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Editorial on the Research Topic

Unraveling Mechanisms Underlying Annual Plankton Blooms in the North Atlantic and Their

Implications for Biogenic Aerosol Properties and Cloud Formation

OVERVIEW

Ocean ecosystems play a central role in the vitality of our biosphere and both influence and
are influenced by the overlying atmosphere. Plankton-based compounds released from the ocean
through bubble bursting and wave breaking contribute to atmospheric aerosol load and influence
the formation and properties of clouds (Meskhidze et al., 2013). In parallel, ocean ecosystems
are recipients of atmospheric depositions, often transported from distant sources (van de Meent
et al., 2011). Ocean-atmosphere feedbacks are particularly amplified when pristine atmospheres
overlay strong annual plankton cycles. The western subarctic Atlantic is one such place. The North
Atlantic Aerosol and Marine Ecosystem Study (NAAMES)1 was a National Aeronautics and Space
Administration (NASA) Earth Venture Suborbital mission focused on plankton blooms, aerosols,
and clouds in this subarctic region (∼40–55◦N) and conducted between 2015 and 2019. The
mission entailed four field campaigns targeting specific events in the annual plankton cycle and
included a diversity of ship-based, airborne, and autonomous measurements (Behrenfeld et al.).
At the time of writing, nearly 80 publications stem from NAAMES (21 represented within this
frontiers research topic) and more are in development. This Editorial provides a brief synopsis of
many of the NAAMES scientific findings.

PHYSICAL STRUCTURING

Analysis of mean dynamic topography (MDT) separated the NAAMES study region into
four provinces [Della Penna and Gaube(a)] with hydrographic boundaries strongly influencing
plankton community composition (Bolaños et al., 2020; Bolaños et al.), phenology (Yang et al.),
and physiological state (Fox et al.). In general, amplicon sequence variant (ASV) analysis revealed

1https://science.larc.nasa.gov/NAAMES/
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phytoplankton communities to be more closely related between
seasons within an MDT province than between provinces within
a given season, although strong mesoscale features occasionally
disrupted these ecological boundaries (Bolaños et al., 2020).
The NAAMES study region featured an energetic field of
mesoscale eddies and meanders (radial scale: 20–50 km) formed
by instability in the Gulf Stream and baroclinic instability in the
open ocean. These features were largest in the Gulf Stream region
(amplitudes exceeding 40 cm), but most formed in the open
ocean, trapping large water parcels for days to weeks [Della Penna
and Gaube(a)]. The vertical (Schulien et al.) and horizontal
(Bolaños et al., 2020; Mojica et al., 2020) structure of microbial
communities were strongly influenced by these physical features,
but accurate representation of this spatial variability remains a
significant challenge in bio-physical simulations (Eveleth et al.).

Anticyclonic (clockwise-rotating) eddies in the western North
Atlantic have anomalously warm surface water, low chlorophyll
concentrations (CHL) (Gaube et al., 2014), and often enhanced
vertical mixing (Gaube et al., 2019b), presumably as a result of
deep and sustained convection that homogenizes phytoplankton
such that their vertically-integrating biomass can exceed that
of stratified cyclonic eddies with higher near-surface CHL
concentrations. The eddies sampled during NAAMES revealed
that anticyclones contained anomalously high concentrations
of mesopelagic organisms, including fish, squid, jellies, and
crustaceans, when compared to neighboring cyclones [Della
Penna and Gaube(b)]. Coupled with elevated temperatures,
enhanced mesopelagic prey biomass may explain the systematic
selection of anticyclonic cores by feeding white (Caracaius
carcaridon) and blue (Prionace glauca) sharks (Gaube et al., 2018;
Braun et al., 2019).

Features with spatial scales ranging from< 1 km to> 100 km,
referred to as the oceanic (sub)mesoscale, can modulate the
stability and vertical extent of the marine atmospheric boundary
layer (MABL) and create pressure gradients that elevate wind
speeds down-wind of (sub)mesoscale fronts (Gaube et al., 2019a).
Elevated wind speed at the air-sea interface can enhance primary
aerosol (sea spray) and secondary aerosol (volatile compounds
that nucleate into new particles) production (see below).

PHYTOPLANKTON COMMUNITY

COMPOSITION

A surprising observation during NAAMES was the general
paucity of large phytoplankton during the spring bloom (Bolaños
et al., 2020; Menden-Deuer et al., 2020). Instead, ASV, particle
count, size-fractionated CHL, flow cytometry (FCM), and image-
based [e.g., Imaging FlowCytobot (IFCB), FlowCam] analyses
generally all indicated that pico- and nano-sized cells dominated
phytoplankton abundance and total bio-volume (Bolaños et al.,
2020; Chase et al., 2020; Menden-Deuer et al., 2020), although
pigment-based taxonomical classification suggested stronger
diatom contributions (Kramer et al.). In cases where elevated
diatom abundance was indicated by ASV, image analysis revealed
these to be species in the nano- or smaller micro-phytoplankton
size classes (Bolaños et al., 2020; Menden-Deuer et al., 2020).

These findings have important biogeochemical implications,
as the subarctic Atlantic bloom is broadly assumed to be
dominated by large diatoms that efficiently export carbon to
depth (Lochte et al., 1993; Sieracki et al., 1993; Hashioka et al.,
2013; Rynearson et al., 2013). While an explanation for the
scarcity of large diatoms during NAAMES has been proposed
(Behrenfeld et al., 2021a,b), the observation is a reminder
that diagnostic pigment approaches can notably overestimate
microplankton contributions to phytoplankton biomass (Chase
et al., 2020).

DISTURBANCE PROMOTES BLOOMING

The Disturbance-Recovery Hypothesis (DRH) provides
a framework for understanding temporal dynamics in
phytoplankton biomass in the context of imbalances in
phytoplankton division and loss rates (Behrenfeld and Boss,
2018; Behrenfeld et al.). One element of the DRH is the role of
mixed layer dynamics on predator-prey coupling, and a unique
opportunity presented itself during NAAMES to empirically
test this idea. Specifically, during the 2016 May-June campaign,
a cold-air event caused an ∼10-fold deepening of the mixed
layer (to >200m) followed by rapid restratification (Graff
and Behrenfeld). The deep mixing decoupled phytoplankton
division and loss rates by dispersing both predators and prey.
Phytoplankton rapidly photoacclimated (Graff and Behrenfeld)
and their growth remained largely unchecked during the
subsequent restratification period due to a temporal lag in
the zooplankton response to accumulating prey biomass
(Behrenfeld, 2014; Behrenfeld and Boss, 2018; Morison et al.).
Mojica et al. used shipboard incubation experiments to emulate
these results, quantitatively demonstrating that the rate of change
in phytoplankton biomass varies with the specific rate of change
in phytoplankton division rate (1µ) (Behrenfeld et al., 2017;
Behrenfeld and Boss, 2018). Episodic deep mixing events also
appear to be an important mechanism “pumping” new biomass
into communities deeper in the water column (Penta et al.,
2021).

PHYTOPLANKTON ANNUAL CYCLE

Biogeochemical (BGC)-Argo autonomous profiling floats
provided a continuous long-term record of bio-optical
measurements for monitoring plankton dynamics during
NAAMES. These data (along with ship-based measurements)
confirmed the DRH prediction of phytoplankton bloom
initiation during early winter (Behrenfeld, 2010; Behrenfeld and
Boss, 2018) when division rates are still decreasing and mixed
layer growth conditions are deteriorating (Yang et al., 2021;
Yang et al.). Similar results were found for the Southern Ocean
(Arteaga et al., 2020). BCG-Argo data also yielded a new net
primary production (NPP) model (Fox et al.) enabling high
temporal-resolution comparisons of phytoplankton division (µ),
loss (l), and biomass accumulation (r) rates. NAAMES data show
that r is not directly proportional to µ (Fox et al.; Yang et al.),
but rather governed by 1µ. Ship-based measurements provided
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additional insights on the physiological underpinnings of the
phytoplankton annual cycle. Using biomarkers of programmed
cell death, compromised membranes, viral infection, and
nutrient limitation, Diaz et al. (2021) showed low levels of
cellular stress during the main spring accumulation phase of
the annual phytoplankton cycle, a pronounced increase in
cell stress in late spring heralding bloom termination, and
maximum cell stress and death during the autumn declining
phase. Host physiological stress can be a critical factor triggering
phytoplankton viruses to abandon a temperate life style and
become lytic (Knowles et al., 2020), implying that low measured
rates of lytic infection in spring (Morison et al.; Mojica et al.)
may in part be attributable to a prominence of temperate viral
behavior during this low-stress season. Enhanced cell stress
was also evident during winter bloom initiation (Diaz et al.,
2021), but is overridden by the greater impacts of mixed layer
deepening on predator-prey relationships (Yang et al.; Yang et al.,
2021).

MICROBIAL PROCESSES

Highest rates of net bacterial production (BP), bacterial carbon
demand (BCD), and bacterial abundance (BA) were observed
during NAAMES in the late spring, paralleled by the largest flux
of labile dissolved organic matter (DOM) to bacterioplankton
(Baetge Behrenfeld et al.). The BCD:NPP ratio was low in late
spring, suggesting new organic matter was largely partitioned
into particulate organic matter and export (Baetge Behrenfeld et
al.). At this time, the net biogenic production of volatile organic
compounds (VOCs) was also elevated (Davie-Martin et al.).
Flavobacteriales and Oceanospirillales were relatively abundant
in late spring, suggesting a response of specific copiotrophic
members of these groups to fresh labile DOM (Bolaños et al.).
The Flavobacteria taxa also included vitamin B1 auxotrophs
that significantly depleted dissolved thiamin levels (Suffridge
et al.). Between late spring and early autumn, net community
production (NCP) accumulating as seasonal (semi-labile) surplus
DOC increased (Baetge Graff et al.), along with the abundance
of SAR202 genomes in the euphotic zone (Bolaños et al.). This
period corresponded to enhanced physiological stress and viral
mediated phytoplanktonmortality, the latter enhancing substrate
for heterotrophic prokaryote growth and potentially impacting
community structuring (Mojica and Brussaard, 2020).

AEROSOLS SOURCED FROM THE OCEAN

Sea spray aerosol (SSA) during winter represented approximately
50% of the total aerosol, with no evidence of aerosol transported
from other sources (Quinn et al., 2019). Concentrations of this
“SSA mode” were significant but < 20% during other seasons.
Notably, these findings demonstrate the long-hypothesized link
between phytoplankton and atmospheric aerosols and are a
step forward in understanding processes producing aerosols in
the marine environment (Brooks and Thornton, 2018). Even
so, debate persists regarding quantitative budgets (Bates et al.,

2020) and the direct flux of marine aerosol remains unquantified
(Sanchez et al., 2018, 2021).

Dissolved organic constituents in seawater include VOCs
emitted by phytoplankton (Halsey et al., 2017a,b; Moore et al.,
2020; Davie-Martin et al.), but a majority of these compounds
may be consumed by heterotrophic bacteria before reaching the
air-sea interface. During NAAMES, biogenic VOC production
increased with phytoplankton productivity and incident sunlight
(Davie-Martin et al.). Dimethyl sulfide (DMS) and methanethiol
were highest over phytoplankton blooms, while acetonitrile was
high in both late spring and early autumn. The composition
of submicron primary marine aerosol varied with season and
latitude (Lewis et al.). Organic materials in aerosol were linked
to ubiquitous recalcitrant dissolved organic matter and transient
polysaccharides emitted under bloom conditions (Lawler et al.,
2020).

Total aerosol mass was not correlated with surface layer
dissolved organic carbon mass, indicating aerosol production
through multiple processes with difference timescales (Sanchez
et al., 2021). DMS and primary marine aerosol correlate on
short air-mass timescales (i.e., local sources). In contrast, marine
non-refractory aerosol correlates with primary production when
air masses were weighted on long (5d) timescales. This finding
is consistent with processes of biogenic VOC emissions and
subsequent photolysis in the atmosphere allowing detection
significantly distant from source regions, and also implies an
important role of wind speed and trajectory (Saliba et al., 2019,
2020). Future composition and microphysical measurements are
still needed to better quantify radiative impacts of the direct and
indirect aerosol effects sourced from the ocean (Saliba et al.,
2019, 2020; Wilbourn et al., 2020; Sanchez et al., 2021; Bell et al.;
Hendrickson et al.).

MARINE AEROSOLS AND CLOUDS

While NAAMES measurements confirmed that marine
secondary organic aerosols were of the size and solubility
to be cloud forming aerosol (Sanchez et al., 2018), the
relative contribution of organic compounds in marine cloud
condensation nuclei (CCN) is small (Hendrickson et al.). CCN
activation by marine soluble organic compounds is similar
to that of salts (Hendrickson et al.) and the strongest link
between marine biology and CCN may be non-sea-salt sulfate
(Saliba et al., 2020). For cold cloud development, however,
microorganisms from the sea surface do have ice-nucleating
properties and facilitate the freezing of ice atmospheric droplets
despite antifreeze properties of associated salts (Wilbourn et al.,
2020).

ADDITIONAL FINDINGS

NAAMES produced substantial evidence of new particle
formation in the marine boundary layer, with significant links
to ocean biology (Croft et al., 2021; Zheng et al., 2021).
Integration of these observations into the GEOS-Chem-TOMAS
model indicated that aerosols are significantly undercounted
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if marine new particle formation is not accounted for (Croft
et al., 2021). NAAMES also provided a platform for instrument
and technique development, including cloud droplet number
(CDN) and collection of liquid cloud water for detailed
offline analysis (Crosbie et al., 2018). Sinclair et al. (2019)
evaluated CDN concentrations by coupling airborne and ship-
based measurements, Alexandrov et al. (2018) linked remote
scanning polarimeter (RSP) retrievals of CDN to direct in-cloud
measurements, and Stamnes et al. (2018) used high spectral
resolution lidar (HSRL) measurements to derive detailed cloud
microphysical properties.

With respect to remote sensing, Painemal et al. (2021)
used in-situ cloud droplet probe measurements to validate
satellite retrieved cloud properties, while Allen et al. used in-
water optical measurements to evaluate seasonal and spatial
patterns of inherent and apparent optical properties and tied
their spectral dependence to colored dissolved organic matter,
phytoplankton pigment absorption, and particulate backscatter.
TheNAAMESmission also contributed significantly to a growing
body of literature regarding satellite lidar as an invaluable
tool for ocean remote sensing (Hostetler et al., 2018; Jamet
et al., 2019), including the characterization of polar plankton
cycles (Behrenfeld et al., 2017), testing of heritage satellite
ocean color products (Bisson et al., 2021a,b), identification of
phytoplankton taxonomic groups within and outside eddies
(Schulien et al.), and detection of global ocean diel animal
vertical migrations (DVM) (Behrenfeld et al., 2019), noting
here that vertical carbon transport by DVM activities is now
an explicit element in ocean biogeochemical models (Archibald
et al., 2019).

The NAAMES experience also yielded a variety of higher-
level syntheses regarding phytoplankton bloom hypotheses
(Behrenfeld and Boss, 2018), diatom ecology and evolution
(Behrenfeld et al., 2021a), phytoplankton size distributions and
succession (Behrenfeld et al., 2021c), and a new interpretation
of Hutchinson’s (1961) “Paradox of the Plankton” regarding the
unexpected diversity of phytoplankton species in water columns
with few readily identifiable niches (Behrenfeld et al., 2021b).
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