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There is about to be an abrupt step-change in the use of our coastal seas, specifically
by the addition of large-scale offshore renewable energy developments to combat
climate change. Many trade-offs will need to be weighed up for the future sustainable
management of marine ecosystems between renewables and other uses (e.g., fisheries,
marine protected areas). Therefore, we need a much greater understanding of how
different marine habitats and ecosystems are likely to change with both natural and
anthropogenic transformations. This work will present a review of predictive Bayesian
approaches from ecosystem level, through to fine scale mechanistic understanding of
foraging success by individual species, to identify consistent physical (e.g., bottom
temperature) and biological (e.g., chlorophyll-a) indicators of habitat and ecosystem
change over the last 30 years within the North Sea. These combined approaches
illuminate the feasibility of integrating knowledge across scales to be able to address the
spatio-temporal variability of biophysical indicators to ultimately strengthen predictions
of population changes at ecosystem scales across broadly different habitat types.
Such knowledge will provide an effective baseline for more strategic and integrated
approaches to both monitoring studies and assessing anthropogenic impacts to be
used within marine spatial planning considerations.

Keywords: marine ecosystem, marine spatial planning, climate change, fisheries, marine protected areas,
seabirds and marine mammals, potential energy anomaly, net primary production

INTRODUCTION

There is clear evidence of climate change within shallow seas, which are being affected by rising
temperatures, for example, the well-studied United Kingdom waters north of Scotland and the
North Sea have suffered rapid warming with temperatures increasing by up to 0.24◦C per decade
(Tinker et al., 2020). Latest projections imply increased coastal-flood risk due to sea-level rise
(Horsburgh et al., 2020), reduced oxygen (Mahaffey et al., 2020; Wakelin et al., 2020), and
exacerbating impacts from ocean acidification (Humphreys et al., 2020). These physical changes
are having an impact throughout the food web, with effects on abundance, distribution, and
biodiversity, seen in plankton (Edwards et al., 2020), fish (Wright et al., 2020), seabirds (Mitchell
et al., 2020), and mammals (Evans and Waggitt, 2020).

One of the more likely solutions to combat climate change is the introduction of large-scale
offshore renewable energy (ORE) developments (wind, tidal and wave) of 100 s of gigawatts (GW)
(IRENA, 2019). However, the introduction of new structures and the extraction of more energy
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either from wind, wave or tides will have cumulative effects
within the world’s shallow seas and therefore will also influence
whole ecosystems. The size of these developments may also end
up using more than 30% of coastal sea space (Figure 1), and
some of the consequences that will most likely follow include
physical habitat change (De Dominicis et al., 2018), displacement
of fisheries (Kafas et al., 2017) and possible creation of de facto
marine protected areas (MPAs) (Raoux et al., 2019).

However, to be able to move toward a much better evidence
base for marine spatial planning (MSP), there is the need
to identify and quantify the impacts separately from both
climate change and ORE developments. To do this, we first
need to understand how marine habitats are likely to change
across different spatial scales and over time and so too their
associated ecosystem characteristics, specifically their structures
and function. To address this, we need to define indicators of
habitat and ecosystem change but first we need to assess what
makes a good indicator of change in marine ecosystems. It is
generally assumed that visible top predators, such as seabirds
and mammals, are sirens of ecosystem change. However, often
nothing other than annual productivity and/or foraging trip
durations are measured (Wanless et al., 2009; Russell et al.,
2014), and without measured linkages to other physical and/or
biological indicators at an ecosystem scale, it is not clear what
exactly are they indicating that is changing. As an example, a
series of studies that has tried to understand the details in the
ecosystem linkages that drive kittiwake annual breeding success
(Eerkes-Medrano et al., 2017) has shown that there is a need to
understand more detail about other trophic levels and in this
case, not only the biomass but the phenology of zooplankton
is essential to include to predict kittiwake breeding success.
Therefore, the increase in knowledge about which indicators
to use and what they are telling us about how the ecosystem
is functioning is necessary to add to the use of top predators
and will ultimately guide future studies across a range of spatial
and temporal scales and will reduce uncertainties of direct and
indirect effects on populations across a range of trophic levels.
Full understanding, due to the complex nature of ecosystems
is challenging, however, we need to have pragmatic approaches
to deal with the rapid expansion of ORE that is happening
now (IRENA, 2019).

In this review, we suggest making the direct use of physical
(e.g., bottom temperature) and biological (e.g., net primary
production) indicators, that will be impacted by both predicted
climate change and large-scale ORE extraction (Boon et al., 2018;
Sadykova et al., 2020; Figure 2). An indicator is a physical and/or
biological ecosystem component, that could be seen described
as an environmental predictor, a response, or a pressure but we
choose to use the terminology “indicator” to describe ecosystem
components that have been found to help predict (“indicate”)
habitat and/or ecosystem change over the last 30 years within
the North Sea. The indicators are defined based on the literature
reviewed for this study scoping the range of variables found
to be significant drivers of variation, or direction of change, in
either behaviors, distributions and/or population dynamics of
the highly mobile top predator marine species from very fine
spatial scales through to large ecosystem scales, thus delivering

an understanding of the indicators of habitat and ecosystem
change in the North Sea over the last 30 years. We present
evidence from a range of case studies from large ecosystem-
level through to fine spatial scales which show that the defined
physical and biological indicators are effective predictors of
habitat and ecosystem change. The results presented are based
on recent novel modeling approaches and outputs, with the aim
to effectively integrate and combine knowledge across spatial
scales (i.e., individuals to populations and meta-populations). We
reviewed the outputs to ensure that those are the models that have
the highest confidence and are the most consistently predictable
indicators of ecosystem change to ultimately increase certainty
of predictions of future population changes and ecosystem
dynamics. We synthesize what we have learned from marine
ecosystem modeling approaches with respect to understanding
the impacts of climate change and large-scale ORE developments,
with the aim to effectively use and communicate their combined
outputs to increase confidence in model projections and obtain
more holistic knowledge of complex ecological systems. Finally,
we discuss the implications from our synthesis and propose
possible directions for future research and approaches with the
aim to better utilize knowledge from existing data sources, survey
techniques and modeling formulations to help guide future
multitrophic studies to be performed at the most meaningful
ecological scales for the types of investigations being proposed.

BACKGROUND

The Importance of Spatial and Temporal
Scale to Define Specific Indicators
The spatial and temporal scale of physical and biological
indicators is a challenging issue with respect to understanding
the multiplicity of mechanisms underlying observed patterns
and variability changes (Wiens, 1989, 1990; Levin, 1992) and
especially the trophic interactions of highly mobile marine
animals (fish, seabirds, and marine mammals) within dynamic
marine environments. Case studies from around the globe
represent the complexity between scale and the need to define
indicators to be able to support management and conservation:
e.g., Bay of Fundy (Johnston et al., 2005; Johnston and Read,
2007), Florida Bay (Torres et al., 2008), Pacific coast (Zamon,
2001), south coast of Australia (Ropert-Coudert et al., 2009),
southern oceans (Bost et al., 2009). Recognizing the spatial and
temporal heterogeneity of physical and biological indicators to
understand habitat suitability, species distribution and behavior
has been discussed on a wider scale for different cetacean
species (Chavez-Rosales et al., 2019), but also on a finer
scale for fish in the California current (Sabal et al., 2020),
elephant seals in the Pacific Ocean (Abrahms et al., 2018)
and whales in the Mediterranean (Cotté et al., 2011). These
examples illustrate the importance of scale-dependent interplay
between the physical environment, individual fitness, predator-
prey interactions, and the mechanisms that drive population
dynamics at multiple scales.

The North Sea has been considered as a coastal
biome (Longhurst, 2010), a large marine ecosystem
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FIGURE 1 | Offshore wind farms locations from past, currently operational and those planned, as well as the range of areas, available for use in leasing round 4.

FIGURE 2 | Present spring-summer (March–April–May–June: MAMJ) from a mean of 25 years (1989–2014) (A,D), future under “business as usual” (worst case)
greenhouse-gas emissions scenario in 2050 from a mean of projected yearly outcomes from 2037 to 2062 (B,E) and difference between present and future (C,F) for
bottom temperature (BT) and net primary production (NPP). Data provided from the Atlantic Margin Model 7 × 7 km (AMM7-NEMO) 3D baroclinic, hydrodynamic
model, coupled with an ecosystem model ERSEM (Wakelin et al., 2015); for more information, see Sadykova et al. (2020).
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FIGURE 3 | Present June–July–August potential energy anomaly (PEA, defined as an indicator to measure stratification and mixing rate) (A), future PEA under 6 GW
energy extraction (B) and future PEA under “business as usual” (worst case) greenhouse-gas emissions scenario in 2050 (C). Data provided from the unstructured
grid coastal ocean model, FVCOM (Finite-Volume Community Ocean Model, Chen et al., 2003), using an implementation known as the Scottish Shelf Model (SSM,
Wolf et al., 2016); for more information, see De Dominicis et al. (2018).

(Sherman et al., 2009) and a specific ecoregion (Spalding
et al., 2007), but several studies demonstrate the need for detailed
physical and biological understanding at a finer scale (Embling
et al., 2012; Jones et al., 2014; Scales et al., 2017; Cox et al., 2018;
Sadykova et al., 2020). The high hydrodynamic variability of
some central North Sea areas, due to the large variability in
duration of mixed and stratified conditions, described by van
Leeuwen et al. (2016), suggests the hypothesis that such areas
might be characterized by a more heterogeneous spatial pattern
on a finer scale.

Physical and biological processes exhibit high spatial
variability in the oceans (Tweddle et al., 2018). For example,
there are large differences over small spatial distances in vertical
gradients in light levels (Falkowski and Raven, 2013), horizontal
and vertical gradients in temperature and salinity (Boyer
et al., 2013), turbulent mixing (Simpson and Sharples, 2012),
nutrient concentrations (Hydes et al., 2001; Boyer et al., 2013;
Tweddle et al., 2013), phytoplankton concentrations and primary
productivity (Behrenfeld et al., 2006), as well as predator-prey
species distributions (Scott et al., 2010; Kaltenberg and Benoit-
Bird, 2013). Many of these processes also vary temporally in
their occurrence and as such, the distributions of highly mobile
marine top predators across oceanographically dynamic areas
may vary over both large (seasonal) and short (bi-weekly)
temporal scales, due to seasonal stratification and the bi-weekly
formation of tidal-mixing fronts (Johnston et al., 2005; Scales
et al., 2014; IJsseldijk et al., 2015; Cox et al., 2016). Therefore,
temporal changes in highly mobile top predator distributional
patterns are likely to reflect those of their preferred prey, which
may, in turn, be bottom–up driven by dynamic oceanographic
processes (Cox et al., 2018). Such spatio-temporal variability
has implications for the ecosystem structure and function and
ecosystem responses to disturbances, all of which are likely to
be scale dependent (Fauchald et al., 2011; Trifonova et al., 2015,
2021; Preciado et al., 2019; Heim et al., 2021).

Stratification of the water column is a key control for coastal
shelf seas, as it is the main determinant in the spatial distribution
of habitat types (Sharples et al., 2020). The timing and strength
of stratification, which is mainly determined by annual season

weather patterns, tidal forcing, and depth (Simpson and Sharples,
2012), is a main mechanistic driver for primary and secondary
production, can influence the distribution of marine animals
(Scott et al., 2010; Carroll et al., 2015; Cox et al., 2018) and cause
implications to the breeding success of seabirds (Durant et al.,
2006; Scott et al., 2006; Borstad et al., 2011). A warming climate
is likely to alter the timing and length of summer stratification
(Holt et al., 2010), which is a key physical control for the
formation and level of production of the spring plankton bloom
(Sharples et al., 2020). Change in the timing of blooms can lead
to a temporal mismatch between fish larvae and their plankton
prey, with implications for recruitment (Wright et al., 2020),
fisheries production and other marine life (Edwards et al., 2020),
highlighting the complex relationship between the change in
physical habitat, following climate warming and predator-prey
interactions. Worryingly, it has been found that both climate
change and very large-scale tidal ORE developments can act
in the same direction in terms of increasing stratification and
consequently impact primary production. However, in the one
direct comparison study that has been done, the effect of climate
change is an order of magnitude higher than tidal effects by
as early as 2050 and the tidal extraction effects are extremely
location specific (De Dominicis et al., 2018; Figure 3).

Definitions of Scale and Types of
Offshore Renewable Energy Extraction
In this section, we provide reason for and define the range
of spatial scales (Figure 4) used in this study along with the
background information on the major ecosystem level changes
over the last 30 years in the North Sea. The largest scale
is the entire shallow shelf sea area (in this specific example,
defined as covering the North Sea and the United Kingdom
continental shelf between 48◦ and 62◦ North and 10◦ West and
12◦ East; Figure 4A). The whole shallow shelf sea scale is relevant
for numerous issues in the management and conservation of
mobile marine species such as migratory fish species, seabirds,
and marine mammals (Hammond et al., 2013; Cook et al.,
2014b; Rutterford et al., 2015; Sadykova et al., 2017). The next
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FIGURE 4 | The North Sea and the United Kingdom continental shelf and the spatial boundaries of Shetland and Orkney region (highlighted in purple) to represent
the shallow shelf sea and regional scales (A), respectively, as defined in this work, the archipelago of Orkney as a representation of the local scale (B) and the island
of Eday and an example of vessel-based transects, based on Waggitt et al. (2016b), as a representation of the fine scale (C).
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scale down is the regional spatial scale and it can encompass
populations and/or meta-populations of mobile species and each
region consists of contrasting habitat types, which are more or
less suitable for different ORE industries, based on depth and
exposer/or not to wider oceanic influences. In the North Sea,
these are four regions [each sized approximately 3500 km2; see
Trifonova et al. (2021) and Figure 4A, that shows the Shetland
and Orkney region] and range from the western Scottish waters,
that are mainly influenced by western Atlantic Ocean conditions
and targeted for wave energy developments (Davies et al., 2012);
the Shetland and Orkney region with shelf edge habitats and
some of the best tidal resources in the world (Davies et al., 2012);
the northern North Sea that represents an expanse of deep
(>60 m) areas, suitable for floating wind (Sectoral Marine Plan
for Offshore Wind Energy, 2020) and shallow southern North
Sea areas with depths < 50 m, suitable for static offshore wind
(Offshore Renewable Energy Strategy European Commission,
2020).

The size of the local spatial scale (in the range of 100s km;
Figure 4B) is defined based on the characteristics at the base
of marine food chains: phytoplankton and primary productivity
(Holt et al., 2012; Tweddle et al., 2018). This approach allows
knowledge about the base of ecosystems to be used to assist
assessment of environmental status within MSP (including
MPAs) and within sectoral licensing to support ecosystem-based
sustainable management (Tweddle et al., 2018). In addition,
recognizing the importance of inter-annual variability in the
timing of spring stratification and plankton blooms is a key
component to the understanding of the mechanisms behind
variations in marine animal populations on a local scale (Sharples
et al., 2006). The fine spatial scale (<1 km; Figure 4C) is
defined to provide a more mechanistic understanding of which
habitat variables are more important to an individual of a
given species and most importantly, to achieve an understanding
of preferred foraging habitats, including preferences for local
hydrodynamic conditions, which can then be conveyed at an
ecosystem level (Sharples et al., 2013; Waggitt et al., 2016a;
Williamson et al., 2019).

PHYSICAL AND BIOLOGICAL
INDICATORS FOR MULTIPLE SPATIAL
AND TEMPORAL SCALES

Physical Indicators: Stratification
One of several possible physical indicators to measure
stratification is the potential energy anomaly (PEA, J/m3).
PEA represents the amount of work required to bring about
complete vertical mixing per unit of volume (Simpson and
Bowers, 1981) and indicates the level of stratification and
mixing rate (De Boer et al., 2008; De Dominicis et al., 2018).
Recent modeling outcomes reveal that PEA plays a significant
role in predicting the abundance changes of both lower (e.g.,
sandeel larvae) and higher trophic level (e.g., harbor porpoise,
black-legged kittiwake) marine species on a regional spatial
scale (Carroll et al., 2015; Trifonova et al., 2021) and to a lesser

extent, in determining habitat preferences on a North Sea scale
(Sadykova et al., 2017; Wakefield et al., 2017). PEA can reflect
more subtle spatial and temporal changes within a habitat type
(van Leeuwen et al., 2016) and season (Simpson and Bowers,
1981), thus further highlighting the importance of spatial and
seasonal distribution of physical processes as good indicators
up through the entire trophic chain and any changes that are
affecting ecosystem functioning.

On a local spatial scale, work by Sharples et al. (2013), has
shown how seabed topography, in particular, during the period
of established stratification, can have a significant effect on the
levels of primary production, which were correlated with fish
behavior, foraging seabirds and fisheries response and activity.
On a fine spatial scale, stratification was also a key indicator
and specifically when looking at the impacts of offshore wind
farm structures (for example, by reducing vertical ocean mixing:
Afsharian and Taylor, 2019 or reducing wind speeds and resultant
wind stresses at the sea surface: Miles et al., 2020) that will have
consequences for primary production (Carpenter et al., 2016;
Schultze et al., 2020). Few studies have included analyses of the
wind farm and/or tidal turbine impacts on primary production,
and their results differ among regions due to their unequal
topographic and oceanographic conditions. However, the studies
showed that physical processes controlling rates of mixing and
stratification are of key importance to understanding changes
in the level of primary production on a relatively fine to local
scale (van der Molen et al., 2014, 2016; Schultze et al., 2020) and
ecosystem-wide spatial scales (Ludewig, 2015). Thus, using the
PEA indicator to capture changes in stratification is important
as changes in primary production may lead to further impacts
on ecosystem services, such as fisheries, but also mobile marine
predator populations.

Physical Indicators: Bottom Temperature
and Sea Surface Temperature
Temperature is a major driver of marine ecosystems and one of
the key factors affecting the physiology and ecology of all marine
organisms (Simpson et al., 2011; Edwards et al., 2020; Evans and
Waggitt, 2020). On a North Sea spatial scale, bottom temperature
(BT, ◦C) was found to be important only for some top predator
species in Sadykova et al. (2017). However, it has been shown that
warming BTs can induce changes in the distribution, abundance,
and richness of fish species in the North Sea, including the
west of Scotland region (Dulvy et al., 2008; Ter Hofstede et al.,
2010), Celtic Sea (Mérillet et al., 2020) and other large shelf
marine ecosystems (Hunt et al., 2008; Sagarese et al., 2014).
Similarly, BT was found to be a better physical indicator of
abundance and/or biomass change on a regional spatial scale,
compared to the sea surface temperature (SST, ◦C), except in the
southern North Sea where the water column is generally fully
mixed (Trifonova et al., 2021). Daily to seasonal SST values have
higher variability, as SST is more rapidly affected by atmospheric
variation, whereas changes in BT reflect longer-term, integrated
trends in warming/cooling. Therefore, it is likely that changes in
SST reflect a wider range of the daily/seasonal extremes, whilst
the BT reflects steady changes over longer periods of time. Thus,
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it is not surprising that SST has been used as one of the most
important physical parameters influencing marine ecosystems
linked to ecosystem changes in the North Sea due to climate
variability in the North Atlantic Oscillation (Simpson et al., 2011;
Pitois et al., 2012; Lynam et al., 2017; Edwards et al., 2020; Evans
and Waggitt, 2020).

On a local to fine spatial scales, there has been a lot of work
to relate SST with breeding success of kittiwakes (Frederiksen
et al., 2005, 2007; Scott et al., 2006; Cook et al., 2014a), with
most recent studies suggesting that temperature affects the
abundance and timing of sandeels and their prey, which in
turn has complex implications for kittiwakes, which are surface-
feeders specializing on sandeels (Eerkes-Medrano et al., 2017;
Wanless et al., 2018; Régnier et al., 2019). The relationships
between SST and breeding success have been documented for
other seabirds as well, including northern fulmar, Arctic tern,
Atlantic puffin, and European shag (Durant et al., 2006; Borstad
et al., 2011; Burthe et al., 2014; Cook et al., 2014a; Howells et al.,
2017). However, this mechanism of “trophic mismatch,” where
warming SSTs may affect seabirds though temporal mismatch
between prey availability and energy demands during breeding is
still unclear and poses challenges, due to the interacting effects
from other factors (e.g., weather events, ORE developments)
(Mitchell et al., 2020).

Physical Indicators: Horizontal Currents
Speed
Local and regional hydrodynamic characteristics and processes
can influence primary productivity and occupancy patterns of
mobile animals by increasing food availability and abundance
(Skov and Prins, 2001; Johnston et al., 2005; Ballance et al., 2006;
Markones, 2007; Embling et al., 2012; Thompson, 2013; Scales
et al., 2014; Cox et al., 2016; Sadykova et al., 2017; Scherelis
et al., 2020; Trifonova et al., 2021). Specifically, depth-averaged
(entire water column) horizontal currents speed (Hspeed, m/s)
was found to be a key variable determining the abundance of
mobile top predators, as stronger currents can promote foraging
opportunities (Pierpoint, 2008; Embling et al., 2010; Gilles et al.,
2011; IJsseldijk et al., 2015; Lambert et al., 2017; Diaz-López and
Methion, 2018), specifically within tidal stream environments
(Waggitt et al., 2016a,b, 2018b; Bouveroux et al., 2020), which has
important implications with respect to mitigating population-
level impacts from tidal stream energy extraction. Hydrodynamic
characteristics have been hypothesized to aggregate, disaggregate,
and disorient prey, affecting prey availability and foraging
efficiency (Scott et al., 2014; Benjamins et al., 2015; Waggitt
et al., 2016a), leading to effects on the energetics of individuals
with possible effects on population-level across trophic levels
(Zamon, 2003; Fraser et al., 2018; Williamson et al., 2019).
Such findings are important for top predators, specifically when
changes in fish behavior and distribution have been found to
be more important than changes in abundance (Hastie et al.,
2016; Waggitt et al., 2016b). Recent findings on very fine spatial
scales (<500 m) demonstrate that man-made structures (e.g.,
decommissioned tidal turbine) and physical features (e.g., eddies
and boils) generate wake features that attract top predators, which
has implications for the distribution of species and identification

of foraging hotspots (Embling et al., 2012; Waggitt et al., 2016a,b;
Benjamins et al., 2017; Lieber et al., 2019). Therefore, quantifying
spatio-temporal variation in animal site usage in relation to
hydrodynamic features may help to identify which and when
areas may be used (Bertrand et al., 2014; Jones et al., 2014;
Waggitt and Scott, 2014; Benjamins et al., 2015; Hastie et al., 2016;
Waggitt et al., 2017).

Biological Indicators: Net Primary
Production, Maximum Chlorophyll-a, and
Phytoplankton Patchiness
Net primary production (NPP, mg C/m2; depth averaged NPP,
that is the total carbon uptake by phytoplankton minus the
phytoplankton respiration in a day) is a key driver of species
dynamics from zooplankton through to top predators. Thus,
it is through energy transfer along the food web, that NPP
provides bottom–up control on fisheries production, identified
within the North Sea and across other large marine ecosystems
around the globe (Chassot et al., 2007; Conti and Scardi, 2010;
Blanchard et al., 2012; Barange et al., 2014; Bentley et al., 2019;
Hernvann et al., 2020). Specifically, across different regional
spatial scales within the North Sea, the magnitude of NPP and
its high temporal variability focused attention on NPP as a good
indicator of changes felt throughout the trophic chain. The effect
of NPP has enormous implications for fisheries production, given
future climate and fisheries management changes (Capuzzo et al.,
2018; Trifonova et al., 2021). NPP plays a significant role in
determining habitat preferences and facilitating foraging for both
fish prey and top predator species, highlighting that prey and
predators are selecting aspects of the habitat type very differently
and that might be a reflection of prey species avoiding areas with
predators (Sadykova et al., 2017, 2020; Cox et al., 2018). This
further supports the Longhurst Provinces approach (Vichi et al.,
2011), that defining the predictability of primary production
throughout the trophic chain should be taken into consideration
in terms of future spatial management of anthropogenic aspects
that can change mixing (Tweddle et al., 2018).

Similarly, maximum chlorophyll-a at any depth (Chl-a, mg
C/m3; the highest biomass of chlorophyll found at any vertical
location in the water column but generally found at the base of
the pycnocline; Ross and Sharples, 2007; Scott et al., 2010; Cullen,
2015), has also been identified as a good indicator of changes
felt throughout the food web and specifically, its potential role
to the structure and dynamics of marine ecosystems, including
the North Sea (Trifonova et al., 2021), but also other shelf seas
e.g., Celtic Sea (Mérillet et al., 2020) and other large marine
ecosystems (Ware and Thomson, 2005; Frank et al., 2006;
Friedland et al., 2012; Kidé et al., 2015). The Chl-a can be
influenced by a greater variety of weather and physical variables,
enhancing the importance of specific processes of bottom-up
control of the planktonic food web (Molinero et al., 2013). This
suggests that locations of Chl-a are very ecologically important
(Scott et al., 2010; Scales et al., 2014), as they can represent new
and/or aggregated primary production, but they may not have
high values of biomass and hence, do not show up as areas of high,
depth integrated NPP (Hickman et al., 2012). There is evidence
that increased Chl-a can be used as an indicator of areas of
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importance to top predators (Suryan et al., 2012; Sabarros et al.,
2014; Bennison and Jessopp, 2015; Grecian et al., 2016; Nowak
et al., 2020), potentially indicating that the dynamics of top
predators can be predicted using a combination of temperature
and first level trophic indicators (Lynam et al., 2017; Trifonova
et al., 2021). In particular, on a local to fine scale, foraging
behavior of Manx shearwater and guillemots has been associated
with areas of high concentrations of Chl-a off the west coast of
Ireland (Kane et al., 2020) and off the east coast of Scotland,
respectively (Cox et al., 2013). However, the processes behind this
association are yet to be fully explained (Grémillet et al., 2008;
Sharples et al., 2013).

The marine environment is subject to spatial and temporal
phytoplankton “patchiness,” driven by physical processes across
spatial scales, e.g., upwelling along the continental shelf break
or tidal mixing fronts (MacIsaac et al., 1985; Videau, 1987; Joint
et al., 2001; Sharples et al., 2013). Patchiness in phytoplankton
is extremely important as it affects predators’ ability to find
food, therefore spatial and temporal changes in locations and/or
quantity of patchiness will impact the entire trophic web
(Scott et al., 2010; Benoit-Bird and McManus, 2012). Periodic
phytoplankton and subsurface blooms leading to accumulated
new “patchy” production, greater than usually assumed in
some regions (e.g., Dogger Bank) might explain the high fish
production in the North Sea, compared to other temperate
seas (Richardson et al., 2000; Weston et al., 2005). Such high
production areas have been reported along the shelf edge in
the north-eastern North Sea, coincidental with high species
richness and fishing activity, which could have implications
for the ecosystem structure (Bendtsen and Richardson, 2020).
In addition, the timing (phenology) of the phytoplankton
blooms has been highlighted important for the function of
food webs on a global scale, specifically affecting energy flow
pathways in ecosystems and the productivity of different species
(Friedland et al., 2018).

Biological Indicators: Predator–Prey
Interactions
Studying predator–prey interactions should bring extra
knowledge about consequences for the dynamics of marine
ecosystems in a bio/physical environment that is changing
rapidly. In marine ecosystems, top predator populations are
influenced by environmental factors that affect their prey
abundance and distribution at multiple spatial scales and are
often used as indicators (Bertrand et al., 2008; Wolf et al., 2009;
Boyd et al., 2017; Carroll et al., 2017; Figure 5). Sadykova et al.
(2020) showed the complex relationship between the change in
physical habitat, following climate warming and predator–prey
interactions (including competition for prey between gray and
harbor seals), with the more severe population declines predicted
in harbor seals (SCOS, 2019; Evans and Waggitt, 2020). The
spatio-temporal overlap between cod and its predators increased
with increasing temperature, indicating that food web processes
might reduce the recovery potential of cod during warm periods
(Kempf et al., 2010). Seasonal changes in migration patterns,
stock sizes and locations of prey, due to climate warming,

has had an influential role in controlling the movements of
killer whales off northern Scotland (Samarra and Foote, 2015)
and the large north to south distribution shift of the harbor
porpoise within the southern North Sea (Camphuysen, 2004;
Camphuysen and Peet, 2006; Evans and Waggitt, 2020) and
might also be partly responsible for the increase in sightings of
humpback whales in the north-western North sea (Evans and
Bjørge, 2013). At the same time, prey may be abundant but not
accessible due to removal by fisheries, which has often resulted in
population-level effects (Cury et al., 2011; Bertrand et al., 2012;
Barbraud et al., 2018), ecosystem shifts and consequent reversal
of predator–prey roles, where adult prey attack vulnerable young
predators (Frank et al., 2005; Heithaus et al., 2008; Fauchald,
2010; Estes et al., 2011). For example, the North Sea cod
recruitment has been negatively related to the spawning-stock
biomass of herring, as they are found to prey on cod eggs and
larvae (Fauchald, 2010), and also exacerbated by climate-induced
declines in the plankton production, which is a major food
source for cod larvae (Beaugrand et al., 2003; Edwards et al.,
2020). The identified impact of predators (e.g., cod, saithe, and
gray seals) on juvenile cod and whiting advocated the use of
ecosystem modeling alongside single stock assessments to better
inform fisheries management in the west of Scotland region
(Baudron et al., 2019).

It is evident that changes in the population dynamics of
higher trophic levels are likely to reflect those of their preferred
prey, which may, in turn, be bottom–up driven by dynamic bio-
physical oceanographic processes across spatial and temporal
scales (Shealer, 2002; Bertrand et al., 2014; Boyd et al., 2015;
Woodson and Litvin, 2015; McInnes et al., 2017; Cox et al.,
2018; Figure 5). For example, on a local scale, by accounting
for the influence of tidal state and stratification on foraging
habitat, seabird–fish interactions were identified, highlighting
that critical marine habitats occur at limited spatial locations but
also within specific temporal intervals (Cox et al., 2013; Calle
et al., 2018). The extent to which spatial and tidal temporal
oceanographic features are important to seabirds is dependent
on the use of such features by their prey (Daunt et al., 2006;
Stevick et al., 2008; Heim et al., 2019). On a fine spatial scale,
prey behavior and availability and/or predictability in tidal stream
environments may be more important in attracting predators
than absolute prey abundance (Zamon, 2002; Grémillet et al.,
2008; Skov and Thomsen, 2008; Benoit-Bird et al., 2013; Wilson
et al., 2013; Benjamins et al., 2016) and that memory of profitable
areas can also play an important role in deterministic selection
of foraging habitat (Nabe-Nielsen et al., 2013; Regular et al.,
2013). This might explain why the relationship between foraging
seabirds and harbor porpoise with current speeds sometimes
differs between studies (Booth et al., 2013; Jones et al., 2014;
Scott et al., 2014; Benjamins et al., 2015, Benjamins et al.,
2017) and highlights the importance of including prey when
looking at the behavior and distribution of top predators. For
example, prey transitional behavior moving between habitats,
due to mixed and stratified water, has been found important
for top predators, suggesting that predators may select foraging
habitats by trading-off several measurements of prey availability
(Waggitt et al., 2018a,b).
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FIGURE 5 | Physical and biological indicators and their overlap (represented by colored circles) across spatial and temporal scales. The size of the symbol
represents the relevant “importance” of each indicator at each scale, which was determined, based on all the reviewed literature for this study.

WHAT HAVE WE LEARNED FROM
MARINE ECOSYSTEM MODELING
APPROACHES FOR CLIMATE CHANGE
AND OFFSHORE RENEWABLE ENERGY
DEVELOPMENTS?

Introduction of the Different Modeling
Approaches
Significant progress has been made in developing ecosystem
models that use traditional statistical approaches to understand
the relationships between a number of variables (Lynam et al.,
2017), including “end-to-end” dynamic ecosystem models to
predict impacts of environmental change on the structure and
function of marine food webs and the services they provide
(Marine Ecosystems Research Programme1; Spence et al., 2018).
The model developed in Lynam et al. (2017) is a particularly
good example as it uses a non-deterministic approach that
incorporated different trophic levels from over 40 years on
a North Sea spatial scale. The model linked top–down and
bottom–up effects simulating complex long-term changes under
a combination of stressor scenarios for the North Sea marine
system, providing useful outcomes to support the ecosystem
approach to management. Size-based ecosystem modeling is
also emerging as a powerful way to assess ecosystem-level
impacts of natural and anthropogenic changes from individual-
level processes (Barange et al., 2014; Blanchard et al., 2017). In
particular, a size-based food web model coupled with a physical-
biogeochemical model was used to investigate the impacts

1https://www.marine-ecosystems.org.uk/Research_outcomes/Modelling

of climate change on fish biomass and primary production
(Blanchard et al., 2012).

Ecopath with Ecosim (EwE) models (Polovina, 1984;
Christensen and Walters, 2000) are also useful to capture the
impacts, on a relatively local spatial scale, assessing wind farm
“before” and “after” effects and one was developed for the
Bay of Seine ecosystem (Raoux et al., 2017). This was the first
holistic approach to examine the offshore wind farm impacts
on ecosystems functioning using trophic web modeling tools.
The approach successfully determined how the local food web
structure and function may change 30 years after the installation
of the offshore wind farm, examining changes from the “reef
effect” on apex predators and highlighting the “wasp-waist”
controlled food webs (Raoux et al., 2017).

Species-specific individual-based models (IBMs) have
been developed to quantify impacts from ORE developments
(DEPONS, Nabe-Nielsen et al., 2018; SeabORD, Searle et al.,
2014), however, they require highly detailed spatial information
and are currently under improvement. Models, such as
AgentSeal, are the first step in providing solid understanding
of animals’ physiology, movement, and behavior, that can
be integrated into IBMs to understand cumulative effects of
stressors (Chudzinska et al., 2021). At the population-level,
a promising avenue for future research includes the use of
IBMs with telemetry data to better understand population
dynamics and predict population-level distribution, following
changes to species environment (McClintock et al., 2013;
Carroll et al., 2020).

An EwE approach was also applied to model ecosystem
effects of fishing and climate warming in the North Sea,
highlighting the interactions between predator-prey and climate
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change, which will have significant implications for fisheries
management (Lynam and Mackinson, 2015). The EwE approach
was also developed on a much finer spatial scale for the
west coast of Scotland to assess the combined impacts of
fishing and rising temperature on selected species. Modeling
outcomes revealed that gray seals, cod, herring, and haddock
were facing severe declines, whilst some species (e.g., whiting)
were not affected, highlighting the importance of including
rising temperatures in the ecosystem approach to achieve
sustainable fisheries management (Serpetti et al., 2017). While
the EwE model cannot, in its present state, be used for short-
term decisions due to too many uncertainties relating to the
numerous processes it encompasses, the approach might be
useful in terms of informing managers on likely future long-
term trends in biomass and catches under various “what if ”
scenarios, such that this approach is currently being used
to investigate small-scale impacts of multi-purpose platforms
(Serpetti et al., 2017).

Bayesian network models have also been applied to investigate
the consequences of fisheries catch, temperature and primary
productivity scenarios on different fish and zooplankton species,
outlining the importance of trophic interactions and the spatial
relationship between neighboring areas (Trifonova et al., 2017).
The success of using a hidden variable to identify indicator
species of key importance to the ecosystem dynamics that has
also been helpful in illuminating the possible mechanisms behind
functional ecosystem changes has been shown for the North
Sea (Trifonova et al., 2015) but also for other systems, e.g.,
Barents Sea (Uusitalo et al., 2018) and Gulf of Mexico (Trifonova
et al., 2019). Bayesian hierarchical hurdle and zero-inflated joint
models with integrated nested Laplace approximation (INLA)
have been used to model the common spatial habitat between
predators and prey and more recently, to predict the “ecological
costs” in population terms, following the projected effects of
climate change (Sadykova et al., 2020).

New Modeling Formulations, How to
Effectively Combine Outputs From
Different Approaches, Do Not Create
New Models but Use Different
Approaches Effectively Together
New modeling formulations might be needed to be able to assess
multiple stressors, account for behavior of species, demographic
data, as well as predator-prey interactions occurring at different
spatial and temporal scales. Machine-learning and bioinformatics
techniques can be greatly utilized to aid such work due to
their “crossover potential” in predictive ecology (Tucker and
Duplisea, 2012), including animal behavior and movement
(Mattei et al., 2018; Pirotta et al., 2018). Coupling existing models
(e.g., physical, biological, economic) is another avenue that has
proven successful (Planque et al., 2011; Robinson et al., 2011;
Kempf et al., 2013; Peck et al., 2018). Mechanistic food-web
model and Bayesian hierarchical species distribution model have
been used complementary to take a more holistic approach
to estimating species distributions (Coll et al., 2019). Another
alternative could be nested sub-models, based on principles

from graph and network theory that can be used to overcome
scale issues more easily by linking up to existing ecosystem or
species-based models. For example, by using bipartite network
principles to create species-habitat networks, the scale of the
ecological information was matched to the scale of the landscape
management intervention to assist landscape management and
multispecies conservation (Marini et al., 2019).

A useful future approach would be to use the interaction
web as an emulator for a more complex model (Lynam et al.,
2017) and consider an ensemble modeling approach (Gårdmark
et al., 2013; Spence et al., 2018). Rather than trying to choose the
“best” model, or taking some weighted average, it is important
to exploit the strengths of each of the types of models, whilst
learning from the differences between them, as it was shown in
an ensemble model that was developed based on the relationships
between a collection of mechanistic models (e.g., EwE), allowing
for uncertainty to be included when making predictions under
different scenarios (Spence et al., 2018; Figure 6). The approach
was conducted to evaluate the impact of fishing on demersal fish
species; however, the framework is not exclusive to ecosystem
simulators in fisheries and is potentially applicable over a wide
scope of complex ecological systems.

HOW TO IMPROVE ON INTEGRATION
ACROSS SPATIAL AND TEMPORAL
SCALES

Greater integration of both physical and biological indicators
will potentially allow identification of the important biophysical
interactions within different habitats that will allow evaluation
of how ecosystems might change in the future. The optimal
approach is to utilize knowledge across a range of spatial
and temporal scales to be able to reduce uncertainties of
direct and indirect effects on individuals and subsequently
populations and ultimately, to provide sensible strategic advice
for future sustainable spatial management. Most importantly,
studies need to be performed at appropriate ecological scales,
considering the spatial and temporal physical and biological
variability, and recognizing the pragmatic importance of asking
the “right question” at the “right scale” (Mannocci et al., 2017;
Scales et al., 2017).

How to Improve Connection Between
Scales (Better Use of Data, Fine Scale
Studies Versus Large-Scale,
Generalization Across Regions and
Scales)
Focusing on explanatory physical and/or biological indicators,
which can be quickly quantified across spatial and temporal
scales, can be a pragmatic approach to generalize relationships
(e.g., predator–prey and/or biophysical interactions) across
marine systems but from different geographic regions, where
data is limited (Tucker and Duplisea, 2012). In this way, local
and regional studies from data rich areas (e.g., Moray Firth
in northeast Scotland, ScotMER and MREF MASTS Workshop
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FIGURE 6 | Marine ecosystem modeling approaches for climate change and ORE developments and their overlap across spatial and temporal scales. The colored
circles are used to represent which groups of models work best together across spatial and temporal scales, which was determined, based on all the reviewed
literature for this study.

FIGURE 7 | Illustration of the variability of biophysical relationships (represented by the arrows) across spatial and temporal scales. Note, the width of the arrows
represents the relevant “importance” of the indicator on the relationship at each scale, which was determined based on all the reviewed literature for this study.

October 5, 20192; coastal monitoring sites3) should be explored in
more detail to provide a robust understanding of the biophysical
interactions across trophic levels and any changes that are
affecting the ecosystem dynamics. By relying on the efficient
and robust use of data from such well-studied areas, biophysical
relationships can be confirmed and predicted for other habitats to
generalize the relative influence from climate and other factors to
support population-level studies across larger scales. Therefore,

2https://tethys.pnnl.gov/sites/default/files/publications/working-across-sector-
groups_scotmer-masts-workshop_2019_final.pdf
3http://marine.gov.scot/information/coastal-monitoring-site-stonehaven

finer, local scale and site-specific surveys and monitoring only
need to be conducted on few key demonstrator habitats focusing
on interactions with few key species to build a baseline for the
understanding of the North Sea (Bailey et al., 2014).

Data obtained from few key demonstrator sites can be
integrated with site-specific data at proposed ORE development
sites to provide a more robust understanding of population-level
consequences and potentially identify alternative more suitable
potential sites (Bailey et al., 2014). Hydrodynamic models are
routinely used to assess energy resources and environmental
impacts on hydrodynamics, which in combination with site-
specific data, would allow useful information to be collected
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relatively cheaply and easily. The challenge for modeling studies
is to validate the models sufficiently for present-day conditions,
so that we can have confidence in the results under assumptions
about the response to deployment of ORE devices, which cannot
yet be validated from observations (Wolf et al., 2021). If effort
and resources were to be focused on selected species and
seasons, post-installation monitoring and mitigation might be
more clearly and easily managed. In this way, knowledge can
be used to optimize site development and purpose, balancing
benefits and trade-offs between the rapidly growing ORE industry
and conservation.

Individual-based studies and short-term interactions can serve
as a baseline to assess how particular pressures interact with
broader scale variation in environmental conditions (Votier et al.,
2005) or over time (Veran et al., 2007) to support a more general
understanding of the long-term population consequences. Such
baseline studies will also contribute to determine the spatial scales
at which to further investigate more detailed prey and predator
behaviors within sites of interest. For example, demographic and
fecundity data can be used to assess the longer-term impact of
any behavioral responses, following natural or anthropogenic
changes (Boyd et al., 2015, 2017; Carroll et al., 2017; Barbraud
et al., 2018). Then, quantification of fine scale usage can be
utilized within population level models through generalized
functional response methods and/or influences on energetic
changes to understand how these individual effects translate into
population-level changes at a wider spatial scale and ecosystem
level (Matthiopoulos et al., 2015; Figure 6).

Different Sources of Data, Different
Survey Techniques
With a greater mechanistic understanding of how and why
fish and top predators use fine scale dynamic marine habitats
(i.e., high-energy tidal sites, Hastie et al., 2018; use of wind
turbine structures, Whyte et al., 2020) for foraging, predictable
changes from the installation of ORE developments can be
used to estimate cumulative effects at a population level and
guide strategic approach to the monitoring and management
of such devices (Williamson et al., 2017, 2019). However, very
few studies are performed on a fine spatial scale and concurrent
measurements of physical and biological data are lacking.
Achieving this will require adopting novel methodological
techniques (e.g., acoustics, underwater photography, cameras,
gliders, telemetry) to improve our understanding of habitat use
by marine animals to be able to link biophysical processes at a
population level (Cotter and Polagye, 2020; Polagye et al., 2020;
Whitt et al., 2020). However, given the cost and capacity related
to data collection, existing sources of information should be
optimized and their relevance to new data evaluated.

Existing data (e.g., Copernicus4; INSITE5; MEDIN6; Seabird
and mammal population data, Waggitt et al., 2020; Oil and gas
environment interactive7) should be integrated more and used

4https://www.copernicus.eu/en/access-data
5https://www.insitenorthsea.org/data/
6https://portal.medin.org.uk/portal/start.php
7https://storymaps.arcgis.com/stories/4b6d3b5867b14bb7aecf6f6557a5fb82

to populate multiple approaches (from IBMs to population-level
approaches) across spatio-temporal scales. Similarly, datasets
such as ScotMap (Kafas et al., 2014) should be utilized more
to investigate forage fish distribution across scales due to their
central place in the North Sea marine system, linking bottom–up
and top–down processes.

Remote sensing data (e.g., SeaWiFS8) offer a much extended
spatial and temporal coverage but presenting some limitations
related to image resolution and targets (Patil et al., 2002).
Still, analyses of such data can be used in combination with
field observations and expertise knowledge as an effective tool
to assist the understanding of complex interactive biophysical
effects within the environment and minimize uncertainty with
future climate change to aid the evidence-based decision-making
process (Patil et al., 2002; Moufaddal, 2005). In addition, physical
and biological variables from remote sensors could be used
as proxies to better understand foraging behavior and habitat
preferences of animals across scales and how these vary with
weather conditions and climate change (Medina-Lopez et al.,
2021). Data from GPS and accelerometers of top predators can be
used to investigate fine scale foraging locations and consequently
determine prey behavior and distribution across trophic levels
and scales that can advance the understanding of marine
ecosystem dynamics (Ohman et al., 2013; Suberg et al., 2014).

New hydrodynamic modeling products, like the Scottish
Shelf Waters Reanalysis Service9 are becoming available. The
outstanding feature of the Service is the use of an unstructured
mesh, which allows the reproduction of Scottish shelf waters
dynamics that have a diverse character, from deep, almost
enclosed coastal lochs on the west coast, with many islands, to the
outer shelf. It fills the gap of large-scale modeling that does not
have sufficient spatial resolution to resolve ORE sites. The multi-
year run enables the analysis of inter-annual natural changes of
the system to be compared with ORE impacts.

MOVING FORWARD

Many of the physical and biological indicators, presented in this
work, show similar levels of importance from fine through to
larger spatial scales, highlighting indicators such as stratification
with mechanisms via bottom-up control driving the marine
ecosystem dynamics in the North Sea. This study illuminates the
feasibility of generalizing knowledge from such a well-studied
region and the potential to translate it across other large marine
ecosystems to be able to address the importance of indicators
and to ultimately strengthen predictions of population changes
at ecosystem scales in other shallow shelf seas. It is with the
added baseline knowledge from this study, on what ecosystem
components are more consistently found as the physical and
biological indicators of habitat and ecosystem change and what
they are telling us about how the ecosystem is functioning, that
much more informed choices for MSP decisions should be made.
The knowledge presented in this study can be used for future

8https://oceancolor.gsfc.nasa.gov/SeaWiFS/
9https://sites.google.com/view/ssw-rs/home
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guidance on the most sensible unit of measure (mean, median,
or percentile) for both physical and biological indicators, given
the specific spatial and temporal scales. Although, the mean is
the mostly used unit across studies, examples illustrate that in
some cases, other units have a more meaningful interpretation,
for example maximum values of currents speed (Trifonova et al.,
2021), maximum Chl-a (Scott et al., 2010). This work has also
shown that the strength of the biophysical relationships may
vary due to both strong climate and anthropogenic pressures
such as fisheries, which is most important when interpreting and
extrapolating relationships between animals and environmental
variables (Mannocci et al., 2017; Scales et al., 2017). Thus,
considering the variability of biophysical relationships at multiple
spatial and temporal scales throughout different trophic levels
is key to providing more accurate predictions of breeding
success and survival of contrasting seabird, mammal and fish
populations and ecosystem level changes these differences are
driving (Figure 7).

Therefore, it is important that fine scale site-specific surveys
and multidisciplinary research with simultaneous collections
of oceanographic data, prey and predator characteristics are
performed on key demonstrator sites and then, quantified
across spatial scales to support a more general understanding
of the important biophysical relationships to populations and
regional wide ecosystem scale. We suggest that more general
patterns of relationships should be aimed at, whilst effort should
be emphasized on the integral “habitat” use and specifically,
determine what aspects of the habitat are relevant to marine
animals to be able to address a wider range of ecological
questions. For example, by quantifying the effects of habitat
preference and spatial usage, the effects of species interactions
(e.g., competition, predation) on populations can be better
understood. By investigating locations, where predator and prey
or competing species overlap, we can better monitor and mitigate
the potential natural and anthropogenic consequences on the
marine environment (Williamson et al., 2021). This will allow for
future-proofing of the locations of MPAs and improve decisions,
such as where ORE developments should be placed.

A step-change is occurring in the use of our shallow seas,
specifically by the addition of large-scale ORE developments,
in part driven by the United Kingdom government aspiration
to achieve Net Zero by 2050 and the Green Industrial
Revolution. To ensure the compatibility of ORE developments
with other marine management sectors, we need to evaluate
cumulative effects through cumulative impact assessments
(Cavallo et al., 2017; Willsteed et al., 2018). However, cumulative
assessments currently fail to include the linkages between
different trophic levels, and the interactions between pressures,
such as changes in the physical environment from the
introduction of structures and extraction of GWs of energy
up through the entire marine ecosystem. The cumulative
environmental effects of ORE developments remain highly
uncertain and require a multidisciplinary approach to provide
more holistic and structured assessments (Willsteed et al., 2017).
Using ecosystem models at ecologically meaningful scales to
understand how ecosystems respond to multiple stressors will
support the cumulative assessment process (Piroddi et al.,

2015). To address that and to incorporate both direct and
indirect effects on the ecosystem, ecosystem models need
to be linked with a hydrodynamic-biogeochemical-sediments
modeling system (Schuchert et al., 2018; Wolf et al., 2021).
The study by van der Molen et al. (2016) is the only study
that has integrated hydrodynamic-sediments-biogeochemistry
effects. They found that a very large array of 8 GW located
in the Pentland Firth (United Kingdom) can lead to changes
in ecosystem variables of up to 10% at more than 100 km
away from the array.

Ideally, holistic modeling approaches should be integrated at
ecologically meaningful spatial and temporal scales in response
to natural variability and /or anthropogenic pressures. Ecological
and socio-economic effects need to be combined in one
modeling framework to enable assessment of trade-offs between
different uses of coastal seas. In fact, a common “currency”
to communicate modeling outputs could be developed that
works across different disciplines and stakeholder groups. Most
ecosystem models use some aspect of biological biomass or
numbers of animals, or ratios of size of predator to prey as the
currency in the model. However, many industries and regulators
use the level of risk as the central currency in decision making.
A coming together of currencies could be used to communicate
modeling outputs with different groups for a more coherent and
comprehensive understanding of environmental perturbations
following ORE developments and climate change. This way, a
common “currency” could be the NPP or the amount of energy
per kg (the energy flow or availability of energy, derived from key
trophic interactions).

Natural capital is a method that has been adopted to achieve
the use of financial currency across modeling frameworks. The
natural capital approach provides a more holistic perspective of
socio-ecological systems than traditional environmental impact
assessment (Hooper et al., 2017). It is a useful tool to support
impact assessment on the goods and services people receive
from nature (Arkema et al., 2015; Guerry et al., 2015). Such
a framework will also provide the likely outcomes from
alternative management and climate scenarios, allowing the user
to make judgments and decisions about the ecological and socio-
economic benefits and trade-offs within spatial scales, among
sectors, and between users. Such information will ideally support
the communication with other sectors, both the conservation and
financial sectors, and guide policy decisions and planning.

Lastly, a focus should be placed on the development
of interactive visualization tools (such as InVEST10; MSP
Simulation Platform11; Virtual Ecosystem Scenario Viewer12)
that assist in conveying complex outputs from state-of-the-
art modeling tools, discussed already in the text. Modeling
outputs should be brought together and better integrated for
better communication and interactions with stakeholders to be
able to represent and understand current and future trade-offs,
following natural and/or anthropogenic changes across spatial

10https://naturalcapitalproject.stanford.edu/software/invest
11https://www.mspchallenge.info/
12https://www.fisheries.noaa.gov/resource/tool-app/virtual-ecosystem-scenario-
viewer-ves-v
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scales for whole ecosystem levels. Therefore, different expertise
can have a quantitative indication of the range of possible
scenarios consistent with the data to give strategic advice on
potential ecosystem response. In this way, we can proceed more
rapidly than before by utilizing knowledge and using existing
extensive data sources, predictive modeling approaches and
visualization tools that will ultimately lead to more strategic and
integrated approaches to both monitoring studies and assessing
anthropogenic impacts to enable evaluation of trade-offs and
benefits to provide the most sustainable future spatial use of our
seas at whole ecosystem scales.
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