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Chalcone synthase (CHS) family are plant type III polyketide synthases that participate
in the flavonoid synthesis pathway to induce plant resistance to various biotic and
abiotic stresses. Zostera marina, a common seagrass, migrated to terrestrial conditions
and returned to the sea, achieving the most severe habitat shift of flowering plants.
Given the special evolutionary process, we conducted genome-wide, expression and
enzyme activity analyses of the ZosmaCHS family to understand its phylogenetic
implications. Various duplication modes led to the expansion of 11 CHS homologs in
Z. marina. Based on the phylogenetic relationships, ZosmaCHSs were classified into
three clades. Further quantitative real time-PCR analyses of the ZosmaCHS homologs
showed different light responses and tissue-specific expression, indicating functional
diversification of the ZosmaCHSs. Moreover, the ZosmaCHS proteins clustering with the
validated chalcone synthases were recombined into prokaryotic expression systems.
All the recombinant proteins showed CHS activity to generate naringenin chalcone
with varying catalytic efficiencies. ZosmaCHS07 was regarded as the dominant CHS
because of its significant light response and the higher catalytic efficiency. Taken
together, the disparity of the expression and enzyme activity indicated that sub-
functionalization is the primary mechanism of the expansion of the ZosmaCHSs family.

Keywords: Zostera marina, chalcone synthase, expression pattern, evolution, enzyme activity

INTRODUCTION

The chalcone synthase (CHS) superfamily mainly participates in the biosynthesis of various plant
secondary metabolites. The metabolites include chalcones, stilbenes, phloroglucinols, resorcinols,
benzophenones, biphenyls, bibenzyls, chromones, acridones, pyrones, and curcuminoids (Austin
and Noel, 2003; Abe and Morita, 2010). These metabolites play key roles in tissue pigmentation,
auxin transport, pathogen defense, pollen fertility, and light protection (Dao et al., 2011; Pandith
et al., 2016, 2019). CHS (EC 2.3.1.74), the most representative member, carries out the sequential
decarboxylative condensation of p-coumaroyl-CoA with three malonyl-CoA molecules. This
process generates naringenin chalcone, the starting molecule in the biosynthesis of various
flavonoids (Kuo et al., 2019).
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Non-CHS genes co-existing in the CHS superfamily are
thought to have co-evolved with CHSs during the evolutionary
process (Durbin et al., 2000; De Luca and Lauritano, 2020).
Most CHS superfamily members have a high sequence similarity,
and a conserved catalytic triad of Cys-His-Asn in their active
sites. They function as 40–45 kDa protein homodimers (Jiang
et al., 2008). However, the enzymes encoded by non-CHS genes
differ from CHS on the choice of initial substrates, the number
of condensation reactions, or mechanism of the cyclization
and aromatization of intermediates (Helariutta et al., 1996;
Han et al., 2017).

Most plants retained multiple CHS copies and showed
various expression in different tissues. For example, the three
grapevine CHS genes mediated the production of different
flavonoid compounds in different tissues (Harris et al., 2013).
As for the 14 maize CHS genes (ZmCHS01-14), ZmCHS01/02
exhibited constitutive expression in seeds and leaves, while the
ZmCHS05/12 primarily expressed in roots (Han et al., 2016).
In case of the four CHS genes in Gerbera hybrida (GCHS1-
4), only GCHS1 involved in flavonoid biosynthesis (Deng
et al., 2014). The tissue specific expression patterns reflect the
functional diversification of duplicated CHS genes. Light is
one of the most important environmental signals influencing
flavonoid biosynthesis in plants. Light intensity and quality
(wavelength) can induce the expression of the CHS genes and
the synthesis of flavonoid compounds (Zoratti et al., 2014).
Exposure to light can increase the higher expression level and
anthocyanin, PAs and flavonols content in grape berry skin
(Azuma et al., 2012). Positive impact of light on flavonoid
accumulation has also been reported in some fruit species and
Rosaceae family (Uleberg et al., 2012; Li et al., 2013). Light-
activated photoreceptors regulate a core signaling pathway,
CONSTITUTIVE PHOTOMORPHOGENIC1/SUPPRESOR
OF PHYTOCHROME A-105 (COP1/SPA), to activate the
expression of flavonoid pathway genes including CHS (Lau and
Deng, 2012). It appears that the accumulation of flavonoids
is more sensitive to the blue and UV-light (Zoratti et al.,
2014). The anthocyanin concentrations in grape berries
were higher in blue light-treated samples than in red light
(Kondo et al., 2014).

The availability of numerous sequenced genomes has
facilitated the evolutionary studies of the CHS genes family.
Extensive genome-wide analyses of CHS genes have been
performed in various species, such as Physcomitrella patens
(Koduri et al., 2010), Psilotum nudum (Yamazaki et al., 2001),
Gerbera hybrida (Deng et al., 2014), Vitis vinifera (Wang
et al., 2016), Capsicum annuum (Xu et al., 2015), Salvia
miltiorrhiza (Deng et al., 2018), Zea mays (Han et al., 2016),
Oryza sativa (Han et al., 2017; Hu et al., 2017) and Solanum
melongena (Wu et al., 2020). Most of these studies focused
on exploring the identification and diverse expression patterns
of CHS homologs. In addition, there are several reports have
been studied the enzyme activity of CHS homologs in land
plants (Liou et al., 2018). For example, the CHS-D and CHS-
E genes of Ipomoea purpurea and the PaCHS in the liverwort
Plagiochasma appendiculatum were proved to be the chalcone
synthases producing naringenin chalcone (Shiokawa et al., 2000;

Yu et al., 2015). However, enzyme properties of the CHSs in
seagrass have been scarcely characterized.

Zostera marina, a marine angiosperm, is widely distributed
in the northern Pacific and northern Atlantic Oceans (Olsen
et al., 2016). It is the main component of seagrass meadows and
plays a crucial role in nutrient cycling, sediment stabilization,
habitats, and food provision for numerous organisms (Worm
et al., 2006; Heck et al., 2008; Hughes et al., 2009). Seagrass
migrated to terrestrial conditions approximately 200 million
years ago and returned to the sea about 140 million years ago (Les
and Waycott, 1997). This migration is regarded as the most severe
habitat shift achieved by flowering plants. The process involved
significant genomic changes to adapt to its marine lifestyle
(Olsen et al., 2016). Given the special evolutionary process of
Z.marina, we conducted a genome-wide, expression, and enzyme
activity analyses to understand the phylogenetic implications and
functional disparity of the ZosmaCHS family.

MATERIALS AND METHODS

Identification, Characterization, and
Duplication of ZosmaCHSs
To identify the CHS family members in Z. marina, CHS profiles
(PF00195 and PF02797) downloaded from the Pfam database1

were used as queries to perform BLASTP searches against
Z. marina database (Olsen et al., 2016) on Phytozome website2.
The gene models of ZosmaCHSs were constructed using the
Gene Structure Display Server (GSDS,3) (Hu et al., 2015). The
DNAMAN 9 software (LynnonBiosoft, United States) was used
to predict the isoelectric points and molecular weights of CHS
proteins. Plant Duplicate Gene Database (PlantDGD,4) was used
for gene duplication analysis.

Conserved Domain and Motif Analysis of
ZosmaCHSs
The Pfam database and Simple Modular Architecture Research
Tool (SMART,5) were used to predict the conserved domains
of the ZosmaCHS proteins. The online MEME program6 was
used to identify the conserved motifs of the CHS sequences.
The parameters set as following: any number of repetitions,
maximum of 10 motifs, and optimum motif width of 6–50
amino acid residues.

Phylogenetic Analysis of ZosmaCHSs
The neighbor-joining method and maximum likelihood method
with a 1,000 times bootstrap value were used to construct
phylogenetic tree by multiple sequence alignment of the protein
sequences of 11 ZosmaCHSs in MEGA X software. The accession
numbers and resources of all CHSs used for the tree were

1http://pfam.xfam.org/
2https://phytozome.jgi.doe.gov/
3http://gsds.gao-lab.org/
4http://pdgd.njau.edu.cn:8080
5http://smart.embl.de/
6http://meme-suite.org/tools/meme
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also provided in Supplementary Table 6. All CHSs can be
found in Uniprot database7. Default settings were used for the
other parameters.

Promoter Sequence Analysis of
ZosmaCHSs
The PlantCare website8 was used to analyze the putative promoter
sequences of ZosmaCHSs. All the predicted cis-elements except
the TATA-box and CAAT-box were visualized using the TBtools
software following the author’s instructions (Chen et al., 2020).

Plant Materials and Treatments
Zostera marina with intact rhizome-systems was collected during
the growing season from 3 m deep sub-tidal seagrass beds
in Rongcheng (37◦ 91′N, 120◦ 73′E), Shandong Province,
China. Samples were then cultured in seawater-aquarium that
was continuously aerated and renewed daily. The plants were
pre-cultivated with a 10/14 h (light/dark) photoperiod under
minimum saturation light intensity (100 µmol photons m−2s−1)
at 15◦C for 3 days before experimentation. The roots, leaves,
flowers, stems, and rhizomes were collected during the plant’s
flowering stage for tissue-specific expression analysis using
quantitative real time-PCR (qRT-PCR). The leaves were further
exposed to blue, red and white light at the intensity of
300 µmol photons m−2s−1, after dark-adaptation overnight.
Sampling was done at 0, 1, and 3 h for the qRT-PCR. Blue
light was the dominant spectral components in the ecological
niche of Z. marina, while the red light was at low intensity
(Olsen et al., 2016).

RNA Isolation and qRT-PCR Analysis
Total RNA was extracted from the five tissues as well as the
leaves exposed to different light treatments using RNAiso Plus
(Takara, Japan). RNA quality was determined through agarose
gel electrophoresis and NanoQuant (TECAN, Switzerland).
Subsequently, 1 µg of the total RNA was reverse transcribed
to cDNA using HiScript R© II 1st Strand cDNA Synthesis
Kit (Vazyme, Nanjing, China) following the manufacturer’s
instructions. The qRT-PCR assays were performed on a Bio-
Rad CFX96 Real-Time PCR System using AceQ Universal SYBR
qPCR Master Mix (Vazyme). Primer sequences used in qRT-PCR
are listed in Supplementary Table 1. The housekeeping gene
gapdh of Z. marina was used as the internal control. The qRT-
PCR program was set as follows: 95◦C for 10 s, followed by 40
cycles of 56◦C for 10 s and 72◦C for 30 s. Each reaction was
performed in three biological replicates. The relative expression
level of each gene was calculated using the 2−1 1 CT method.
Heatmaps were constructed based on the transformed log2
(2−11CT+ 1) values using the TBtools software.

Recombinant Protein Expression and
Purification
The open reading frames of the five CHS genes (ZosmaCHS01,
ZosmaCHS02, ZosmaCHS07, ZosmaCHS08, and ZosmaCHS11)

7https://www.uniprot.org/
8http://bioinformatics.psb.ugent.Be/webtools/plantcare/html/

were amplified using KOD -Plus- Neo DNA Polymerase
(TOYOBO, Japan). Primer sequences with restriction enzymes
(EcoRI and BamHI) cutting sites are listed in Supplementary
Table 2. The amplified products were purified using a FastPure
Gel DNA Extraction Mini Kit (Vazyme, Nanjing, China), cloned
into pEASY R©-Blunt Simple Cloning Vector (TransGen Biotech,
Beijing, China), and then transformed into T1 competent cell
for sequencing to select sequences without the base mutations
and deletions. Plastids with correct CHS sequences, which was
extracted by TIANprep Mini Plasmid Kit (TIANGEN, Beijing,
China), and pET-28a (+) vector were cut using EcoRI and BamHI
restriction enzymes (Invitrogen, Carlsbad, CA, United States),
purified using a FastPure Gel DNA Extraction Mini Kit, and
then linked by T4 DNA ligase (Invitrogen, Carlsbad, CA,
United States). The pET-28a (+)-CHS was transformed into
Transetta (DE3) Chemically Competent Cell. Until their OD600
to 0.4–0.5, the transformant cultures were added with isopropyl
β-D-thiogalactopyranoside (IPTG) to a final concentration of
1 mmol L−1, and incubated at 16◦C overnight. The heterologous
expression of the CHS was then examined using SDS-PAGE. The
following buffers were used for purification of the ZosmaCHSs:
lysis buffer (50 mM Na2HPO4, 0.3 M NaCl, pH = 8.0),
washing buffer (50 mM NaH2PO4, 0.3 M NaCl, 10 mM
imidazole pH = 8.0), and elution buffer (50 mM NaH2PO4,
0.3 M NaCl, 250 mM imidazole pH = 8.0). The bacterial cells
were centrifugation, resuspended in lysis buffer, and broken by
ultrasonication for 30 min on ice. The proteins were loaded
on High-Affinity Ni-NTA Resin (GenScript Biotech, Nanjing,
China), washed by washing buffer, eluted by elution buffer and
further examined using SDS-PAGE.

Enzyme Activity Analysis
The enzyme activities of the five purified CHS proteins
were examined using a CHS enzyme activity kit (GENMED
Scientifics Inc., United States) following the manufacturer’s
instructions. Their absorbance was measured at 412 nm
using a multifunctional enzyme-labeled instrument (Tecan,
Switzerland). Each reaction was performed in three technical
replicates. The enzyme activity of ZosmaCHS represented the test
enzyme activity subtracted the activity of the empty buffer.

Data Analysis
Data were analyzed using one-way ANOVA and Tukey’s
tests on SPSS 22.0. P < 0.05 indicated significant differences
between groups.

RESULTS

Identification and Characterization of
ZosmaCHSs
Eleven full-length CHS homologs (ZosmaCHS01-11)
corresponding to the Pfam CHS family were identified and
described (Table 1). Among them, ZosmaCHS09 was the
smallest protein with 23 kDa, while the remaining were about
43 kDa. The isoelectric point (pI) of the proteins ranged
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TABLE 1 | Members and characterizations of ZosmaCHS homologs.

Name Accession number Position Strand Length
(bp)

Exons pI Molecular
weight (kDa)

Number of
amino acid

ZosmaCHS01 Zosma11g00330 scaffold_11: 260389.261850 − 1,462 1 7.58 41.883 381

ZosmaCHS02 Zosma14g00280 scaffold_14: 104000.105261 + 1,262 2 6.25 43.570 396

ZosmaCHS03 Zosma44g00150 scaffold_44: 73728.76500 − 1,151 3 6.60 43.643 395

ZosmaCHS04 Zosma52g00210 scaffold_52: 198099.199828 − 1,730 2 6.63 42.788 392

ZosmaCHS05 Zosma59g00320 scaffold_59: 307270.308688 − 1,419 1 6.43 43.449 396

ZosmaCHS06 Zosma59g00330 scaffold_59: 310681.312045 + 1,365 1 6.60 43.476 396

ZosmaCHS07 Zosma113g00070 scaffold_113: 168133.169561 − 1,429 1 6.78 43.268 394

ZosmaCHS08 Zosma113g00090 scaffold_113: 175395.176669 + 1,275 2 6.52 43.548 394

ZosmaCHS09 Zosma132g00440 scaffold_132: 337328.338215 + 888 2 6.30 23.236 241

ZosmaCHS10 Zosma240g00250 scaffold_240: 232866.234293 + 1,428 4 7.06 40.173 357

ZosmaCHS11 Zosma263g00020 scaffold_263: 25341.27690 + 2,350 1 7.05 43.187 393

between 6.25 and 7.58. Most CHS genes had multiple exons,
of which ZosmaCHS02, 04, 07, 08, and 09 had two exons,
ZosmaCHS03 had three exons, ZosmaCHS10 had four exons,
while ZosmaCHS01, 05, 06, and 11 had one exon (Figure 1A).

Conserved Domains and Motifs Analysis
of ZosmaCHSs
Ten of the 11 CHS homologs harbored integral chalcone/stilbene
synthases N-terminal (Chal_sti_synt_N) and chalcone/stilbene
synthases C-terminal (Chal_sti_synt_C) domain represented by
motif 1, 2, 7, and 9, and motif 3, 4 and 6, respectively (Figure 1B).
ZosmaCHS09, had only part of the two domains with the absence
of motif 1, 2, and 7. Moreover, ZosmaCHSs within clades I
and III shared similar motif composition. The duplicated pairs
ZosmaCHS05/06 and ZosmaCHS 07/08 showed highly similar
motif distribution, indicating that their protein architecture is
conserved in duplicated homologs.

Gene Duplication in ZosmaCHSs
Five widely accepted duplication modes (whole genome,
tandem, proximal, transposed, and dispersed duplication) were
systematically scanned among the ZosmaCHS genes to explore
the evolution clues of the CHS gene family. The gene
pairs ZosmaCHS05/06, ZosmaCHS07/08, and ZosmaCHS01/11
originated from tandem, proximal, and transposed duplication,
respectively. Both ZosmaCHS09 and 10 formed dispersed
duplication pairs with ZosmaCHS03. To further elucidate
the evolutionary trend of duplicated ZosmaCHS genes, the
ratios of the number of non-synonymous substitutions per
non-synonymous site (Ka) to the number of synonymous
substitutions per synonymous site (Ks) (Ka/Ks) were calculated
between the duplication pairs. Most duplicated pairs had a Ka/Ks
ratio of less than one, indicating that the ZosmaCHS gene family
could have undergone strong purifying selective pressure during
evolution (Supplementary Table 3).

Multiple Sequence Alignment and
Phylogenetic Analysis of ZosmaCHSs
All the ZosmaCHS proteins contained conserved catalytic triad of
Cys-His-Asn and the CHS superfamily-specific Pro386 residues

(Supplementary Figure 1). All the CHS members retained
the residue Phe 220 responsible for CoA binding, except
ZosmaCHS09. Phe 271, which is also essential for CoA binding,
varied amongst the ZosmaCHS proteins. It was not retained
in ZosmaCHS10, converted to alanine in ZosmaCHS04-06 and
leucine in ZosmaCHS03 and 09. However, it was conserved in the
five ZosmaCHSs (ZosmaCHS01, ZosmaCHS02, ZosmaCHS07,
ZosmaCHS08, and ZosmaCHS11).

The phylogenetic relationships between Z. marina and other
CHS genes using the maximum likelihood (Figure 2) and
neighbor-joining method (Supplementary Figure 2) exhibited
similar phylogenetic topology. It revealed that 11 ZosmaCHSs
clustered into three clades. Notably, ZosmaCHS01, 02, 07, 08, and
11 clustered with the validated chalcone synthases in land plants
(clade I), indicating that these CHS genes could have CHS activity
to generate naringenin chalcone. ZosmaCHS03, 09, and 10
clustered with Hydrangea macrophylla coumaroyl triacetic acid
lactone synthase (CTAS) and Rheum palmatum benzalacetone
synthase (BAS) (clade II). ZosmaCHS04-06 formed clade III, with
no CHS homologs in other plants.

Promoter Sequence Analysis of
ZosmaCHSs
The putative cis-elements located 2.0 kb upstream of the
start codon (ATG) were analyzed to investigate the potential
regulatory mechanisms of ZosmaCHSs during different stress
responses. Four types of cis-elements were enriched in the
promoter region of the ZosmaCHS genes (Figure 3). Numerous
light-related elements, including Box 4, G-box, and the GATA-,
GT1-, and TCT- motifs, were detected. Box 4 was the
most abundant light-responsive element. Methyl jasmonate
(MeJA) responsive elements, including CGTCA- and TGACG-
motif, were the common cis-acting elements indicating their
involvement in regulating the MeJA-pathway. Besides the
ubiquitous elements, the MYB, MYC and MBS signature
sequences were in the promoter region of ZosmaCHSs,
contributing to the plant tolerance to various stresses.

Cluster analysis of the upstream sequences of ZosmaCHSs
(Figure 3 and Supplementary Table 5) further revealed that
the promoter regions of the 11 ZosmaCHS genes clustered
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FIGURE 1 | Gene structure and motifs compositions of ZosmaCHS proteins. (A) Gene model of CHS genes in Z. marina. Blue boxes indicate untranslated regions,
black lines indicate introns and yellow boxes indicate exons. (B) The motif compositions of ZosmaCHS proteins. The motifs 1–10 are displayed in different colored
boxes. The sequence information for each motif is shown in Supplementary Table 4.

FIGURE 2 | Phylogenetic relationships of the ZosmaCHSs and CHS homologs from other plants using maximum likelihood method. Green, yellow and blue cycles
indicate the ZosmaCHSs in clade I, II, and III, respectively.

into three groups. TCT-motif, GA-motif, and MRE related
to light response and TCA-element related to salicylic acid
responsiveness were in group I (ZosmaCHS05-07 and 09)
and II (ZosmaCHS02, 04 and 10), indicating that the genes
could be regulated by light stress and the salicylic acid

pathway. Nevertheless, circadian elements were in group III
(ZosmaCHS01, 03, 08, and 11), suggesting the photoperiod
had effects on regulating these CHS genes. The functional
diversification of ZosmaCHSs was attribute to differences in the
promoter region.
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FIGURE 3 | Predicted cis-elements in ZosmaCHSs promoter regions.

FIGURE 4 | Expression patterns of ZosmaCHS genes. To calculate the relative expression level, the expression of ZosmaCHS gene under dark condition was set as
control. Gapdh was used as reference gene. Relative level of expression was transformed by log2 (2−11CT + 1). ZosmaCHS05-06 represented the sum of
ZosmaCHS05 and ZosmaCHS06 expression level because of their high sequence similarity. (A) Expression patterns of ZosmaCHS genes in different light conditions
by qRT-PCR. (B) Expression patterns of ZosmaCHS genes in five tissues by qRT-PCR.
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Expression Patterns of the ZosmaCHSs
Responding to Different Light Qualities
Blue light was the dominant spectral components in the
ecological niche of Z. marina, while the red light was at low
intensity (Olsen et al., 2016). The expression patterns of all the
11 ZosmaCHS genes were investigated to confirm whether the
expression of ZosmaCHS genes was influenced by different light
qualities. The ZosmaCHSs were highly expressed in red light
than in other lights. Moreover, ZosmaCHS02 was predominantly
induced at a relatively early stage (after 1 h treatment), while
ZosmaCHS01, 07, 08, and 11, were significantly and continuously
up-regulated and peaked at 3 h after treatment (Figure 4A).
These ZosmaCHS genes were predicted to produce naringenin
chalcone. However, most ZosmaCHSs clustering with non-CHS
genes were slightly up-regulated in red light or hardly induced.
The duplication pairs ZosmaCHS07/08, ZosmaCHS03/09,
and ZosmaCHS03/10 exhibited different expression patterns,
implying the subfunctionalization of the CHS family.

Expression Patterns of the ZosmaCHSs
in Different Tissues
The 11 CHS homologs could be detected in all the five tissues,
though at varying expression levels (Figure 4B). ZosmaCHS04-06
was highly expressed in the leaves. In contrast, most ZosmaCHSs,
including ZosmaCHS01-03, 07-11, showed higher expression
levels in rhizomes, stems, and roots than in leaves and flowers,
possibly because the CHS was involved in light protection and
other biological functions. The diverse tissue-specific expression
patterns of ZosmaCHSs suggested the subfunctionalization of the
CHS family.

Enzyme Activity Assay of ZosmaCHS
Proteins
As a crucial step to elucidate biological function of ZosmaCHSs,
the proteins which clustered with the validated chalcone
synthases were recombined into prokaryotic expression systems

to further confirm the ZosmaCHSs producing naringenin
chalcone. Five ZosmaCHSs (ZosmaCHS01, 02, 07, 08, and 11)
from clade I were heterologously expressed and purified to
perform in vitro enzyme activity assays. SDS-PAGE analysis
showed that the corresponding protein bands (around 43 kDa)
were induced in the IPTG treated sample (Figure 5A and
Supplementary Figure 3B), implying that the pET-28a-
ZosmaCHSs recombinant plasmid could be successfully induced
and expressed in Escherichia coli (E. coli). The purification
experiments indicated that His-tag affinity column could
effectively enrich the recombinant proteins, while the third
time elution buffer, which contained the relatively pure target
proteins, could be used in enzyme activity assays. The loss of
target band in empty vector control avoided the false positive
result (Supplementary Figure 3A). The five proteins showed
CHS activity with varying efficiencies (Figure 5B). ZosmaCHS07
had the highest CHS activity and significantly higher enzyme
activity than ZosmaCHS08. However, there were no significant
differences in the catalytic efficiency in the ZosmaCHS01/11 pair.

DISCUSSION

The CHS gene family is essential for plant growth and
development. They are ubiquitously distributed in various plants,
from moss to angiosperms. For instance, 17, 4, 27, 14, 8, 7, 7,
and 6 CHS genes have been identified in P. patens, Psilotum
nudum (Yamazaki et al., 2001), O. sativa, Z. mays, Pisum sativum,
C. annuum, S. melongena, and I. purpurea (Yang et al., 2004),
respectively. Most CHS genes in higher plants have one intron
at the conserved position (Pandith et al., 2019). Z. marina is
composed of 11 full-length medium-sized CHS family genes.
Numerous intronless genes were observed in ZosmaCHSs, similar
to P. patens (Koduri et al., 2010), a primordial plant, indicating
that Z. marina contains more primitive forms of CHS homologs.

There are four duplication types (tandem, proximal,
transposed, and dispersed) events in the ZosmaCHS gene
family. Tandem and proximal duplication originating from the

FIGURE 5 | The validation of CHSs in Z. marina. (A) Prokaryotic purification of the five ZosmaCHS proteins. The corresponding protein bands were pointed out by
the red arrow at the expected position (around 43 kDa). CL: cell with lysis buffer; FT: flow through buffer; W1: primary washing buffer; W2: secondary washing buffer;
E1: primary elution buffer; E2: secondary elution buffer; E3: third time elution buffer. (B) Enzyme activity of ZosmaCHS01, 02, 07, 08, and 11. Different letters indicate
significant differences (P < 0.05, One-way ANOVA).
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interruption of ancient tandem duplication are important
for plant adaptation to rapidly changing environments
(Hanada et al., 2008). Cognizant of this, ZosmaCHS05/06
and ZosmaCHS07/08, which originated from tandem and
proximal duplication, respectively, could have contributed to
the adaptation of Z. marina in the sea. Most duplicated CHSs
had Ka/Ks < 1, indicating that purifying selection dominates the
evolution of CHS family.

Phylogenetic analysis of the CHS proteins provided more
information on the CHS gene family evolution. The five
ZosmaCHSs (ZosmaCHS01, 02, 07, 08, and 11) in clade
I clustered with the well-characterized chalcone synthases,
which produced naringenin chalcone (Shiokawa et al., 2000).
Conversely, ZosmaCHSs in Clade II and III were closely related to
the non-CHSs including CTAS, BAS, Ipomoea purpurea CHS A,
B, and C (Flores-Sanchez and Verpoorte, 2009; Han et al., 2016).
The CoA binding sites (Phe 220 and 271) whose substitution
potentially leads to substrate specificity (Deng et al., 2018)
were merely conserved in the ZosmaCHSs in clade I. These
phenomena implied that the ZosmaCHSs in clade I could be
the authentic chalcone synthases. However, an enzyme in the
non-CHS cluster is a non-CHS protein, while that in the CHS
cluster is not always a CHS, similar to Arachis hypogaea STS
and Humulus lupulus VPS (Jiang et al., 2008; Hu et al., 2016).
Cognizant of this, it is necessary to confirm the CHS activity of
the five proteins in clade I.

Like other plants, the two domains Chal_sti_synt_N and
Chal_sti_synt_C are highly conserved in all the ZosmaCHS genes
(Han et al., 2016). The motif distribution of the ZosmaCHSs
strongly supported the phylogenetic relationships. ZosmaCHS
proteins in the same clade have similar motif compositions.
Notably, clade II motifs arrangement was an intergradation of
clade I and clade III, which probably caused the functional
division during the evolution.

The ubiquity of light and MeJA responsive elements in the
upstream of the ZosmaCHS genes suggested that light stress
and MeJA could significantly regulate the ZosmaCHS family.
This finding was consistent with previous studies that reported
that plant hormones, photoperiod, light intensity, direction, and
quality regulate CHS expressions (Zhang et al., 2017). Cluster
analysis of the upstream sequences further showed that some
light and salicylic acid response elements were in group I and
II, while circadian elements responding to photoperiods were
unique to group III. These findings implied that the elements
had gene-specific regulation. Unlike land plants, cis-elements
associated with pathogen defense were absent in the promoter
sequences of ZosmaCHSs. The phenomenon could be Z. marina
adaptation to its marine habitat because it lacks stomates which
are the main entry points of pests and pathogens in terrestrial
plants (Olsen et al., 2016).

Although the 11 ZosmaCHS genes were expressed in all
the examined tissues, most genes exhibited variable expression
patterns, suggesting the neo- or subfunctionalization of the CHS
gene family in Z. marina. The CHS genes in rice, maize and
Physcomitrella patens have been reported the various expression
patterns in different tissues (Koduri et al., 2010; Han et al., 2017),
suggesting its functional diversification during the evolutionary

process. Unlike other plants, the transcriptional activation of
ZosmaCHS in response to blue light was lower than red light.
During the evolutionary process, Z. marina had experienced
the respective losses of the ultraviolet photo-receptors (UV
resistance locus 8), and most of the blue light photoreceptors
(cryptochromes 2, 5 and DASH) (Olsen et al., 2016). The fewer
blue light receptors explained the comparatively weak induction
of ZosmaCHSs expression in blue light (Olsen et al., 2016),
because photoreceptors are involved in light perception in the
COP1/SPA-R2R3-MYB pathway to activate CHS transcription
(Zhang et al., 2017).

Further enzyme activity assays of the five clade I ZosmaCHSs
showed that all these proteins were authentic CHS that
could use one p-coumaroyl-CoA molecule and three malonyl-
CoA molecules as substrates to produce naringenin chalcone.
ZosmaCHS07 was regarded to be the dominant CHS because of
its significant light response and higher catalytic efficiency. The
ZosmaCHS activities were measured to be 0.0168–0.068 µmol
min−1 g−1, which were higher than CHS activity in peanut roots
(Zhang et al., 2016). However, it may be caused by the fact that
the proteins used in this study were purified proteins rather than
total proteins. Moreover, some research conducted the assays
of the CHS activities using HPLC (Yu et al., 2015), which was
unreasonable to compare activity with ZosmaCHSs.

Gene loss and gain are related to the non-functionalization
and sub/neo functionalization, respectively. The varied
expression patterns in both light-treated leaves and
different tissues, and catalytic efficiency of duplicated genes
ZosmaCHS07/08 implied the subfunctionalization of ZosmaCHSs
during evolution. However, ZosmaCHS01/11 with a similar
pattern could have adopted the Innovation–Amplification–
Divergence model. This model suggests that selection pressures
promote the mutational improvement of CHS copies and
develop side functions to adapt to environmental conditions
(Bergthorsson et al., 2007; Copley, 2020).

CONCLUSION

The 11 CHS genes identified in Z. marina clustered into three
clades. All the recombinant CHS proteins in clade I were
confirmed to be the authentic CHS producing naringenin
chalcone despite their varying catalytic efficiencies with
ZosmaCHS07 being the dominant CHS. Moreover, the
ZosmaCHSs family exhibited different expression pattern,
with those in clade I that showed significant light-induction.
Collectively, the varied catalytic efficiency combined with the
different expression patterns suggests the sub-functionalization
of the CHS family during evolution, which could be viewed as an
adaption of Z. marina to its marine habitat.
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