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Canopy-forming brown algae support highly productive ecosystems whose decline
has been attributed to the interplay of several anthropogenic disturbances. Climate
change could have disruptive effects on the biology of these species, but the role of
temperature in the development of early life stages is poorly understood. The aim of this
study was to assess the response of Ericaria giacconei, a winter-reproducing Southern–
Mediterranean endemic species, to thermal stress by testing five temperatures (12, 15,
18, 24, and 28◦C) on adults and early stages. Chlorophyll a fluorescence of adult plants
was measured at 0, 24, 72, and 120 h on nine fronds in each of the three aquaria
per treatment. To assess egg release, zygote settlement, and embryo growth rate,
approximately 1,200 receptacles were cultured on six Petri dishes per temperature
treatment, and 10 random subsections of 2 ×2 mm were examined in three Petri dishes
at 0, 20, 44, and 92 h after fertilization. Adult plants showed a plastic physiological
response, and thermal stress had no significant effect on PSII efficiency. Embryos fully
developed only at 12 and 15◦C. Mortality increased at 18 and 24◦C, and no zygotes
survived at 28◦C. In a scenario of further increasing temperatures, the effects of warming
could affect the recruitment of E. giacconei and increase its vulnerability to further
stresses. These effects on the survival of early stages, which are the bottleneck for
the long-term survival of the species, should be taken into account in conservation
and restoration measures to maintain canopy-forming macroalgal populations and
associated biodiversity and ecosystem services.

Keywords: thermal stress, early life stages, photosynthetic efficiency, marine forest, climate change,
conservation

INTRODUCTION

Canopy-forming algae of the order Fucales and Laminariales (Phaeophyceae) are among the most
ecologically and socio-economically valuable marine species in temperate waters (Steneck et al.,
2002; Smale et al., 2013; Bennett et al., 2015). They provide a structural and trophic framework
that supports rich biodiversity by providing food, shelter, and habitat for other associated species
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(Bustamante et al., 2017; Teagle et al., 2017), and are responsible
for nutrient cycling and CO2 storage (Krause-Jensen and Duarte,
2016; Filbee-Dexter and Wernberg, 2020).

Macroalgal forests are undergoing major regressions
worldwide due to a combination of multiple natural and
anthropogenic sources of disturbance (Steneck et al., 2002;
Strain et al., 2014; Mineur et al., 2015; Krumhansl et al., 2016).
In recent years, an increasing number of studies have reported
changes in the distribution and abundance of these macroalgal
populations as a result of ocean warming and thermal anomalies
(especially marine heat waves, MHWs) (e.g., Smale, 2020 and
the references therein; Bevilacqua et al., 2019; Savonitto et al.,
2021; Verdura et al., 2021). Populations at the edge of their
range appear to be particularly affected by this trend (e.g., Viejo
et al., 2011; Nicastro et al., 2013; Araújo et al., 2014; Álvarez-
Losada et al., 2020; Gurgel et al., 2020). Thermal anomalies
may affect the phenology and physiology of these species,
impairing their performance, increasing their vulnerability to
other stressors, and eventually leading to population declines
and local extinction events (Wernberg et al., 2010, 2016; Gouvêa
et al., 2017; de Bettignies et al., 2018). These events could also
lead to changes in associated species and their interactions
(Vergés et al., 2016; Wernberg et al., 2016; Provost et al., 2017),
which may ultimately result in detrimental cascading effects
on ecosystem functions and the resulting provision of goods
and services (Smale et al., 2013; Vergés et al., 2014; Straub
et al., 2019). To date, most works addressing the effects of heat
stress on the physiology and biology of brown algae have been
manipulative and laboratory-based, focusing on kelps, with
the ‘sporophyte phase’ being the most studied (e.g., Wilson
et al., 2015; Burdett et al., 2019; Nepper-Davidsen et al., 2019;
Fernández et al., 2020; Hereward et al., 2020; Diehl et al.,
2021; Umanzor et al., 2021). As for the Fucales, the genus
Fucus is the most extensively studied, and works on adults
predominate over those on early life stages (e.g., Strömgren,
1977; Pearson et al., 2009; Jueterbock et al., 2014; Nielsen
et al., 2014; Graiff et al., 2015; Mota et al., 2015; Smolina et al.,
2016; Rothäusler et al., 2018; Figueroa et al., 2019). Overall,
the trend that emerges is a high sensitivity in the early life
stages and a relative ability of adults to grow and survive over
broader temperature ranges and to physiologically compensate
for thermal stress.

In the Mediterranean Sea, macroalgal forests are dominated
by Cystoseira sensu lato (s.l.) species (Fucales, Phaeophyceae).
In recent decades, they have declined or become locally extinct
due to anthropogenic pressure (e.g., Thibaut et al., 2005, 2015;
Falace et al., 2010; Perkol-Finkel and Airoldi, 2010; Blanfuné
et al., 2016). To date, there is little evidence of natural
recovery of damaged Cystoseira populations (e.g., Munda, 2000;
Iveša et al., 2016; Orlando-Bonaca and Rotter, 2018; Medrano
et al., 2020), because once losses have occurred, recovery from
nearby populations tends to be difficult due to the short
dispersal of eggs/zygotes and low connectivity of populations
(e.g., Soltan et al., 2001; Buonomo et al., 2017; Capdevila
et al., 2018). There is evidence that thermal anomalies and
warming can alter the reproductive phenology, germling growth,
and viability of Cystoseira s.l. species (Celis-Plá et al., 2017;

Capdevila et al., 2018; Savva et al., 2018; Bevilacqua et al., 2019;
Cáliz et al., 2019; Mancuso et al., 2019; Savonitto et al., 2021;
Verdura et al., 2021). As the Mediterranean Sea is warming faster
than the oceans and thermal anomalies occur with increasing
intensity, frequency, and duration (Diffenbaugh et al., 2007;
Vargas-Yáñez et al., 2008; IPCC, 2019; Pastor et al., 2020; Pisano
et al., 2020), examining the response of Cystoseira s.l. species
to temperature may provide useful insights into their potential
future fate under global warming.

The present study focuses on Ericaria giacconei Serio et G.
Furnari (= Cystoseira hyblaea Giaccone), a species endemic to
the Sicily Channel (Central Mediterranean Sea) that lives in
the intertidal and upper sublittoral at depths of 0.2–1.5 m on
semi-exposed and exposed rocky shores. Maximum vegetative
and reproductive development occurs in winter, from January
to March, when mean seawater temperature at 1 m depth
ranges from 14.7 to 16.1◦C. This species was described at Punta
D’Aliga (southern coast of Sicily, Italy) (Giaccone, 1985), where
it is locally extinct (Cormaci et al., 2012). Its current range is
fragmented and restricted to two localities: Cap Bon (Kelibia)
along the Northern Tunisian coast (Bouafif et al., 2016) and
Portopalo di Capo Passero (Isola delle Correnti) in Southern
Italy (present study). Its disappearance from the type locality,
its limited range, and the fact that it lives in shallow waters
raise concerns about the possible fate of E. giacconei in the
current warming regime. This species, like other Cystoseira
s.l. species, is listed in some international agreements (e.g.,
Barcelona Convention, Directive 92/43/EEC), but these are not
legally binding.

The objective of this study is to determine the thermal
tolerance of both early developmental stages and adults of
E. giacconei. Adult photosynthetic efficiency and egg release,
zygote settlement, and embryo development were examined at
five temperature treatments from 12 to 28◦C. Evidence for the
likely response of this species to projected climate change is
provided, together with a thorough discussion on its conservation
status. Another outcome of this work is the embryology of
E. giacconei, which has never been described before.

MATERIALS AND METHODS

Sampling Site
Samples were collected from a semi-exposed rocky shoreline
on the southern coast of Sicily (Sicily Channel, Mediterranean
Sea: 36◦38′49′′ N; 15◦04′45′′ E). On the seabed, sandy substrates
covered by Posidonia oceanica (L.) Delile alternate with shallow
rocky reefs dominated by dense and well-structured stands of
E. giacconei in the upper subtidal. This species also occurs in the
intertidal, replacing the typical fringe of Ericaria amentacea (C.
Agardh) Molinari et Guiry as previously described by Giaccone
(1985) at the type locality.

The mean seawater temperature on the Ionian coast of Sicily
at 1 m depth is 15.6◦C in winter, with values ranging from 15.1 to
16.7◦C, and 25.5◦C in summer, with values ranging from 22.0 to
27.5◦C (Clementi et al., 2019).
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Experimental Set-up
Approximately 6000 receptacles and 135 primary branches
(approximately 10 cm long) of E. giacconei were collected in
March 2020. Samples were wrapped in aluminum foil, stored at
4◦C in the dark and transported to the Phycological Laboratory,
University of Trieste, within 24 h after collection. At the
laboratory, the receptacles were stored at 4◦C for 36 h, while the
adult fronds were acclimatized at 18◦C for 48 h.

Five temperature treatments were replicated in
environmentally controlled rooms: 12◦C, i.e., the lowest
temperature the species can be exposed to in winter; 15◦C, i.e.,
the average daily seawater temperature during the reproductive
period; 18◦C, i.e., the average daily temperature in early winter
(December); 24 and 28◦C, i.e., temperatures the species is
normally exposed to in summer. Light intensity was set to
125 µmol photons m−2 s−1 supplied by LED lamps (AM366
Sicce USA Inc., Knoxville, TN, United States) and measured with
a LI-COR LI-190/R Photometer (LICOR-Biosciences, Lincoln,
NE, United States); photoperiod was set to 12:12 h light:dark.

For each heat treatment, three aquaria were filled with 10
l of filtered seawater (0.22 µm filter membrane), and each
aquarium contained nine adult primary branches. Pumps (Sicce
Syncra Nano, Sicce S.r.l., Pozzoleone, IT) were placed at the
bottom of each aquarium, to ensure that the medium was
properly oxygenated. The experiment on adult fronds lasted
120 h (Figure 1).

Early life stages, up to the end of the embryonic stage (i.e.,
the fall of apical hair; Nienburg, 1931; Galun and Torrey, 1969;
Savonitto et al., 2019), were studied for 92 h (Figure 1). Six
replicate Petri dishes per treatment were filled with 10 ml of
filtered seawater (0.22 µm filter membrane) and incubated at the
five temperatures listed above. Each Petri dish was seeded with
approximately 200 receptacles.

To counteract evaporation, additional aquaria filled with
filtered seawater were kept at the same temperatures to refill the
experimental aquaria and Petri dishes.

Response Variables
Adult Plants
Chlorophyll a fluorescence (ChlaF) of each adult specimen was
measured at the end of acclimation (t0) and after 24 h (t1),
72 h (t2) and 120 h (t3) using a Photosynthetic Efficiency
Analyzer Fluorimeter Handy-PEA (Hansatech, King’s Lynn,
United Kingdom). Measurements were taken after a 30 min dark
adaptation using the standard Handy-PEA clip. A saturating red-
light pulse of 3500 µmol photons m−2 s−1 for 0.8 s was emitted
to obtain the 0JIP fluorescence transient, i.e., the time resolved
Kautsky induction, and hence Fm (transient maximum ChlaF
level). F0 (minimum ChlaF level), needed to calculate Fv (variable
ChlaF level, i.e., Fm–F0) and thus Fv/Fm (maximum quantum
yield of PSII photochemistry), was measured 50 µs after the
onset of illumination. The performance index (PIabs) was also
calculated from the analysis of the ChlaF transient from F0 to Fm,
the so-called JIP test (Strasser et al., 2000; Bussotti et al., 2010).
PIabs is calculated from three independent expressions related to
(a) the density of reaction centers, (b) the maximum quantum
yield of primary photochemistry, and (c) the efficiency of the
electron transport chain between PSII and PSI (Strasser et al.,
2000). PIabs is commonly used to test the effects of environmental
factors such as temperature, salinity and high intensities of visible
and UV-light on the viability and efficiency of the photosynthetic
apparatus (Misra et al., 2001).

Early Developmental Stages
Receptacles were removed from Petri dishes after fertilization
(AF; 30 h after seeding). To avoid experimental bias and to
ensure that the receptacles of all thermal treatments had the same
reproductive potential (RP), it was estimated as follows:

RP (conceptacles mg-1) =

mean no. of conceptacles receptacle-1

mean receptacle dry weight

FIGURE 1 | Experimental setup: for each temperature treatment (◦C), six Petri dishes and three aquaria were used to test the thermal tolerance of early life stages
and adults of Ericaria giacconei.
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The number of conceptacles per receptacle was counted under
a stereomicroscope (Leica MZ 6, Leica Microsystems, Wetzlar,
Germany). Receptacles were then dried at 70◦C for 48 h.

To quantify egg release and zygote settlement at different
temperatures, 10 subareas of 0.2 × 0.2 cm2 in three Petri dishes
were randomly selected per treatment and photographed under
a stereomicroscope with a Nikon Coolpix 4500 camera (Nikon
Corporation, Tokyo, Japan) at each sampling time. To reduce
stress on the algae, photographs were taken within a few minutes.
Three Petri dishes were randomly selected to assess egg release
and the remaining three were used to assess zygote settlement.
Photographic sampling was carried out at the time of fertilization
(i.e., 30 h after seeding) and 20 h AF. The digital images were
analyzed to count the number of specimens in each subarea. The
counts were then extrapolated to the entire culture area (i.e.,
23.76 cm2). Release (RE) and settlement (SE) efficiencies were
calculated as follows:

RE (eggs mg−1) =
no. of eggs cm−2

mean receptacle dry weight cm−2

SE (zygotes mg−1) =
no. of zygotes cm−2

mean receptacle dry weight cm−2

Embryo growth was assessed by taking digital images of 10
randomly selected subareas (0.2 × 0.2 cm2) under an inverted
microscope (Leica DM IL LED, Leica Microsystems, Wetzlar,
Germany) using a Canon Powershot G9 camera (Canon Inc.,
Tokyo, Japan) at 20, 44, and 92 h AF. In each subarea, the
percentage of unfertilized eggs (= stage 0), zygotes (= stage 1),
two-celled embryos (= stage 2), multicellular embryos (= stage
several), multicellular embryos with rhizoids (= stage rhizoids),
dead embryos (= stage dead), deformed dead embryos (= stage
deformed dead), and deformed living embryos (= stage deformed
living) were counted (Supplementary Figure 1).

To describe the embryo development, additional dedicated
slides were seeded with receptacles at 15◦C (i.e., the average
seawater temperature during the reproductive period) and
observed over time under an inverted microscope.

Statistical Analysis
Repeated-measures ANOVA was used to test the effects of
temperature (five levels: 12, 15, 18, 24, and 28◦C) and time (three
levels: t1, t2, and t3) on F0, Fm, Fv/Fm, and PIabs (n = 27).
The assumption of normality of response variables was tested
with the Shapiro–Wilk test. In all cases, the assumption of
normal distribution was fulfilled. Tuckey’s HSD post hoc test
was used to examine pairwise significant differences between
treatment combinations.

One-way ANOVA was performed to test for differences
between temperature treatments on RP, RE, and SE. The
assumption of normality of response variables was tested with
the Shapiro–Wilk test. In all cases, the assumption of normal
distribution was fulfilled. Significant terms were examined by
performing a post hoc pairwise t-test to compare the different
treatments. Cochran’s C-test (Underwood, 1997) was used to
test the assumption of homogeneity of variances prior to

analysis. For RP, data were square root-transformed to remove
heterogeneous variances. To explain the observed bell-shaped
patterns, a quadratic regression model was fitted to RE and SE
against temperature.

Distance-based permutational multivariable analysis of
variance (PERMANOVA, Anderson, 2001) was used to test for
differences in temporal patterns of embryonic development
between treatments. Data from treatments at 28◦C were not
included in the analysis since the number of settled zygotes at
20 h AF was extremely low (mean 0.7 zygotes/subarea ± 0.1
SE), and zygote mortality at later sampling times was 100%.
The analysis was based on Bray–Curtis dissimilarities (Bray
and Curtis, 1957) on untransformed data, and each term in the
analysis was tested by 5,000 random permutations. The design
for the analysis included two crossed factors: Treatment (Tr,
four levels, and fixed) and Time (Ti, three levels, and fixed),
with n = 3. Non-metric multidimensional scaling ordination
(nMDS) of the Tr × Ti centroids was used to represent the
multivariate patterns.

RESULTS

After acclimation, the adult primary branches of E. giacconei
had Fv/Fm values ranging from 0.606 to 0.768, attesting the
viability and good physiological status of the photosynthetic
apparatus of the samples.

Fv/Fm values were stable throughout the experiment,
although slight but significant changes were observed as
a function of temperature and time (Figure 2A, Table 1,
and Supplementary Table 1). Specifically, at 12◦C Fv/Fm
statistically increased over time by 5.3% (Supplementary
Table 1). The interaction between temperature and time had
a significant effect on F0 and Fm (Table 1 and Supplementary
Table 1); from t1 to t3, both parameters were stable at 18
and 24◦C, whereas F0 significantly decreased in samples
at 12 and 15◦C and Fm at 15 and 28◦C (Figures 2B,C
and Supplementary Table 1). PIabs was only affected by
temperature (Table 1 and Supplementary Table 1): it was
highest at 28◦C and gradually decreased from 24 to 15◦C,
with the lowest values at 12◦C at t3 (Table 1, Figure 2D, and
Supplementary Table 1).

Ericaria giacconei has branched pigmented antheridia and
ovoid oospheres retained in the conceptacle (Supplementary
Figure 2). The following embryological traits were observed: the
first and second division of the zygote are parallel to each other
and the third division is perpendicular to the previous ones. The
embryo development takes place directly on the substratum: four
primary rhizoids are formed fixing it (Supplementary Figure 3).

The RP did not differ significantly among thermal treatments,
making them comparable at the beginning of the experiment
(Table 2 and Figure 3A).

No significant effects of temperature were detected on RE
(Figure 3B and Table 2). In contrast, temperature significantly
affected SE (Figure 3C and Table 2). Specifically, SE at 28◦C
was lower than all other treatments. RE (Figure 3B) and SE
(Figure 3C) showed a bell-shaped response to temperature, and
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FIGURE 2 | Chlorophyll a fluorescence parameters of Ericaria giacconei
adults as a function of temperature: Fv/Fm (A), F0 (B), Fm (C), and PIabs (D)
(color-coded as in Figure 1). Fronds were exposed for 24 (t1), 72 (t2), and
120 h (t3) to the tested temperatures. Values (mean ± SE; n = 27) are
expressed as percentage (%) of the mean value at t0.

the quadratic model fitted to the data explained 51 and 61% of the
variability for RE and SE, respectively (Table 3).

PERMANOVA on embryo status revealed a significant
Tr × Ti interaction (Table 4), indicating that temporal patterns
of embryonic development differed significantly between
temperature treatments. These differences were evident in the
nMDS ordination of Tr × Ti centroids (Figure 4). The centroids
of 12 and 15◦C clustered alongside those of 18 and 24◦C, the

latter also showing marked separation between 20 and 44–92 h
AF. These differences were mainly due to the fact that at 20 h
AF a higher percentage of eggs, zygotes, or two-celled embryos
were found in the treatments at 18 and 24◦C than in those at
12 and 15◦C (Figure 4A). In contrast, multicellular embryos
or rhizoids were found in the treatments at 12 and 15◦C in
each time interval (Figure 4B), suggesting that the development
rate was faster at lower temperatures. In addition, embryo
mortality was consistently higher at 18 and 24◦C than at 12 and
15◦C, with the highest percentage of dead embryos recorded at
24◦C (Figure 4C).

DISCUSSION

Climate change, coupled with multiple anthropogenic and
natural stressors occurring in coastal ecosystems, poses a major
threat to the long-term survival of marine forests. From
this perspective, studying species vulnerability to temperature
stress can provide relevant insights that can be used to make
more robust and integrated predictions for marine forest
conservation and management.

In our experiment, adults of E. giacconei were not negatively
affected by temperatures, indicating an expected ability to
acclimatize to a wide range of temperatures typical of the
Mediterranean Sea and especially the intertidal zone. All
temperatures to which thalli were exposed had a statistically
significant, but not physiologically relevant effect on Fv/Fm
(max increase +5% at 12◦C, from 0.659 to 0.694; max decrease
−1% at 28◦C, from 0.731 to 0.725), which remained generally
steady and within the range of values indicative of a healthy
PSII, i.e., >0.6 (e.g., Celis-Plá et al., 2014; Smolina et al.,
2016; Falace et al., 2018b; Savva et al., 2018; Cáliz et al., 2019;
Verdura et al., 2021). In contrast, temperatures above 18◦C
caused an almost equal decrease in F0 and Fm (Figures 2B,C).
Photosystem II is considered the most heat-sensitive component
of the photosynthetic apparatus, especially at the level of the
oxygen-evolving complex (Oukarroum et al., 2016). Impairment
of this component leads to a progressive decrease in electrons
entering the electron transport chain from PSII until its complete
inactivation (Allakhverdiev et al., 2008). Several parameters of the
fast ChlaF transients, such as the maximal and basal fluorescence
(Fm and F0) and the derived maximum quantum yield (Fv/Fm),
are the most appropriate tools for detecting early effects of
heat stress, as they have been shown to correlate with heat
sensitivity/tolerance (Allakhverdiev et al., 2008). In particular,
the increase in F0 is closely related to the temperature at which
PSII is inactivated (Yamane et al., 2000). For the aforementioned
reasons, this could be interpreted as a transient adaptation of
the photosynthetic apparatus to the temperature change rather
than heat stress.

Several works reporting the effects of temperature on
photosynthetic efficiency of brown algae have shown that adults
are generally tolerant of temperature fluctuations. For instance,
ChlaF of E. selaginoides adults was not affected after exposure to
temperatures up to 28◦C for 15 days (Cáliz et al., 2019). Savva
et al. (2018) reported that Fv/Fm of Cystoseira compressa exposed
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TABLE 1 | Summary of repeated measures ANOVAs on Fv/Fm, F0, Fm, and PIabs.

Fv/Fm F0 Fm PIabs

Num df Den df SS Error SS F SS Error SS F SS Error SS F SS Error SS F

Time 2 256 232 6787.1 4.3684* 25644 67433 48.6773*** 20596 96958 27.1894*** 4452 651958 0.8740NS

Treatment 4 128 349 3708.9 3.0138* 13972 43935 10.1769*** 6561 49513 4.2402** 197157 362166 17.4203***

Time × Treatment 8 256 368 6787.1 1.7343NS 17155 67433 8.1408*** 16436 96958 5.4246*** 37618 651958 1.8464NS

NS, not significant; *P < 0.05; **P < 0.01; and ***P < 0.001.

TABLE 2 | Summary of ANOVAs on reproductive effort, release efficiency, and settlement efficiency.

Reproductive effort Release efficiency Settlement efficiency

df SS MS F SS MS F SS MS F

Treatment4 0.3 0.1 2.148NS 19893.0 4973.0 2.664NS 27108.0 6777.0 3.997*

Residual10 12.5 1.2 18665.0 1867.0 17041.0 1704.0

Pairwise t-test – – 28◦C6=12◦C = 15◦C = 18◦C = 24◦C

Shapiro–Wilk test W = 0.919NS W = 0.907NS 0.944NS

Cochran’s C-test C = 0.705* C = 0.533NS C = 0.528NS

Transformation Square root None None

The assumption of normality was checked through the Shapiro–Wilk test. Pairwise tests were also reported. For RP, Cochran’s C-test was not significant after data
transformation. NS, not significant; *P < 0.05.

from 12 to 34◦C maintained values close to the optimum in the
range of 19.2–30.9◦C. Similarly, Mancuso et al. (2019) observed
an increase in Fv/Fm in the field up to 28◦C when the algae were
submerged, and a marked decrease during tidal emersion only
when air temperature exceeded 28◦C. Accordingly, populations
of Fucus serratus from southern areas of North Atlantic showed
a decrease in PIabs only when temperatures ranged from 28 to
36◦C (Jueterbock et al., 2014), although F. serratus is a cold-
affine species. In our case, adults of E. giacconei showed higher
PIabs at the upper extreme of the tested temperature range
(Figure 2D), suggesting that they have better PSII efficiency
in warm seasons. Negative effects on ChlaF parameters were
observed in Fucus distichus only when thalli were exposed to
temperatures 10–15◦ above their optimum (Smolina et al., 2016),
and in E. selaginoideswhen dissolved CO2 and nutrients were also
altered (Celis-Plá et al., 2017).

The tolerance of adult thalli of E. giacconei and the other
intertidal Cystoseira s.l. species to temperatures up to 28◦C
might be related to an adaptation to the highly dynamic habitat
they colonize. Indeed, the intertidal is characterized by large
temperature fluctuations due to tidal cycles, especially during
the warmer months. Notably, during summer tidal cycles, at the
site where E. giacconei was sampled, these algae can experience
temperatures ranging from 28◦C (seawater temperature) at 1 m
depth at high tide to 41◦C (air temperature) at low tide within
a few hours (Servizio Informativo Agrometereologico Siciliano,
1995; Clementi et al., 2019). In contrast, species that are not
adapted to such extreme environmental changes might be more
sensitive to temperature increases. For example, Verdura et al.
(2021) reported that adults of the subtidal species Ericaria
crinita showed a marked decrease in biomass, Fv/Fm, and C:N
ratio during a 30-day period at 28◦C. Similarly, Sato et al.
(2020) observed a decrease in PSII efficiency in the subtidal

kelp Saccharina sculpera maintained at temperatures ≥28◦C,
while the optimal range for the tested population was 22–
24◦C.

Despite the high tolerance of Cystoseira s.l. adults, especially
of intertidal species, to temperature fluctuations, little is known
about the possible effects on early developmental stages and
developmental processes. Apart from the oldest embryological
studies (e.g., Guern, 1962; Colombo et al., 1982; Gil-Rodríguez
et al., 1988; Motta et al., 1988; Alongi et al., 1999), the
embryogenesis of manyCystoseira s.l. species is still poorly known
(Falace et al., 2018a; Savonitto et al., 2019). Based on reproductive
traits and zygote division sequence, E. giacconei fits into the
first embryological group described by Guern (1962), which
includes most Cystoseira s.l. species (e.g., Ericaria mediterranea,
Gongolaria elegans, and E. selaginoides).

Regarding the effect of seawater temperature on early
developmental stages, we found that the eggs’ release efficiency
did not vary significantly among the tested temperatures.
However, greater exudate production was observed at
higher temperatures (Supplementary Figure 4). Exudates,
typically phlorotannins, are released by macroalgae under
stress conditions (Sieburth and Jensen, 1969; Kroes, 1970;
Abdala-Díaz et al., 2006). The settlement efficiency of the zygotes
of E. giacconei increased from 12 to 18◦C, but no statistically
significant difference was found, then it started to decrease
(24◦C) and dropped significantly at 28◦C. Remarkably, the
extremely low settlement efficiency at 28◦C was due to the fact
that eggs and zygotes had undergone cell lysis and clustered
together (Supplementary Figure 5).

The detrimental effect of heat was even more pronounced
during germling development. Embryos were able to fully
develop only at 12 and 15◦C, while mortality increased
sharply at 18◦C and all germlings died at 28◦C. The highest
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FIGURE 3 | Mean values (±SE) of reproductive potential (A), release efficiency
(B), and settlement efficiency (C) at the different temperatures. The values of
each replicate are also indicated (color-coded as in Figure 1). The dotted
curves show the quadratic model fitted to the data (see Table 3).

development rate observed at 15◦C (highest percentage of
embryos with rhizoids already after 20 h AF) suggests that this
temperature represents the thermal optimum for reproduction
and development of the early life stages. Actually, it corresponds
to the mean seawater temperature during the winter months
when the species reproduces.

TABLE 3 | Summary of quadratic regression fitted to data of release and
settlement efficiency against temperature.

Multiple R-squared F P

Release efficiency 0.51 6.272 0.014

Settlement efficiency 0.61 9.577 0.003

TABLE 4 | PERMANOVA testing for differences in the proportion of different
developmental stages of embryos at varying times and temperature treatments
after fertilization.

Source df SS MS Pseudo-F P (perm)

Time 2 19,282.0 9641.0 23.973 0.000

Treatment 3 4104.0 1368.0 3.402 0.000

Time × Treatment 6 18,611.0 3102.0 7.713 0.000

Residual 347 139,550.0 402.2

Analysis was based on Bray–Curtis dissimilarities and untransformed data, with
5,000 permutations.

To date, very few studies have investigated the potential effects
of warming on the early life stages and in adults of Cystoseira s.l.
species (e.g., Cáliz et al., 2019; Capdevila et al., 2019; Verdura
et al., 2021). These studies focused specifically on the effects of
high temperatures on the settlement and survival of recruits,
showing that higher temperatures lead to embryo death. In
particular, a tolerance threshold of 24◦C was found in Ericaria
zosteroides (as.C. zosteroides), a deep-sea species (Capdevila et al.,
2019), and 28◦C in Ericaria selaginoides (as C. tamariscifolia)
(Cáliz et al., 2019) and Ericaria crinita (Verdura et al., 2021),
two species from shallower waters. These results are only partially
consistent with ours, as almost all germlings in this study failed
to settle or survive at 28◦C. However, in contrast to previous
studies, we tested a broader temperature range and found that
although E. giacconei is an intertidal to upper sublittoral species
endemic to the southern Mediterranean, and thus hypothetically
adapted to high temperatures, its thermal optimum is at much
lower temperatures (12–15◦C) than the other Cystoseira s.l.
species examined.

Our findings suggest that E. giacconei is a stenothermic, cold-
adapted macroalga that requires an extremely narrow range
of low temperatures for embryonic development and survival.
These results support the findings of Bouafif and Langar (2019)
who, by modeling the potential spatial distribution of Cystoseira
s.l. species in Tunisia, reported that E. giacconei occurs only in the
colder waters of northern Tunisia. Sites where E. giacconei thrives
could represent climatic refugia where the species still survives
(e.g., Lourenço et al., 2016; Abelson et al., 2020; Verdura et al.,
2021). The Sicilian Channel is characterized by a surface current
called “Modified Atlantic Water” (MAW), forming two flows:
one along the Sicilian shelf and the other off the Tunisian coast
(Robinson et al., 1999; Béranger et al., 2004; Jouini et al., 2016).
The complex bathymetry, as well as the water circulation, favor
a semi-permanent upwelling regime, which is enhanced by local
winds (e.g., Mistral) along the southern coast of Sicily. Therefore,
the interplay of surface currents and upwelling provides lower
sea surface temperatures along the coast (Raffa et al., 2017), but
cannot prevent the occurrence of adverse climatic conditions.
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FIGURE 4 | nMDS ordination of Tr × Ti centroids (stress: 0.04) based on
Bray–Curtis dissimilarities (untransformed embryo development data). The
ordination plot is presented in three versions highlighting three developmental
stages, with superimposed bubbles, indicating the corresponding percentage
of embryos in earlier (cumulative for stages 0, 1, and 2) (A) and later
(cumulative for stages "several" and "rhizoid") (B) developmental stages, and
dead (cumulative for stages "dead" and "deformed dead") embryos (C) for
each time point (20, 44, and 92 h AF) and treatment (color-coded as in
Figure 1 for 12, 15, 18, and 24◦C).

Exceptionally high temperatures for several consecutive days
during the reproductive season (e.g., Supplementary Figure 6)
may actually lead to massive mortality of zygotes/embryos, thus
defeating the reproductive efforts of the species. Furthermore, the
negative effects of warming on recruitment could be exacerbated
by other stressors that have been shown to negatively affect the
early developmental stages of Cystoseira s.l., such as herbicides
and pollutants (de Caralt et al., 2020).

From this point of view, the recruitment of new individuals
seems to be the real bottleneck for the population dynamics of
E. giacconei, as recruitment failures, if they occur over several
years, can lead to lower population densities, ultimately affecting
their long-term survival.

The stenothermic nature of the early life stages and the warmer
sea areas that evenly surround the few localities with favorable
conditions make this species a dotted endemism (Giaccone and
Di Martino, 1996). Consequently, E. giacconei may become
extinct if climate change continues with the current pattern. In
the Sicilian Channel, several studies have already reported the
disappearance of infralittoral stenoecious species of Cystoseira
s.l. due to the increase in sea surface temperature and changes
in deep circulation (Alongi et al., 2004; Catra et al., 2006; Serio
et al., 2006), further evidence of the tropicalization process caused
by climate change affecting the Mediterranean Sea (Boero et al.,
2008; Furnari and Cormaci, 2009; Marbà et al., 2015).

Together with all Mediterranean species of Cystoseira s.l.
(except C. compressa), E. giacconei is included in the "List of
Threatened or Endangered Species" of Barcelona Convention
(modified Annex II of the "Protocol on Specially Protected Areas
and Biological Diversity"; United Nations Environment Agency,
2019; Verlaque et al., 2019), but its conservation status has not yet
been defined by the IUCN (like the fucoid Sargassum, see Thibaut
et al., 2016). In our opinion, E. giacconei should be included in the
IUCN Red List of Species (International Union for Conservation
of Nature, 2021) and classified as Critically Endangered due to
its limited distribution and high vulnerability. As a conservation
strategy, the climate refugia that ensure the persistence of
E. giacconei should receive the highest level of protection.
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