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INTRODUCTION

The water reservoir of Guarapiranga supplies drinking water to more than 3.7 million people in the
São Paulo (Brazil) metropolitan area, one of the most densely populated and industrialized regions
worldwide. This reservoir is also used for recreational purposes such as fishing, bathing and aquatic
sports. As some densely populated areas abut its shore, the water quality may be affected by diffuse
pollution discharges. Eutrophication is a recurrent problem for maintaining the quality of water
in this reservoir, mainly due to the risk of toxin-producing cyanobacteria blooms. Since the early
1970s, the Guarapiranga reservoir has remained eutrophic (Mozeto et al., 2001). Copper sulfate
has been used as one of the strategies to control bacterial blooms (Beyruth, 2000). Nevertheless,
the occurrence of worrisome amounts of cyanobacteria in Guarapiranga is still reported in recent
studies (Alcantara et al., 2021).

Many actinomycetes and cyanobacteria are well known for their ability to produce diverse
secondary metabolites including toxins (such as microcystin, saxitoxin and cylindrospermopsin)
and taste-and-odor compounds [such as geosmin and 2-methylisoborneol (2-MIB)] (Sivonen and
Jones, 1999; Graham et al., 2010). Cyanotoxins may be classified based on toxic mechanism,
in particular hepatotoxins (e.g., cylindrospermopsins and microcystins) and neurotoxins (e.g.,
anatoxins and saxitoxins). Many cyanotoxins have multiple variants with a range of toxicities
(Welker and von Döhren, 2006). Several studies have reported the negative health and ecological
effects of cyanotoxins (Carmichael, 1992; Funari and Testai, 2008). Therefore, Brazil and several
other countries have set national standards for cyanotoxins in drinking and recreational waters
(Hudnell, 2008). Microcystins are the most common cyanotoxins in Brazilian aquatic ecosystems
(Genuário et al., 2016). Unlike toxins, the taste-and-odor compounds are not actually toxic
and, usually, there are no regulations for the presence of these compounds in drinking water.
However, taste-and-odor compounds are of concern to the consuming public, and they are the
primary criteria of drinking water safety considered by consumers. Moreover, the co-occurrence
of cyanotoxins and taste-and-odor compounds have been studied in surface waters worldwide. For
instance, microcystin co-occurred with geosmin in 87% and 2-MIB in 39% of the cyanobacterial
blooms sampled from 23 Midwestern United States lakes (Graham et al., 2010).

Due to the potential impacts of algal and bacterial blooms to water quality, information
and identification of public health-relevant microbial species in drinking water reservoirs is
important. The metagenomic approach overcomes microbial culturing limitations, providing
taxonomic and functional diversity information of the sampled environment. Despite the
importance of the water reservoir of Guarapiranga, literature on its microbial diversity and
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FIGURE 1 | Microbial diversity of the Guarapiranga reservoir. Five hundred twenty-four species were identified in the sample. Bacteria were the most abundant

microorganism (470) represented by at least 44 phyla, followed by 52 viruses of at least six families, and two archaea. For a full list see Supplementary File 1.

pollution impact is scarce (Fontana et al., 2014; Alcantara
et al., 2021; Pierangeli et al., 2021). Herein we report the first
metagenomic analysis of surface water from the Guarapiranga
reservoir. Microbial diversity and populational dynamics of this
area can help assess the impact of pollution, eutrophication risk,
and proliferation of toxin-bearing cyanobacteria, which can be
useful for developing more efficient water treatment strategies to
assure high standards of public health.

METHODS AND DATA ANALYSIS

Surface water samples were collected from Guarapiranga
reservoir near to the water abstraction point used by the water
treatment plant at coordinates 23◦40’23”S, 46◦43’12”W. Samples
were collected in December 2020 in the euphotic zone (0.5m
depth), following the methodology described by the Brazilian
National Guide of Sampling Collection and Preservation
(CETESB/ANA., 2011), kept at 4◦C for transportation and
processed within 24 h.

A total volume of 900mL of pooled sample water was
filtered using 0.22-µm pore bottle-top vacuum filter system
(KASVI). After total filtration, the filter membrane was
removed using two sets of sterile forceps and inserted into

the PowerWater DNA bead tube, with the top side facing
inward. Total genomic DNA was extracted with DNeasy R©

PowerWater R© kit (QIAGEN), followed by an additional cleaning
step using DNeasy columns (QIAGEN) for an efficient removal
of contaminants. DNA concentration and purity were evaluated
by both NanoPhotometer NP80 R© (IMPLEN) and QubitTM

fluorometer (Life Technologies).
The sequencing library was prepared from 450 ng of genomic

DNA with the Rapid DNA Sequencing kit (SQK-RAD004) from
Oxford Nanopore Technologies (ONT). DNA sequencing was
performed using the minION device (ONT) with the FLO-
MIN106 flow cell, and the quality of sequencing monitored in
real time on the MinKNOW interface (ONT). Computational
processing was as follows (default parameters were used unless
otherwise noted): Basecalling was performed by Guppy v.4.4.1
with the high quality r9.4.1_450bps_hac model. Reads were
assembled with metaFlye v.2.8.3 with the –meta and –plasmids
flags (Kolmogorov et al., 2020). Contamination filtering was done
by comparing contigs with the NCBI UniVec database1. Contigs
that passed this check were classified with kaiju v.1.7.4 (Menzel
et al., 2016), with the RefSeq (2021-02-26) database downloaded

1https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
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from the Kaiju Webserver2. Functional annotation was provided
by the IMG/JGI annotation pipeline (Chen et al., 2021), and the
assembly is available from JGI GOLD (Mukherjee et al., 2020).
Search for secondary metabolites in the assembly was performed
with antiSMASH version 6 (Blin et al., 2021).

A total of 512,095 reads were obtained, with average
length of 2,282 bp. The assembly has 655 contigs and a
total of 18,457,687 bp, with a N50 of 41,334 bp. Bacteria
correspond to 89.7% of the assembled metagenome (Figure 1,
Supplementary File 1), and the most abundant bacterial phyla
identified were Proteobacteria (35%); Terrabacteria (28%);
Fibrobacteres, Chlorobi, and Bacteroidetes (FCB group, 17%);
Planctomycetes, Verrucomicrobia, and Chlamydiae (PVC group,
8%); and Acidobacteria (7%). Viruses represent 9.9% of the
assembly, 85% of which are Caudovirales bacteriophages, and
15% are protist and algae-infecting Megaviricetes. Only 0.4%
of the metagenome (two species) was identified as archaea,
genus Halobacteria.

Due to the importance of cyanotoxins and taste-and-odor
compounds to drinking water quality, the presence of genes
related to biosynthesis of these substances were verified by
using a manually-curated dataset of 3,265 sequences of genes
from the NCBI gene database (Supplementary File 2). We then
translated and compared these sequences with the assembled
metagenome with tBLASTn. None of the 2,102 microcystin,
505 geosmin, 450 saxitoxin, 146 cylindrospermopsin, and 62
2-MIB biosynthesis genes were found in the Guarapiranga
metagenome, even thoughwe recovered genomic fragments from
49 cyanobacteria species. We hypothesize that organisms that
express these compounds are either absent from the samples
or present in such low concentrations that our sampling was
not able to detect them. Moreover, it is known that massive
amounts of copper sulfate and other chemicals have been used
since 1970’s by the São Paulo State agency responsible for basic
sanitation (SABESP) for the control of algae and cyanobacteria
(Leal et al., 2018).

The metagenomic analysis is the first step toward the
identification of key organisms responsible to produce
toxins and taste-and-odor compounds. The presence of these
microorganisms is not a sine qua non condition for the release
of such compounds in the water body, which surely depend on
the expression of specific enzymes involved in the biosynthetic
pathways. Nevertheless, the detection of these microorganisms
is a precocious indication of a potential production of toxins
and taste-and-odor compounds, which can warn water supplier
companies of an imminent danger. Hence, metagenomics can
contribute to water quality control management.

From the functional annotation results we highlight
photosynthesis and carbon fixation genes like transketolases,
phage-related genes like integrases and lysozymes; and
transmembrane transport (Supplementary File 3). The majority
of transmembrane transport genes are related to the ABC
multidrug transport system or the AcrAB-TolC multidrug
efflux pump. Both are known to be related to antibiotic resistance

2http://kaiju.binf.ku.dk/server

(Abdi et al., 2020). Using AntiSMASH, we identified gene clusters
related to the synthesis of proteusin, terpenes, arylpolene, and
RRE-containing secondary metabolites.

Among identified species (Supplementary File 4) we
highlight the following: Aquirufa nivalisilvae (contig 491,
251,358 bp), which belongs to a relatively new (2019) genus of
widespread freshwater bacteria (Pitt et al., 2019); Candidatus
Nitrosacidococcus tergens (contig 572, 144,006 bp), a species
originally isolated from the biofilter unit of a pig farm in the
Netherlands, able to grow and oxidize ammonia at pH 2.5
(Picone et al., 2021); and Frigoriglobus tundricola (contig 636,
180,833 bp), a species originally isolated from tundra wetland in
Russia, and which is a cellulolytic planctomycete (Kulichevskaya
et al., 2020).
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