotation studies. Also, there may be a need to
establish more trust toward automated methods and to validate
their capabilities with additional studies. Furthermore, MAIA in
BIIGLE could originally be only applied effectively on deep sea
images. The extended capabilities with UnKnoT may have yet to
be discovered by users. Many ideas exist to improve automated
assistance in BIIGLE (e.g., through automated classification,
semi-automatic filtering of proposed detections or improved user
interactions). Any of these methods for automated assistance
have yet to be ported to the task of video annotation as well. This
could be a big opportunity to not only encourage collaboration
on the level of image and video annotation studies but also on
the level of software development for annotation tools. In 2019,
the source code of BIIGLE has been published under an open and
permissive GPL v3.0 license (github.com/biigle). We encourage
everyone to participate in the continued development of BIIGLE
with feedback, open discussion or code contributions.

5. CONCLUSION

We have presented the most important new features of the image
and video annotation tool BIIGLE that have been developed
since the initial publication in 2017. These features have been
developed largely based on user requests and feedback, and can
give an example how a marine image and video annotation
tool can evolve over time. Our experience has shown that a
continuous development process and a feedback cycle with the
community of users is crucial to keep up with changing demands
and the rapidly increasing volume as well as diversifying types of
imaging data in the field of marine science.

Our usage observations of the main BIIGLE instance at
biigle.de and the new developments for BIIGLE can be
summarized with the following key findings for marine image
annotation software:

• In addition to still images, other modalities such as videos and
gigapixel images are increasingly used in marine imaging and
should be supported by annotation tools (see sections 2.1, 2.2).
In the case of video annotation, a best practice specification
needs to be established to ensure efficient and standardized
workflows as well as the improvement of available tools.

• There is a continuous demand for automated processing
and/or assistance for annotation. The impressive
developments in this field have a great potential to lead
to more efficient annotation workflows (see section 2.3).
However, systems for automatic annotation assistance still
seem far from being the default choice for annotation tasks
as they are performed in BIIGLE. Better communication
between the developers and the users of these systems can help
to build trust in the systems as well as improve them further.

• Application development should consider mobility and
affordability to enable capacity building in scenarios with
limited resources (see section 2.4). This is especially relevant in
the context of biodiversity research where areas of particularly
high biodiversity can often have less developed infrastructure.
Furthermore, an efficient and high-quality user interface can
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contribute substantially to the success and acceptance of
an annotation tool and should not be neglected during the
development.

• Collaboration between users of the same application instance
as well as different application instances should be supported,
as it is crucial for interdisciplinary research across research
institutes and countries. This is not only relevant for the task
of image or video annotation itself but also to enable sharing
of datasets and observations (see section 2.5), the collaborative
development of common nomenclatures (see section 2.6) or
online teaching.

Current annotation protocols are in need to be revised. They
should make use of the capabilities of newer technologies and
tools for a more efficient and effective annotation process, as
well as collaboration for more reliable annotations. Protocols
should encourage the use of methods for automated assistance
and the adherence of annotation best practices wherever possible.
The demand for image and video annotation tools will rise
in tandem with the demand for image and video annotation
in marine science. The increasing use in teaching adds to this
demand and introduces even more requirements for these tools.
A healthy and open discussion as well as close collaboration
between the developers and the users of annotation tools will be
the best strategy to keep the software evolving, and to meet future
demands and new requirements.
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