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Steep geochemical gradients surround roots and rhizomes of seagrass and protect
the plants against the harsh conditions in anoxic sediment, while enabling nutrient
uptake. Imbalance of these gradients, due to e.g., low plant performance and/or
changing sediment biogeochemical conditions, can lead to plant stress and large-scale
seagrass meadow die-off. Therefore, measuring and mapping the dynamic gradients
around seagrass roots and rhizomes is needed to better understand plant responses to
human impact and environmental changes. Historically, electrochemical microsensors
enabled the first measurements of important chemical species like O2, pH or H2S
with high sensitivity and spatial resolution giving important insights to the seagrass
rhizosphere microenvironment; however, such measurements only provide information
in one dimension at a time. In recent years, the use of reversible optical sensors (in
the form of planar optodes or nanoparticles) and accumulative gel sampling methods
like Diffusive Gradients in Thin films (DGT) have extended the array of analytes and
allowed 2-D mapping of chemical gradients in the seagrass rhizosphere. Here, we
review and discuss such microscale methods from a practical angle, discuss their
application in seagrass research, and point toward novel experimental approaches to
study the (bio)geochemistry around seagrass roots and rhizomes using a combination
of available techniques, both in the lab and in situ.

Keywords: planar-optode, microsensor, rhizosphere, geochemistry, imaging, multidimensional, DGT, DET

INTRODUCTION

Seagrass meadows are important ecosystems that play an important role for marine biodiversity
(Bertelli and Unsworth, 2014), coastal protection (Fonseca and Cahalan, 1992) and not the least
sediment biogeochemistry and carbon sequestration (Mcleod et al., 2011; Fourqurean et al., 2012).
Photo-assimilated carbon moves from the seagrass leaves to the roots, and into the anoxic sediment,
where the anoxic conditions prevent rapid microbial mineralization (Duarte et al., 2005). Besides
plant debris, organic carbon from plant excretions involving sugars and organic acids can have a
major impact on the carbon sequestration capability (Wetzel and Penhale, 1979; Long et al., 2008).
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Up to 40% of the dissolved organic carbon under seagrass
meadows was recently estimated to be in the form of plant-
derived sucrose that accumulates in the seagrass rhizosphere
and seems to largely escape from microbial degradation due to
the concomitant excretion of phenolic compounds (Sogin et al.,
2021). However, the organic carbon can also find its way back to
the atmosphere through re-mobilization, e.g., via the continuous
emission of the greenhouse gas methane from seagrass meadows
(Garcias-Bonet and Duarte, 2017) or via physical disturbance by
humans that exposes the reduced sediment to O2 and thereby
stimulates aerobic mineralization processes with faster carbon
turnover rates and complete oxidation of organic carbon to
CO2 (Brodersen et al., 2019). Nevertheless, plant-microbe and
other microbial interactions in the seagrass rhizosphere are not
well understood and it is important to resolve biogeochemical
element cycling underneath seagrass meadows and its role for
seagrass plant fitness.

Growth of seagrass roots into reduced, anoxic sediment
relies strongly on gas-filled plant tissue layers, aerenchyma,
which allows O2 in the seagrass leaves, originating either via
photosynthesis or via diffusion from the water column, to
reach and ventilate the belowground tissue (Brodersen et al.,
2018a). While the mature parts of the seagrass roots develop a
gas-impermeable tissue layer—a Casparian band-like structure
mainly composed of suberin—that enables efficient internal
transport of O2 and prevents radial O2 loss (ROL) and influx of
phytotoxins such as sulfide (H2S) into the plant tissue (Barnabas,
1996; Colmer, 2003), O2 eventually leaks from the growing root
tips and the root/shoot junctions and oxidizes the rhizosphere
(Jensen et al., 2005; Brodersen et al., 2015b; Koren et al., 2015).
For instance, Jensen et al. (2005) reported that O2 diffused
from the roots 2 mm into the sediment. The extent of the
radial O2 loss varies with changing light conditions and root
age resulting in hetereogenous and dynamic distributions of
oxic zones underneath a seagrass meadow (Frederiksen and
Glud, 2006). However, the extent of radial O2 loss is not only
determined by the capacity of the root to leak O2 but also by the
capability of the sediment to consume the released O2 (i.e., the
sediment O2 demand). For example, if seagrass is transplanted
into oligotrophic sediment with less bacterial density, the O2
released from roots will diffuse further into the sediment before
it is consumed by abiotic and biotic oxidation reactions than in
highly reduced, sulfidic sediment with a high content of organic
material and resulting high bacterial density. Taken together, the
presence of organic carbon from plant debris and root exudates
together with the spatially restricted oxic zones create hotspots of
microbial activity below a seagrass meadow (Blaabjerg et al., 1998;
Nielsen et al., 2001; Jensen et al., 2007; Brodersen et al., 2018b),
which renders the seagrass rhizosphere into a diurnally changing,
mosaic of steep geochemical gradients.

Despite their ability to sustain the harsh geochemical
conditions of anoxic sediment, seagrasses are currently
challenged by human impact such as coastal development
and eutrophication, which lead to increased water turbidity and
hypoxia, as well as, increased epiphyte growth on seagrass leaves
(Erftemeijer and Robin Lewis, 2006; Orth et al., 2006; Waycott
et al., 2009). This results in prolonged, low-light availability for

photosynthesis altering the balance of the chemical gradients
that form around the roots protecting seagrasses and enabling
nutrient uptake (Brodersen et al., 2015a, 2017a). The source of
the stress originates from above the meadow through human
impact and environmental changes, but the resulting danger
often comes from underneath and that is H2S (Holmer and
Bondgaard, 2001). Under healthy conditions, the aeration of
the below-ground tissues and oxygenation of the rhizosphere
around the root tips, root/shoot junctions and the base of
the shoot (i.e., the basal leaf meristem) facilitates the abiotic
and microbial oxidation of the toxic H2S (Brodersen et al.,
2018b). However, during periods of low water-column O2
content, e.g., during nighttime when photosynthesis-driven O2
production is halted, the supply of O2 to the below-ground tissues
cannot counterbalance the H2S intrusion. Thus, prolonged O2
limitations initiate large-scale seagrass meadow die-off (Borum
et al., 2005). Therefore, it is important to determine how human
impact can change geochemical gradients in the seagrass meadow
sediment and rhizosphere.

Vertical concentration gradients in sediments of a broad
variety of analytes can be determined by analyzing extracted
porewater (e.g., McGlathery et al., 2001). Typically, cylindrical
push cores have been used to section the sediment horizons
on the cm-scale (Toshihiro et al., 2001; Sogin et al., 2021).
However, this technique provides average concentrations from
large sample volumes; hence, steep gradients in the mm-
range, as well as, small-scale heterogeneities are overlooked
(Huang et al., 2019). To fully account for the pronounced
structural and chemical heterogeneity of the seagrass rhizosphere
it is thus necessary to employ tools for microenvironmental
sensing and analysis at high spatio-temporal resolution. In the
following, we review experimental tools for exploring the seagrass
rhizosphere microenvironment ranging from one-dimensional
measurements of chemical concentration gradients with different
types of microsensors, to mapping of the two-dimensional
distribution of chemical species in the rhizosphere using optode-
based chemical imaging and gel-sampling techniques. We
exemplify how these techniques have been used to study the
seagrass rhizosphere and discuss future needs and possibilities for
multidimensional sensing approaches to further resolve how the
seagrass rhizosphere microenvironment modulates plant fitness
and sediment biogeochemistry.

ONE-DIMENSIONAL PROBING OF THE
SEAGRASS RHIZOSPHERE
MICROENVIRONMENT

Microsensors
Electrochemical and fiber-optic microsensors enable
measurements of concentration profiles in 1-D with high
sensitivity and spatial resolution owing to the small tip sizes
in the µm-range. The available gas, ion, bio and micro-optode
sensors cover a wide range of analytes (Kühl and Revsbech,
2001; Revsbech, 2021), but electrochemical O2 and H2S
microsensors (Revsbech and Jørgensen, 1986; Revsbech, 1989;
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Jeroschewski et al., 1996) are still the most used ones in the
context of seagrass ecology (Jensen et al., 2005; Trevathan-
Tackett et al., 2017; Schrameyer et al., 2018; Brodersen et al.,
2019). Further information on the working principles of
microsensors and their application in plant biology can be found
in recent reviews by Pedersen et al. (2020) and Revsbech (2021).

Microsensors are usually guided vertically into the sediment
using a micromanipulator to measure depth profiles, from which
the analyte fluxes between sediment and water and inside the
sediment can be calculated or modeled (e.g., Berg et al., 1998).
The µm tip diameter and the slender shaft of microsensors enable
minimally invasive measurements of the steep chemical gradients
in the sediment. For example, Schrameyer et al. (2018) carried out
an in situ shading experiment and used microsensors to measure
H2S and O2 in retrieved sediment cores in the laboratory, among
others, to calculate the diffusive O2 uptake. It is more convenient
to carry out microsensor probing on retrieved cores in aquaria
in the laboratory (see an example setup in Figure 1A). For
instance, in the laboratory the sensor tip can be positioned on
the sediment surface by using a dissecting microscope, which
serves as a reference point during profiling. Anyhow, in situ
microsensor measurements are cumbersome but feasible (e.g.,
Brodersen et al., 2017a; Figure 1C). The analyst should then be
experienced enough to handle the sensors and judge the sensor
position in the sediment by following the signal response. In this
way, microsensor tips can be positioned within the root tissue or
in the base of the leaf under field conditions (Borum et al., 2005).
The microsensor tips are typically robust enough to penetrate
root and rhizome/leaf tissue but break if they hit a solid surface
like a bivalve shell or larger, motile infauna. Using microsensors
in un-sieved, natural sediment is thus risky, albeit microsensors
often break due to incautious handling during (dis)mounting.

One of the main challenges is to relate the position of the
sensor tip in the sediment to the below-ground root structures if
the roots cannot be visually seen. In order to know the sensor tip
proximity to the roots during measurements, Jensen et al. (2005)
placed a seagrass root horizontally on the sediment, positioned
the microsensor tip at the root surface as reference point, and
covered the roots again with sediment. However, this approach
is very time-consuming as profiles can only commence when the
geochemical gradients have re-established (often after more than
3 h depending on the analyte) and the connection between sensor
and root is often lost during the sediment re-covering process. To
accommodate this, artificial, transparent sediment can be used,
for example, in a split flow chamber which enables approaching
the roots with the microsensors from various angles (Brodersen
et al., 2014, 2015b; Figure 1B). However, the use of non-
natural sediment, with e.g., different redox conditions, microbial
communities, and O2 demand, for laboratory incubations should
be carefully considered as this can deviate the measured gradients
from the ones which would be found in natural sediment. One
way to alleviate this experimental limitation is, e.g., to utilize a
reducing agent such as H2S, which can be applied to the artificial
sediment to function as an O2 scavenger (Brodersen et al.,
2014). Moreover, it is possible to perform spatial measurements
of 2-D transects and 3-D grids of concentration profiles with
microsensors using dedicated motorized microprofiling setups

(e.g., Lichtenberg et al., 2017; Herschend et al., 2018), but
such approach has limited applicability for rhizosphere studies,
where the exact position of the plant biomass in the sediment
is uncertain. Although this to some extent can be alleviated
by employing artificial, transparent sediment it is a very time-
consuming process, especially if the whole rhizosphere and/or
several analytes are analyzed. Despite the fast response time (time
that is needed for a stable read-out) of microsensors, typically
in the range of seconds, recording one profile can take more
than a few minutes. The time for acquiring one concentration
profile will depend on the sensor response time, the amount
of datapoints recorded, i.e., the given step size between data
points, and the motor velocity used for positioning. The lowest
possible step size is roughly the diameter of the sensor tip. During
prolonged measuring periods roots can grow into new sediment
regions (e.g., root growth of 5 mm day−1 for Z. marina; cf.
Jensen et al., 2005) and thus can lead to difficulties to overlay
the results from subsequently recorded profiles. Therefore, it
is recommended to aim for chemical hotspots like the root
tip region and root/shoot junction when analyzing the seagrass
rhizosphere with detailed microsensor measurements.

In summary, microsensors cannot fully resolve the complex
spatial heterogeneity of chemical gradients around seagrass roots
but allow detailed, local measurements within the plant tissue,
as well as local measurements of concentration profiles between
the plant and surrounding sediment at very high spatio-temporal
resolution. The commercial availability of microsensors for a
wide array of analytes are additional benefits. In fact, for several
analytes of interest microsensors represent the only option
for microscale measurements (e.g., H2S, N2O, H2, CH4 and
most ionic species).

MULTI-DIMENSIONAL MAPPING OF THE
SEAGRASS RHIZOSPHERE
MICROENVIRONMENT

Optode-Based Techniques for
Reversible, Chemical Imaging
In contrast to microsensors, the use of planar optical sensors
(planar optodes) in combination with imaging enables the
measurement of analytes in 2-D and can therefore visualize
dynamic changes in the chemical microenvironment and link
them to small-scale heterogeneities around seagrass roots. For
seagrass, planar optodes sensitive to O2 (Jensen et al., 2005;
Frederiksen and Glud, 2006; Jovanovic et al., 2015) and pH
(Brodersen et al., 2017b) have been used, whereas CO2-sensitive
optodes have only been used for other aquatic and saltmarsh
plants (Koop-Jakobsen et al., 2018; Lenzewski et al., 2018). The
rectangular planar optode foils need to be brought in close
contact with the below-ground plant tissue in the sediment.
In order to ensure such close contact, planar optodes can be
integrated in custom-made chambers with a flat, transparent
wall. For instance, Martin et al. (2018) used narrow (2 cm wide)
chambers that were placed in an aquarium and incubated in a
tilted position to encourage root growth against the detachable
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FIGURE 1 | Overview of 1- and 2-D techniques to study the geochemistry in the seagrass rhizosphere microenvironment. (A) Microsensor probing on sediment
cores retrieved from the field or seagrass transplanted into sediment in the laboratory. The conceptual microsensor profile of O2 is taken vertically through the upper
layers of the sediment core and allows the calculation of, for example, the sediment diffusive O2 uptake and the O2 penetration depth. O2 excursions below the O2

penetration depth could be from radial O2 loss from roots/rhizomes or ventilated fauna burrows. (B) Artificial, transparent sediment in a custom-made split flow
chamber (Brodersen et al., 2015b) allows to approach the roots with microsensors from different directions. (C) Microsensor probing under submerged conditions or
when the seagrass plants are emerged during low tide have been proven challenging but feasible. (D) Gel probes or gel-sandwich (double) probes have been proven
to be a robust field technique. (E) Example result of a sulfide-sensitive gel from a laboratory deployment. The image is modified from Martin et al. (2018) and white
squares mark the root tips. (F) Gels can be mounted in between the sediment and planar optodes. (G) Example result of an O2-sensitive planar optode. An imaging
system needs to be brought in position for the excitation in the dark and read-out of the planar optode. The image is modified from Martin et al. (2018) and white
squares mark the root tips. (H) Optode nanoparticles in artificial, transparent sediment overcomes limitations of planar optodes, but cannot be done in natural
sediment. Image is taken from Brodersen et al. (2016). (I) In situ instrument for planar optode measurements. Note that this has not yet been deployed in seagrass
meadows. Image was modified from Glud et al. (2001). (J) O2 multi-fiber optode system for the simultaneous recording of 100 datapoints in the field. Note that this
has not yet been deployed in seagrass meadows. Image was modified from Fischer and Koop-Jakobsen (2012). Micro-fiber optodes are more robust but with a
lower resolution due to the bigger tip size than microsensors made out of glass.

glass wall mounted with a planar optode (Figure 1F). A practical
video tutorial for the assembly of a similar incubation chamber
has been published by Moßhammer et al. (2019b).

Planar optodes consist of an analyte-sensitive indicator dye
dispersed in a polymer matrix and coated on solid supports
such as plastic foils (Larsen et al., 2011). They are excited
externally with a light source, and an image is taken quantifying
either the emitted luminescence intensity or the decay time
(Schäferling, 2012; Koren and Kühl, 2018), which change as
function of the analyte concentration. Data acquisition can rely
on simple ratiometric imaging (e.g., Larsen et al., 2011), or

more advanced measurements, such as the luminescence decay
time (e.g., Koren et al., 2019) and hyperspectral imaging (i.e.,
the recording of the continuous spectrum of light in each
pixel of the image, which allows the simultaneous analysis of
emissions from different analyte-sensitive indicators, see Zieger
et al., 2021, for more details). The acquired images can be
transformed into a calibrated, color-coded image of analyte
concentration distributions, which can be aligned with the
underlying root/rhizome structure. Hence, hotspots of enhanced
biogeochemical reactions can be identified based on where
distinct concentration variations are seen (e.g., Jensen et al., 2005;
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Frederiksen and Glud, 2006) (example result can be seen in
Figure 1G). In order to link the measured gradients to the
actual below-ground tissue, a photograph should be taken of
the sediment cross-section that faced the planar optode after
disassembly. If the optode foil is transparent enough, the
root structures and positions can also be followed directly
during measurement (Frederiksen and Glud, 2006; Martin et al.,
2018). Generally, planar optodes have high spatial resolution
(µm2-range), can be made in large sizes (>400 cm2) to cover
the entire area of interest, and have a response time in the range
of seconds to a few minutes depending on the type of planar
optode and the thickness of the sensor layer and/or the optical
isolation layer on top of the sensor layer (Santner et al., 2015).
The response time, however, is often not a critical factor in
seagrass studies, as the planar optode stays in the same position
during the experiment and high measuring frequencies (more
than one image per minute) is usually not needed. Besides the
preparation of the imaging and incubation setup, calibration is
one of the most laborious steps of planar optode measurements
and is usually carried out in sediment-free aquaria prior to
measurements. The imaging step itself only takes a few seconds.
Therefore, once the setup is ready, dynamic changes over day
and night cycles can be easily monitored due to the fully
reversible response of the planar optodes to e.g., O2 or pH. For
example, Frederiksen and Glud (2006) measured O2 distributions
at regular time intervals around roots of Zostera marina over 44 h
and showed that O2 release was reduced by 60% during darkness.
We note that the excellent long-term stability of O2 optodes and
their temperature sensitivity, enabling temperature compensated
measurements during deployment, allows for measuring over
weeks and even months (e.g., Rickelt et al., 2014). Simple,
yet powerful planar optode systems can be assembled from
commercially available components (e.g., Larsen et al., 2011; Staal
et al., 2011) and are also commercially available as complete
systems. Instrumentation for underwater in situ imaging with
planar optodes has also been developed (Glud et al., 2001, 2005;
Figure 1I), but awaits first applications in seagrass meadows.

When assembling the planar optode-seagrass chambers close
contact of the optode with the root biomass is important,
because otherwise the true distribution of gradients cannot be
resolved. Another challenge during the assembly is to avoid air
bubbles trapped on either side of the optode foil. Furthermore,
the plant tissue and the microbial community around the
roots should be given time to recover after assembly of the
incubation chamber. While gradients from purely abiotic sources
to sinks establish relatively fast, the biotic components of
the rhizosphere can sometimes need several weeks to recover
from manipulation/disturbance (Wang et al., 2021). This could
e.g., be due to the recovery of root hairs that were broken
off during transplantation or the slow re-establishment of a
microbial network including filamentous bacteria (Scholz et al.,
2021) and fungal associations (Borovec and Vohník, 2018).
The plant itself can also experience stress during sampling and
separation into single shoots followed by transplantation into the
experimental chamber.

One constraint of planar optode-based imaging is that the
diffusive fluxes are cut off by the solid support on one side

which can distort the true analyte gradients around a 3-D
structure positioned against the planar optode (Li et al., 2019).
An alternative approach to coating the optode matrix on a
solid support is to use optode-nanoparticles (Moßhammer et al.,
2019a), e.g., in combination with magnetite to force the optode
particles against the seagrass leaves in a magnetic field (Brodersen
et al., 2020) or dispersed in a transparent, artificial sediment
embedding the below-ground tissues of a seagrass plant (Koren
et al., 2015; Brodersen et al., 2016; Figure 1H). Such dispersed
optical sensor nanoparticle approaches are read out by the same
imaging systems as planar optodes, but alleviate the limitations of
planar optodes by avoiding the sudden cut off of gradients at the
plastic foil on which the optode is coated and the need to ensure
close contact between the optode foil and the sample. Sensor
nanoparticles have, for example, been used to resolve radial O2
loss from below-ground seagrass tissues on an entire rhizosphere
level and how this is affected by changing light and water-column
O2 conditions (Koren et al., 2015).

In summary, optode-based imaging of the below-ground
chemical microenvironment with planar optodes or dispersed
sensor nanoparticles is fast and reversible, enabling time-series
measurements. The incubation chambers can be custom-made
and flexibly adjusted to fit the experimental needs, but challenges
are to ensure close contact of root/rhizome tissue with the
optode and to avoid air bubbles being trapped behind the
foil during assembly. Once the setup is ready, small-scale
heterogeneities and spatio-temporal dynamics can be visualized.
Optical nanoparticles to study O2 dynamics around the below-
ground structure of seagrass circumvents drawbacks of the
planar optode technique, but requires the incubation in artificial,
transparent sediment. Currently, such reversible optode-based
imaging is limited to a handful of analytes (mainly O2, pH,
CO2). Novel optodes for important analytes like NH3 are being
developed (Merl and Koren, 2020), but so far have not been
used in seagrass research. Also, multi-analyte optodes exist
(Moßhammer et al., 2016) and novel imaging approaches are
promising to push multi-parameter chemical mapping in the
rhizosphere even further (Koren and Zieger, 2021).

Irreversible Chemical Mapping With Gel
Probes
Gel-sampling methodologies using either Diffusive Gradients
in Thin-films (DGT) or Diffusive Equilibration in Thin-Films
(DET) enable irreversible, spatial 2-D mapping of chemical
species after sample exposure to the gel for a defined time interval
(see Davison et al., 2000; Santner et al., 2015 for a more detailed
account of these experimental methods). Both techniques rely on
passive diffusion of the sediment solutes from the target area into
a gel, where they are either continuously accumulated (DGT)
or in equilibrium with the porewater concentrations (DET).
Hence, similar experimental incubation chambers as explained
for the planar optode systems can be used (Figure 1F). But
in contrast to the planar optodes, the gels can relatively easily
be deployed in situ and subsequently analyzed after retrieval
(Figure 1D). One of the most targeted analytes for single-
analyte-binding DGT gel analysis in the seagrass rhizosphere
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is H2S (Brodersen et al., 2017b; Martin et al., 2018; Figure 1E),
which can e.g., be mapped with a silver iodide gel which
continuously binds 6H2S (i.e., H2S, HS−, and S2−) from the
porewater through a precipitation reaction to silver sulfide
(Teasdale et al., 1999). The precipitation reaction induces a
dark coloration, which can then be analyzed after incubation by
computer imaging densitometry (CID), e.g., using a common
flatbed scanner. In contrast to DGT gels, the DET gels do not bind
the analyte and hence concentrations within the gel represent
porewater concentrations at the time of retrieval. One of the
most common analytes for DET gels in seagrass beds is Fe(II)
(Pagès et al., 2012; Kankanamge et al., 2017, 2020), where the
analyte concentrations can be quantified by covering the gel
with a ferrozine reagent staining gel after sampling to induce a
colorimetric reaction (Jézéquel et al., 2007; Robertson et al., 2008;
Bennett et al., 2012). This staining reaction is not necessary if
the gels are directly analyzed after drying (in the case for DET
gels, the analytes must be immobilized after sampling) using
a beam technology such as laser ablation inductively coupled
mass spectrometer (LA-ICP-MS), which allows to simultaneously
analyze and map the distribution of several ionic species in the
seagrass rhizosphere with a spatial resolution of around 100 µm
(Brodersen et al., 2017b).

When the DGT and DET gels are deployed in incubation
chambers (as described above for planar optodes) the following
practical aspects should be considered: (1) close contact of the
gel with the root/rhizome tissue, (2) avoiding entrapment of
air pockets between gel and sediment, and (3) sufficient pre-
incubation for the recovery of plant and microbial community,
as well as, chemical gradients after transplanting. A defined onset
of gel incubation can be accommodated by placing a retrievable,
sterilized plastic foil in between the sample/sediment and the
gel (Brodersen et al., 2017b), which can be removed to initiate
sample contact to the gel when steady state biogeochemical
conditions have been reached. While planar optodes allow
continuous and dynamic recording of data over time using
the same optode foil, measurements with DGT gels represent
accumulated signals during a defined incubation time, i.e.,
a one-time irreversible readout. Another drawback of DGT
gels is the continuous removal of the analyte that can affect
processes within the sediment, which is especially critical e.g.,
at low solute concentrations. Hence, careful planning of the
cultivation/measuring period is required. This is not the case for
DET gels, because the solutes are not bound and accumulated
within gel. But therefore, it is also crucial to process the DET
gels immediately after sampling, as otherwise the analyte diffuses
within the gel in all directions and blurs the actual gradients
and distributions.

These passive gel-sampling techniques can also be used
in situ, as probes of single gels and even combined DET-DGT
and DET-DET gels can be pushed into the seagrass sediment
when the meadow is exposed at low-tide (Simpson et al.,
2018) or under water (Brodersen et al., 2017b; Figure 1D).
The combination of multiple gels in one probe with in situ
deployment enables the simultaneous measurement of multiple
analytes over similar temporal and spatial scales, which can
visualize the chemical heterogeneity below a seagrass meadow,

including the contribution from multiple seagrass shoots and
bioturbation. The in situ gel deployments and sandwich-gel
approaches of combined DGT-DET or DET-DET gels also have
several drawbacks, which should be considered when interpreting
the imaging results. First, pushing the gel probes into the
sediment can drag upper sediment layers deeper down causing
artifacts (Santner et al., 2015). Second, no structural photographs
can be taken from the measured cross-section of the sediment
and hence correlations of solute distributions with below-ground
structures such as roots or burrows are speculative. Third, DGT
gels provide integrated and averaged concentrations over the
entire deployment time, while DET gels represent the porewater
concentrations over the last period of the deployment time.
Therefore, the combination and deployment of DGT and DET
gels at the same time may lead to artifacts depending on the
change of gradients during the deployment time (Robertson et al.,
2008). An alternative to circumvent this issue for H2S is a novel
DET gel (Kankanamge et al., 2020), which allows to deploy a
DET(H2S)-DET probe rather than a DGT(H2S)-DET-probe.

One simple but yet elegant approach was reported by
Marzocchi et al. (2019), who investigated the PO4

3− and NH4
+

porewater concentrations around roots of the freshwater plant
Vallisneria spiralis by assembling a sediment sandwich with 96-
well microplates covered with a membrane on each side. The
microtiter plates can be considered a variant of DET gels, where
each well goes in equilibrium with the porewater concentrations.
After deployment, the analyte concentrations were quantified by
standard colorimetric reactions. With this approach, the spatial
resolution is limited by the diameter of the wells (approximately
7 mm) and the spacing between the wells (approximately 1 mm).

In summary, gels are passive sampling techniques that extend
the array of analytes for 2-D mapping. In contrast to reversible
optodes, the gel-based approaches allow only the read-out of
analyte distributions at a given time period. However, for several
key analytes such as sulfide, metals and other ionic species these
gel-sampling techniques are presently the only option for 2-
D mapping in the seagrass rhizosphere. Advantages of these
techniques include the versatility of the gels as they can be
deployed in various configurations including as sandwich sensors
and for in situ measurements.

FUTURE DEVELOPMENTS

A better understanding of the heterogeneous distribution
of geochemical hotspots around seagrass roots/rhizome, and
their dynamic changes over day/night and seasonal cycles is
instrumental for enhancing our knowledge about how the
seagrass plant is adapted to life in sediments and how it is affected
by environmental stress. As mentioned above, the seagrass
rhizosphere is a dynamic chemical environment where several
chemical parameters exhibit changes at different time scales and
with different interdependences. Hence, the analysis of multiple
analytes in the same spatial area and time is needed. This can be
achieved through various approaches.

For instance, Brodersen et al. (2017b) used a narrow sandwich
chamber (width: 1 cm) design for the deployment of O2
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and/or pH planar optodes on one side of the below-ground
tissue structures and single- or multi-binding DGT gels on
the other side. With this approach the authors could show
that the release of O2 and organic compounds from the
roots and rhizome stimulate nutrient mobilization in the
rhizosphere, where (i) protolytic dissolution (protons generated
from protective sulfide oxidation stimulated through radial
O2 loss from the roots and rhizome) mobilized phosphate
mainly in the light and (ii) reductive dissolution [reduction
of insoluble Fe(III)oxyhydroxides to dissolved Fe(II) driven
by sulfide generated by sulfate reducing bacteria that are
stimulated by organic carbon exudations from the roots]
mobilized phosphate and increases Fe(II) availability mainly
in the dark. These are important seagrass-driven nutrient
mobilization mechanisms that are further supported by the
release of organic acids (Long et al., 2008) and microbial
Fe(III) reduction linked to organic carbon oxidation. However,
optodes can also be directly coated with a sampling gel
(Figure 1F). By means of such a combined optode-gel-sensor,
Martin et al. (2018) monitored the O2 concentrations and
ensured sediments remained anoxic during deployment of
the H2S-sensitive DGT gel. Other sensor combinations are
the above-mentioned DGT-DET and DET-DET gel-sandwiches,
which can also be applied in the field (Robertson et al., 2008;
Pagès et al., 2012). Moreover, dual optode sensors for pH
and O2 measurements (Moßhammer et al., 2016) and the
advances in hyperspectral imaging (Zieger et al., 2021) will
facilitate further development and applications of multi-analyte
optodes in future studies. A comprehensive model example
of combining multidimensional techniques has been provided
by Williams et al. (2014), who measured the O2 or pH and
metal distributions around rice roots by using combined optode-
DGT gel sensors.

Microbial communities drive geochemical changes and
conditions in the rhizosphere, but their specific associations
with hotspots along the roots/rhizome and in different
distances away from seagrass root/rhizome surfaces have
only been poorly resolved. One approach for the sampling
of microbial communities and correlation with geochemical
gradients measured with microsensors has been reported by
Brodersen et al. (2018b). The authors made use of artificial,
transparent sediment with added porewater microbes in
the previously reported, custom made split flow chamber
(Brodersen et al., 2014). Moreover, Martin et al. (2018)
used O2-sensitive planar optodes to distinguish microbial
communities on O2-releasing and non-leaking roots with
particular focus on cable bacteria, which are filamentous,
cm-long bacteria that change their surrounding sediment
geochemistry with major impact on the pH and sulfur-cycle
(Pfeffer et al., 2012). The colonization pattern of cable bacteria
and their geochemical impact in surface sediments and
around worm tubes have been visualized using combinations
of planar optodes and gels (Aller et al., 2019; Yin et al.,
2021a,b). Interestingly, cable bacteria appear to be a common
member of the root microbiome of various seagrass species
(Scholz et al., 2021) but their potential geochemical impact
in the seagrass rhizosphere has not yet been shown. The

identification of hotspots by multidimensional imaging could
also be used for targeted sampling for metabolomics or
chemical analyses.

Last, not least, there is a strong need for better in situ
mapping of the seagrass rhizosphere microenvironment.
Microenvironmental analyses of the seagrass rhizosphere have
mostly been done in the laboratory, with the exception of (i)
diver-operated in situ microsensor measurements, typically
positioned in seagrass leaf meristems to follow the O2 and
H2S status of the plant over diel cycles (e.g., Brodersen et al.,
2017a; Olsen et al., 2018), and (ii) the in situ deployment of
gel samplers (e.g., Pagès et al., 2012; Brodersen et al., 2017b,
see Supplementary Table 1 for an overview of selected key
references). However, laboratory measurements cannot fully
replicate the dynamic environmental conditions found in situ and
often involve manipulation of the rhizosphere and surrounding
sediment during assembly of the setup and sampling. This can
potentially change redox conditions and other aspects of the
in situ microenvironment including the spatial arrangement
of microbes relative to the plant roots. Thus, it should be kept
in mind that measurements in laboratory setups with sieved,
homogenized sediment and mainly on a single shoot do not
represent the natural environment below a seagrass meadow,
where bioturbation, multiple shoots, and plant debris cause
even more heterogenous distributions of gradients (Edward and
Mark, 1998; Simpson et al., 2018). While in situ mapping of
chemical species over hours/days with planar optodes mounted
on dedicated underwater imaging platforms and in mesocosms
is well established in soil and sediment biogeochemistry (Glud
et al., 2001; Askaer et al., 2010; Santner et al., 2015) such
technologies have, surprisingly, not yet been applied in seagrass
meadows. For instance, potential issues to be solved are how to
avoid scratching and other damage of the planar optode surface
when inserting it into the tough matrix of seagrass covered
sediments. The insertion would also break the root/rhizome
network and disrupt the gradients in a seagrass meadow. But this
could be overcome if the instrument would be deployed at the
fringe of a seagrass bed or in newly restored seagrass beds where
seagrass seedlings were just transplanted. It should be noted that
no perfect alignment of roots and rhizome to the measuring
devices (planar optodes or gel probes) can be assured under
in situ conditions, but rather the natural distribution of gradients
will be determined. Also more long-term in situ measurements,
e.g., of seasonal changes in the seagrass rhizosphere or long-term
changes due to environmental impacts such as dredging, heat
waves or hypoxia events, remain to be realized. A suitable starting
point for such measurements could, e.g., be based on systems for
distributed sensing with fiber-optic optode arrays (e.g., Fischer
and Koop-Jakobsen, 2012; Figure 1J) that can be inserted into
the sediment at various positions/depths to monitor rhizosphere
oxygenation over hours/days (Koop-Jakobsen et al., 2017) or
robust spears with defined measuring spots that are able to
monitor, e.g., O2 and temperature profiles in soils and sediment
over several months (Rickelt et al., 2014). Adaptation and
expansion of such techniques for optode-based, long-term in situ
measurements of key parameters like O2, pH and temperature in
seagrass rhizospheres is a promising research direction, which
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will enhance insight to in situ characteristics of the seagrass
rhizosphere and could become a valuable tool for environmental
monitoring and management (e.g., as an early warning system for
environmental stress in seagrass meadows).
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