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Editorial on the Research Topic

Environmental Stress-Promoting Responses in Algae

Algae live in the hydrosphere, where they experience fluctuations in temperature, salinity, nutrient
levels, and sunlight, as well as other environmental stresses (Kumar et al., 2014; Raven and
Giordano, 2014). The various responses involved in stress tolerance allow the algae to acclimate
to these diverse environmental stresses (Flores–Molina et al., 2014; Kishimoto et al., 2019; Omuro
et al., 2021). For example, algae vary their growth and reproduction under stress conditions
as a tolerance mechanism to help survive disadvantageous conditions (Helmuth and Hofmann,
2001; Eckersley and Scrosati, 2012; Nayaka et al., 2017). Changes in gene expression also have
essential functions in adaptive responses to stress. Moreover, each environmental stress promotes
the expression of cognate sets of genes; therefore, stress responses can be recognized based on
global changes in the stress-inducible accumulation of newly synthesized proteins and metabolites
(Collén et al., 2007; Dittami et al., 2009; Cao et al., 2017; Sun et al., 2019; Rugiu et al., 2020).
However, in contrast to the well-studied stress responses of land plants, little is known about the
mechanisms regulating these physiological responses and the functions of the accumulated proteins
and metabolites in algae. To address this knowledge gap, it is necessary to explore the physiological
and molecular mechanisms of the stress-dependent regulation of growth, morphogenesis, gene
expression, and metabolite biosynthesis in algae and how they affect biological, molecular, and
biochemical levels. The resulting information will help us understand the responses of algae to
environmental stress, whichmight distinct in part from those in land plants. Indeed, current studies
on stress responses in streptophyte algae represented the differences in functions of conserved
components of stress signaling networks between land plants and algae (Fürst-Jansen et al., 2020).

This Research Topic aims to establish an integrated view of how micro- and macro-
algae regulate the physiological events involved in stress acclimation. Various aspects of the
physiological responses of algae to environmental stress are reviewed, such as reproduction,
growth, energymetabolism, andmicrobe-dependent responses inmacroalgae, and gene expression,
photosynthesis, and metabolite accumulation in microalgae. Recent physiological studies have
indicated that abiotic stresses promote the transition from growth to the sexual and asexual
reproductive phases (Liu et al., 2017). Suda and Mikami obtained novel findings about the effects
of wounding and heat stress on the reproduction of thalli of the red alga Pyropia yezoensis (recently
re-classified as Neopyropia yezoensis). In these algae, wounding promotes sexual and asexual
reproduction, and heat stress induces callus production as a form of asexual reproduction. These
findings demonstrate that the gametophytic thalli of P. yezoensis respond to environmental stress
by resetting the timing of reproduction, in a phenomenon known as the life cycle trade-off (Liu
et al., 2017).
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Algae commonly experience changes in salinity (Kirst, 1989;
Karsten, 2012; Kumar et al., 2014). To explore responses to
this common stress, Wen et al. performed a data-independent
acquisition quantitative proteomic analysis of salinity-stressed
Pyropia haitanensis. The abundances of proteins associated with
the glycolytic pathway, the tricarboxylic acid cycle, and the
pentose phosphate pathway varied under hypersaline conditions,
indicating that salinity stress alters energy metabolism in P.
haitanensis. Identifying protein biomarkers for salinity stress
provided new knowledge that may enable efforts to develop salt-
tolerant seaweed cultivars. In addition, Endo et al. investigated
the accumulation of nitrogen in meristems of the brown alga
Eisenia bicyclis, showing that the breakdown of blades due
to heat stress promoted nitrogen accumulation in meristems
in the lower part of the blade, which in turn promoted the
intercalary growth of the algae. Moreover, Xu et al. demonstrated
that the coccolithophore Emiliania huxleyi acclimates to low-
salinity stress by upregulating photosynthetic performance under
conditions that replicate ocean acidification. These findings
suggest that macro- and micro-algae have a variety of stress-
dependent mechanisms to tolerate the negative impacts of
environmental stresses.

Various types of environmental stress cause cellular damage
in photosynthetic organisms via the production of reactive
oxygen species (ROS) such as superoxide anion (O−

2 ) and
hydrogen peroxide (H2O2) (Kumar et al., 2014; Choudhury
et al., 2017; Hasanuzzaman et al., 2020). These algae have
evolved ROS-scavenging systems to adapt to these stresses and
protect their photosynthetic machinery (Mittler et al., 2011;
Hasanuzzaman et al., 2020). Using a reverse-genetics approach,
Lee et al. determined that the early light–inducible protein
ELIP3 protects the green microalga Chlamydomonas reinhardtii
from high-light- and cold-induced photooxidative damage to
the photosynthetic machinery and enhances survival of these
algae. In addition, Kumari et al. revealed that volatile organic

compounds (specifically long-chain fatty aldehydes and fatty
alcohols) function as chemical messengers to scavenge ROS
in the arachidonic acid–accumulating microalga Lobosphaera
incisa under nitrogen-deficient conditions. Finally, Singh et al.
uncovered the roles of tocopherols as antioxidant molecules in
the Selenastraceae algae Monoraphidium sp. under low-nutrient
conditions. These findings highlight the critical roles of ROS
scavenging in environmental stress responses in algae.

Microbe–seaweed interactions are critical for regulating
algal development, as some algae acquire morphogenesis-
promoting factors from bacteria (Egan et al., 2013; Singh
and Reddy, 2014; Wichard et al., 2015). Ghaderiardakani
et al. described an additional important aspect of this
interaction: the involvement of microbes in the growth and
development of healthy algae under various environmental
stress conditions. These findings provide new insight
into the survival of algae under stress conditions in
the hydrosphere.

In conclusion, this Research Topic highlights novel findings
that significantly increase our understanding of how stress-
inducible responses operate and their effects on gene expression,
the production of functional molecules, reproduction, and
survival in algae.
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