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The Fujian oyster (Crassostrea angulate) is an important marine bivalve mollusk with
high economic value. Gene function research and gene editing techniques have broad
application prospects in oyster. The clustered regularly interspaced short palindromic
repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been widely used for
genome engineering in many species. CRISPR-mediated gene editing has also been
used successfully in the Pacific oyster through direct delivery of the CRISPR/Cas9
components into oyster embryos by microinjection. However, the low throughput and
operational difficulties associated with microinjection is one of the factors limiting the
widespread application of CRISPR/Cas9 in oysters. In this study, we attempted to
deliver the CRISPR/Cas9-system into the embryos of C. angulate by electroporation. An
all-in-one CRISPR/Cas9 vector plasmid was used as CRISPR/Cas9 system in this study.
Electroporation was carried out using both eggs and blastula larvae. A large number
of larvae became malformed or die after electroporation. A single base substitution
mutation was detected in the D-larvae developed from electroporated eggs. Our
results demonstrate that the CRISPR/Cas9 system can be delivered into embryos of
C. angulate for gene editing by electroporation, which provides a reference and will
further contribute to the future application of electroporation in mollusks.
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INTRODUCTION

In the past few decades, the marine mollusk farming industry has been developing rapidly. Various
types of economic mollusks, including oysters, have been farmed on a large scale. However, some
species decrease their reproductive efficiency and economic benefits after generations in the process
of aquaculture, which adversely affects the development of molluscan aquaculture. Therefore,
cultivating stable molluscan strains with fast growth, good quality, and strong stress resistance
through artificial selection breeding is required. The development of genomic techniques, including
CRISPR/Cas9 system-mediated genomic editing technology, can improve selection of breeding
techniques for mollusks (Gutierrez et al., 2018; Hollenbeck and Johnston, 2018). In recent years,
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an increasing number of studies have focused on investigating
the functions of different oyster genes. The discovery and better
comprehension of the gene function will help in understanding
the mechanism of oyster growth, development, and response to
stress at the molecular level. In turn, it can lay a foundation for
genome research and genetic engineering breeding of mollusks.

CRISPR/Cas9 is an adaptive immune defense system, which
was formed during the long-term evolution of archaea and
can resist virus invasion by specific cutting of foreign DNA.
The modified CRISPR/Cas9 system uses gRNA to guide Cas9
protein to recognize and cut double-stranded DNA at target
sites for gene knock-out or precise DNA editing (Jinek et al.,
2012; Ran et al., 2013). The CRISPR/Cas9 system is a powerful
tool for reverse genetics and gene function studies. Moreover,
the discovery and development of the CRISPR system has
presented new opportunities in breeding. After several years
of development, original varieties can be improved by targeted
mutations mediated by the CRISPR technology, increasing the
efficiency and accuracy of breeding.

Given its successful application in model species (Bassett et al.,
2013; Chang et al., 2013; Friedland et al., 2013; Sander and Joung,
2014; Gratz et al., 2015), the CRISPR/Cas9 system has been widely
applied in many non-traditional model organisms, including
Bombyx mori (Wang et al., 2013), cynomolgus monkeys (Niu
et al., 2014), Daphnia magna (Nakanishi et al., 2014), and
Oncopeltus fasciatus (Reding and Pick, 2020). In the recent
years, the application of this technology has increased in some
aquaculture species. In particular, the CRISPR/Cas9 system
has been exploited for genetic engineering in the sea lamprey
Petromyzon marinu, Oryzias latipes, and Oreochromis niloticus,
which greatly facilitates the study of gene function in fish
(Ansai and Kinoshita, 2014; Li et al., 2014; Square et al., 2015).
In Exopalaemon carinicauda, a wide range of indels at the
E. carinicauda chitinase 4 (EcChi4) gene locus in the genome
was induced by the CRISPR/Cas9 system using a microinjection
method (Gui et al., 2016). EcChi4 knockout prawns showed
significantly higher death rates compared with wild-type prawns
when challenged with Vibrio parahaemolyticus or Aeromonas
hydrophila (Sun et al., 2017). The molt-inhibiting hormone
(EcMIH), β, β-carotene 9′, and 10′-oxygenase (EcBCO2) genes,
and the carotenoid isomerooxygenase gene EcNinaB-X1 were
also successfully knocked out using CRISPR technology. These
studies will contribute to a wide application of these genes in
prawns breeding (Zhang et al., 2018; Sun et al., 2020a,b). In
mollusks, transgenic embryos expressing mCherry protein were
successfully created in Crepidula fornicate using the CRISPR
system (Perry and Henry, 2015).

Gene delivery is an important part of the genome-editing
technology. Several methods, including physical, viral,
and non-viral methods, are available for delivering the
CRISPR/Cas9 system into the target cells (Chandrasekaran
et al., 2018; Lino et al., 2018). Microinjection is a commonly
used physical method of gene delivery in many animals.
CRISPR/Cas9-mediated genomic editing has been successfully
used in the embryonic cells of the Pacific oyster Crassostrea
gigas through microinjection (Yu et al., 2019). Electroporation
transfection is another commonly used physical method for

gene delivery. Although electroporation is considered inefficient
for gene delivery in zygote or embryonic cells, several studies
have proposed technological solutions to improve the efficiency
of electroporation for CRISPR delivery (Qin et al., 2015;
Chen et al., 2016).

The Pitx gene is a transcription factor belonging to the highly
evolutionarily conserved homeobox gene family in all animals,
with a conserved function of regulating left-right asymmetry
(Tran and Kioussi, 2021). In C. gigas, the expression level of
the CgPitx gene was significantly higher in the right mantle,
indicating that CgPitx can be associated with the asymmetric
development of the left and right shells of Crassostrea gigas
(Wei et al., 2018). The Fujian oyster (Crassostrea angulate) is an
important marine biological resource as it is one of economic
mollusks with large scale of cultivation on the southeast coast
of China and even globally. In this study, we attempted to
perform CRISPR-mediated gene editing by electroporation in
the Fujian oyster (Crassostrea angulate), given that oyster sperm
and egg cells are readily available, and high-throughput CRISPR
delivery can be achieved using electroporation. The CaPitx gene
was selected as the target gene for CRISPR/Cas9-mediated gene
editing in the embryos of the Fujian oyster by electroporation.
Our study aims to provide a reference for high-throughput
CRISPR-mediated gene editing in oysters.

MATERIALS AND METHODS

Oyster Collection and Seedling
Conditions
The Fujian oysters used in this study were collected from an
aquaculture site in Xiamen, China. All oysters were acclimated in
aerated seawater at 23◦C for 3 days before the experiment. The
oyster seedlings were grown in seawater at 23◦C, micro-aerate
was carried out 6 h after fertilization. After the D-larvae stage,
the oyster seedlings were fed with chrysophyceae.

gRNA Design and CRISPR/Cas9 Plasmid
Construction
The gRNA target site of the CaPitx gene was designed using
the online tool CCTop1 (Stemmer et al., 2015). The gRNA oligo
“5′-CCCGAACTCGGGCTTCTGTG-3′” was selected for CaPitx.
The pYSY-Cas9-gRNA-GFP vector plasmid, carrying a gRNA
scaffold driven by a U6 promoter, a Cas9 expression cassette
driven by a CMV promoter, and a GFP reporter gene driven by
an EF1α promoter, was used as the express component of the all-
in-one CRISPR/Cas9 system. The pYSY-Cas9-gRNA-GFP empty
vector was linearized using BpiI. CaPitx-sgRNA was annealed
and inserted into the empty vector using the In-Fusion cloning
method to generate the CRISPR/Cas9 system in this study.

Electroporation
For electroporation, eggs or blastula larvae were collected and
diluted to a concentration of 1 × 105 cells/mL. Then, the

1http://crispr.cos.uni-heidelberg.de
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all-in-one CRISPR/Cas9 system (with a final concentration of
1 µg/mL) was added, and the mixture was incubated for 5 min at
room temperature (21–25◦C). Then, the mixture was transferred
into a 0.4 cm electroporation cuvette (Bio-Rad Laboratories).
Electroporation was performed in a Bio-Rad Gene Pulser Xcell
system (Bio-Rad Laboratories) using a square wave pulse (100 V,
with 15 ms pulse duration and four pulses separated by 100 ms
pulse interval). After electroporation, the eggs or blastula larvae
were washed in seawater and then fertilized with sperm or further
developed in a bucket.

Calculation of Fertilization Rate, Survival
Rate and Malformations Rate
Fertilization rate was calculated by counting the percentage
of 2-cell stage embryos 1 h after the egg and sperm were
mixed. To calculate the survival rate, the living larvae were
collected 24 h after fertilization; the number of living larvae was
counted after the living larvae were killed by iodine tincture.
The survival rate was calculated by dividing the number of
living larvae by the total number of eggs. To calculate the
malformation rate, iodine tincture was added to kill the living
larvae collected 24 h after fertilization. Subsequently, the number
of malformed larvae and normal D-larvae was counted. The
malformation rate was calculated by dividing the number of
malformed larvae by the total number of living larvae 24 h
after fertilization.

Fluorescent Observation and Mutation
Detection
For fluorescence analysis, D-larvae were collected and
killed by iodine tincture 60 h after fertilization, and green
fluorescence was observed using a fluorescence microscope.
Fluorescent D-larvae were collected, and trace genomic DNA
was extracted using the QIAamp DNA Micro Kit (Qiagen,
United States). The target sequence was amplified by PCR,
and the products were cloned into the pMD19-T Simple
Vector (Takara) after purification using the AxyPrep DNA Gel
Extraction Kit (Axygen). Sanger sequencing was performed to
identify the mutations.

RESULTS

CRISPR-CaPitx Construction
Pitx is a conserved gene that plays an important role in
asymmetric development. In this study, the Hox domain of
the C. angulata Pitx gene was used for gRNA design. sgRNA-
CaPitx was fused into the pYSY-Cas-gRNA-GFP vector, which
encodes a functional CRISPR/Cas9 system. The all-in-one fusion
plasmid was then named CRISPR-CaPitx and was used as the
genome-editing tool in this study.

Deliver the CRISPR-CaPitx Into Oyster
Eggs and Blastula Larvae
The egg cells and blastula larvae were selected as gene-editing
receptors. First, we attempted to introduce the CRISPR-CaPitx

plasmid into egg cells by electroporation. Sperm and eggs
were collected from the Fujian oysters with mature gonads
(Figure 1A). The CRISPR-CaPitx plasmid was added to the egg
suspension and mixed well, followed by a square-wave pulse
under certain conditions (Figure 1A). After a short break, the
egg cells were fertilized with the active sperms, and the mixture
was continuously stirred in disorder for approximately 6 h until
the larvae could swim. Normally developed blastula larvae have
also been used as receptors for gene editing. The CRISPR-CaPitx
plasmid was mixed with blastula larvae and then transferred
by electroporation (Figure 1B). The oyster larvae not subjected
to electroporation were used as blank controls. The oyster eggs
or larvae electroporated without vector plasmids were used as
negative controls.

Electroporation Affects the Survival and
Development of Oyster Larvae
Fertilization rates were calculated 1 h after the addition of
sperm. As shown in Figure 2A, 81 and 82% of eggs were
fertilized successfully after electroporation with and without
plasmid, respectively. Meanwhile, 96% of zygotes were cleaved
in the blank control group. Most of the larvae that developed
from the electroporated eggs died 24 h later. Thus, the survival
rate was calculated 24 h after fertilization and 15% of the
larvae in the blank control group were alive, while only 0.6

FIGURE 1 | Schematic diagram of the mode of electroporation. (A) Eggs of
the Fujian oyster were collected and then performed by electroporation before
fertilization with sperms. (B) Electroporation was performed with blastula
larvae.
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FIGURE 2 | Fertilization rate (A), survival rate (B) and malformations rate (C) of oyster larvae after electroporation. BC, black control; NC, negative control; E,
electroporation group. Error bars represent means ± SD of three independent repeats. One-way ANOVA were used for significance analysis (P < 0.05).

and 1% living larvae were observed in the electroporation with
and without vector, respectively (Figure 2B). Moreover, a high
malformation rate was evidenced after electroporation, with
more than 80% of larvae not developing into normal D-larvae
(Figure 2C). When electroporation was performed on blastula
larvae, the survival rates of the transfected larvae were reduced
to 5 and 9% (Figure 2B), and the malformation rate was
reduced to 60 and 62% after transfection with or without plasmid
(Figure 2C). These results suggest that electroporation severely
affects larval development, thus, causing high mortality and
malformation rates.

Electroporation of CRISPR/Cas9 Induced
a Single Base Mutation in Oyster Larvae
GFP was used as report gene to detect whether the plasmid
vector was transferred into the larvae. Oyster larvae with
GFP fluorescence were observed and screened by fluorescence
microscopy 60 h after fertilization. Figure 3 shows that
green fluorescence was detected in the larvae transfected
by electroporation with the CRISPR-CaPitx plasmid, whereas
no fluorescence was observed in the blank and negative
control groups, indicating that the CRISPR-CaPitx plasmid
was transferred into oyster larvae by electroporation. Then,
D-larvae with green fluorescence were collected, and genomic
DNA was extracted for amplification of the target fragment.
After the purification, the target fragment was connected to a
T-vector and transformed into E. coli for sequencing. Mutations
were verified using Sanger sequencing. In D-larvae developed
from electroporated eggs, DNA sequencing results revealed
that a C to T single base substitution occurred near the
Cas9 cut site (Figure 4). Although green fluorescence was
observed, no mutations were detected in D-larvae developed
from electroporated blastula. These results indicate that the
CRISPR/Cas9 system can mediate mutagenesis in C. angulata by
electroporation.

DISCUSSION

Microinjection is a major option for delivering exogenous
genetic material to many animals, including oysters (Gui
et al., 2016; Chandrasekaran et al., 2018; Yu et al., 2019).
Although microinjection is widely and effectively used, it has
low throughput and high requirements for technology and
equipment (especially for mollusks). The electroporation method
was utilized to deliver the CRISPR/Cas9 system into oyster
larvae in this study. First, we attempted gene editing in a single
cell as much as possible. The CRISPR system was delivered
into eggs by electroporation before mixing with sperm for
fertilization (Figure 1A). Sixty hours later, green fluorescence

FIGURE 3 | GFP fluorescence of the D-larvae development form
electroporated eggs (A) and electroporated blastula larvae (B).
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FIGURE 4 | CRISPR/Cas9-mediated mutations in oyster D-larvae delivered by electroporation. (A) Comparison of sequencing results between wild type and edited
larvae. (B) Sequencing traces of the target region of CaPitx. The PAM sequence is underlined by the black bar. The red arrow indicates the mutation site. PAM,
protospacer adjacent motif. RGS, reference genome sequence. WT, wild-type. “E1-CRISPR” represent D-larvae developed from an electroporated egg.

was observed in whole D-larvae, suggesting that the CRISPR
system was delivered into most cells of the D-larvae (Figure 3A).
A single-base mutation was found and, further, confirmed near
the Cas9 cleavage site (Figure 4). This finding suggests that
although the CRISPR system was delivered into the D-larvae by
electroporation, gene editing took place inefficiently in this study.
Moreover, when electroporation was carried out on the blastula
larvae, only some cells of the developed D-larvae could observe
green fluorescence. In these D-larvae, no definite mutations were
detected near the target set. We believe that because only a small
number of the cells in the blastula larvae undergo electroporation,
it is very difficult to identify even if editing occurs in some cells.

Our results also illustrated that electroporation leads to
massive larval death and deformity. Due to the large number of
oyster eggs and sperm, it is simple to obtain a large number of
embryos. Although the success rate is very low, a certain number
of successfully transfected larvae can still be obtained on the
premise of a large number. It is, therefore, still possible to achieve
high-throughput gene editing by electroporation despite its low
transfection efficiency and high mortality and malformation
rate in oysters.

The application of CRISPR-mediated gene editing technology
in marine mollusks still faces great challenges, either in functional
studies after gene knockout or during genetic engineering
breeding. Thus, gene editing in oysters may be more suitable for
studying the function of related genes during early development
nowadays. To conclude, this study provides experimental data
for gene editing in oyster embryos via the electroporation
delivery of CRISPR. Our results can provide useful reference

for a widespread application of gene editing technology in
mollusks in the future.
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