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Extreme value analysis (EVA) has been extensively used to understand and predict
long-term return extreme values. This study provides the first approach to EVA
using satellite-observed sea surface temperature (SST) data over the past decades.
Representative EVA methods were compared to select an appropriate method to derive
SST extremes of the East/Japan Sea (EJS). As a result, the peaks-over-threshold (POT)
method showed better performance than the other methods. The Optimum Interpolation
Sea Surface Temperature (OISST) database was used to calculate the 100-year-return
SST values in the EJS. The calculated SST extremes were 1.60–3.44◦C higher than the
average value of the upper 5th-percentile satellite-observed SSTs over the past decades
(1982–2018). The monthly distribution of the SST extremes was similar to the known
seasonal variation of SSTs in the EJS, but enhanced extreme SSTs exceeding 2◦C
appeared in early summer and late autumn. The calculated 100-year-return SSTs were
compared with the simulation results of the Coupled Model Intercomparison Project 5
(CMIP5) climate model. As a result, the extreme SSTs were slightly smaller than the
maximum SSTs of the model data with a negative bias of –0.36◦C. This study suggests
that the POT method can improve our understanding of future oceanic warming based
on statistical approaches using SSTs observed by satellites over the past decades.

Keywords: sea surface temperature (SST), extreme value, peaks-over-threshold (POT) method, satellite data,
East/Japan Sea (EJS)

INTRODUCTION

Global warming and climate change have become widespread over time. In addition to the warming
air temperature and land surface, the upper-ocean temperature of the global ocean has also
increased over the past decades (Baker et al., 2004; Sutton et al., 2007; Stott, 2016). Along with the
warming of the global ocean, regional seas have also experienced significant warming at significant
rates (IPCC Climate Change, 2014). The influence of warming has induced more pronounced
climate extremes.

As the scale of warming increases, the possibility of coastal disasters is also steadily growing
(IPCC Climate Change, 2014; Stott, 2016). Therefore, it is necessary to predict the magnitude
of such warming along with the extremes of sea surface temperatures (SSTs). Most of our
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understanding of ocean warming in the future depends on
the simulation results using several numerical models. Several
scenarios have been presented by adopting numerical model
simulations under different conditions (e.g., Kharin et al., 2007;
Sutton et al., 2007; IPCC Climate Change, 2014). The extreme
temperatures were inferred from the results of the scenarios.
Additionally, other approaches are also required to infer the
extreme temperatures, not by numerical model results, but by
long-term measurements. Satellite-observed SSTs have long been
used to predict forward extreme temperatures.

In order to reduce the computation time of the model
prediction and enhance the efficiency, extreme value analysis
(EVA) has been proposed as a method to predict the extreme
values. The EVA is a method that can predict the long-period
return extreme values (e.g., 100-year-return extreme) by using
observed values (Gumbel, 1958; Mearns et al., 1984; Wigley,
1985, 2009; Katz and Brown, 1992; Coles, 2001). This method
has been widely used in the field of surface wave height (SWH)
and wind speed (WS) (Mathiesen et al., 1994; Soares and Scotto,
2001, 2004; Caires and Sterl, 2005; Jonathan and Ewans, 2007;
Martucci et al., 2010; Young et al., 2012). Caires and Sterl
(2005) calculated 100-year SWH and WS by applying the peaks-
over-threshold (POT) method to 40-year reanalysis data (ERA-
40), and compared the results with buoy and altimeter data.
Young et al. (2012) applied the initial distribution method (IDM)
to altimeter data collected for the period over 20 years and
computed the 100-year SWH and WS for four different periods
between 1992 and 2008. The 100-year WS showed a positive
trend, but the 100-year SWH showed no distinct trend. Notably,
the significance of the computed value needs to be ensured for
observation data over longer periods. The EVA method has not
only been used for SWH and WS, but also for other marine fields
such as rainfall (flood) (Cheng and AghaKouchak, 2014; Cheng
et al., 2014). The results obtained through EVA predict extreme
values that can be observed within a specific period (e.g., 100
years) and have also been utilized for diverse applications such
as construction.

Studies have also been conducted for the computation of
extreme surface air temperature (SAT) with EVA (Laurent and
Parey, 2007; Parey et al., 2007; Coelho et al., 2008). The POT
method to be applied to the SAT data was summarized by
Parey et al. (2007) for computing the 100-year SAT using the
temperature observation data for each station in France (Laurent
and Parey, 2007). A similar approach to understand extreme
values of the temperature field was extended to global regions
using the POT method (Coelho et al., 2008). In contrast, EVA
analysis has not been actively applied to SST fields in the ocean
and remains in the testing phase (Coelho et al., 2008; Huser,
2021). It is highly possible and necessary to apply the POT
method to the oceanic temperature field. Therefore, we intend
to derive extreme SSTs from long-term records of satellite SSTs
based on the POT method. To check the applicability of EVA for
the SST, we computed the 100-year SST by applying the POT to
SST data in the East/Japan Sea (EJS) around the Korean Peninsula
(Figure 1). The EJS is known to be a miniature ocean with large
north-south SST changes, a zonally distributed subpolar front
in the central region, sea ice distribution in the north, deep

bathymetry, well-developed cold and warm current systems, and
cold bottom water formation (Ichiye, 1984; Kim et al., 2001; Park
et al., 2004; Yoon et al., 2018). In this study area, the annual
amplitudes of SST, ranging from 9◦C in the southern part to 15◦C
in the northern part (Park et al., 2005), are much higher than
those in the North Pacific Ocean (Yashayaev and Zveryaev, 2001).
Thus, it is important to infer the extent to which extreme SST
values occur in the EJS.

Therefore, the objectives of this study were to: (1) compute the
100-year-return-period SST value by applying the POT method
to the long-term SST observation data in the EJS, (2) compare
the results with the maximum SST values observed thus far, and
(3) verify the results with those estimated by numerical model
simulations based on one of climate change scenarios.

MATERIALS AND METHODS

Satellite-Observed Sea Surface
Temperature Data
The Optimum Interpolation Sea Surface Temperature (OISST)
data is one of the most representative SST databases based on
Advanced Very High Resolution Radiometer (AVHRR) data with
the longest time period from September 1981 to the present.
This database was produced by combining observation data
from different instruments, including satellites, ships, buoys,
and Argo floats. In the process of producing data, objective
interpolation was conducted to fill the gaps, and bias adjustment
was applied to the observation data to compensate for differences
in different observation equipment and sensors (Reynolds and
Smith, 1995; Reynolds et al., 2002, 2007; Banzon et al., 2016).
The OISST database is a daily product with a spatial resolution
of 0.25◦. In this study, the OISST version 2 data for the
period of from 1982 to 2018 were obtained from the National
Oceanic and Atmospheric Administration (NOAA)/Oceanic and
Atmospheric Research (OAR)/Earth System Research Laboratory
(ESRL) Physical Sciences Lab (PSL)1 and used to compute the
extreme SST value in the EJS.

Simulated Sea Surface Temperature
Data of Climate Model
To compare the computed extreme SST values with those
predicted from the climate change model, this study used the
Coupled Model Intercomparison Project 5 (CMIP5) monthly
data on single-level data provided by Copernicus.2 The CMIP
is a collaborative project designed to improve the existing
knowledge about climate change, organized in 1995 by the
Working Group on Coupled Modeling (WGCM) of the World
Climate Research Program (WCRP) (Meehl et al., 2000). The
CMIP data were developed in stages to promote the climate
model improvement and support national and international
assessments of climate change. The CMIP received model outputs
from pre-industrial climate simulations and a 1% annual increase
in CO2 simulations for approximately 30 combined general

1https://psl.noaa.gov
2https://cds.climate.copernicus.eu
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FIGURE 1 | (A) Bathymetry of the Northwestern Pacific, where the red box shows the study area of the East/Japan Sea (EJS), and (B) the spatial distribution of
long-term averaged satellite-derived sea surface temperatures (SSTs) for the period from 1982 to 2018.

circulation models. The more recent phases of the project
include more realistic climate forcing scenarios for historical,
post-phasic, and future scenarios. The main objectives of the
CMIP5 experiment are to address the outstanding scientific
questions arising from the IPCC Assessment Report (AR) 4,
improve understanding of the climate, and provide estimates of
future climate change. In this study, the simulation temperature
data in the EJS were extracted from global ocean data from
December 2005 to November 2099. These data were obtained
from the Representative Concentration Pathway (RCP) 4.5
experiment using the HadGEM2-ES model (UK Met Office,
United Kingdom).

Extreme Value Analysis for Extreme Sea
Surface Temperature
The EVA has been proposed for our study, which is a statistical
method that computes extreme values within a certain period
of time (e.g., 100 years) from past observation data. It evaluates
the probability of events to be more extreme than previously
observed (Coles, 2001). Typical EVA methods include the initial
distribution method (IDM), block maxima method (BMM), and
peaks-over-threshold (POT) method, which are based on the
statistical distribution.

First, the IDM is a basic approach for computing extreme
values using values from the entire observation data. It
approximates that the observation data follow the Gumbel
distribution and compute the extreme value corresponding to
the probability of the target period (Gumbel, 1958). The total
probability density function (PDF) can be estimated using
Equation (1), and the probability of the target period is calculated

using Equation (2) to find the extreme value by using the time
series of SST data at each grid

F (x) = exp
{
−exp

(
x− µ

σ

)}
(1)

P (x < xP) = 1−
D
P

(2)

where σ is the scale parameter, µ is the location parameter, D is
the decorrelation time scale, and P is the target period. In this
study, 1 year and 100 years were used for D and P, respectively.

Unlike the IDM, which uses the entire observation data, the
BMM uses only the maximal values within a block of a specific
time period (e.g., a year). These maxima follow a generalized
extreme value (GEV) distribution, distribution as shown in
Equation (3) (Jenkinson, 1955).

F (x) = exp

[
−

{
1+ k

(
x− µ

σ

)−1/k
}]

(3)

where k is the shape parameter. The BMM also estimates the value
of the probability level corresponding to the target period of the
extreme value, as shown in Equation (2). The block units are set to
1 year. That is, the extreme value is computed from the maximum
values per year. In this case, the BMM is sometimes referred to as
the Annual Maxima Method (AMM).

Finally, in the POT method, it is approximated that values
above a certain threshold (e.g., 98th percentile) among all
observation data follow the generalized Pareto distribution
(GPD) (Coles, 2001). Accordingly, the cumulative PDF is
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calculated using Equation (4), and the extreme value is computed
by calculating the probability level for the target period.

F (x) = 1−

{
1+ k

(
x− µ

σ

)−1/k
}

(4)

P (x < xP) = 1−
NY

P NPOT
(5)

where µ is the threshold parameter. NY is the number of years
of data and NPOT is the total number of data used in the POT
analysis. In recent studies, the POT method has been widely
applied to compute the extreme value, namely, the long-period
return value (e.g., Caires and Sterl, 2005; Laurent and Parey, 2007;
Cheng and AghaKouchak, 2014).

The confidence intervals were calculated with the computed
extreme SSTs. According to Coles (2001), the variance of the long-
period return value is calculated using the variance-covariance
matrix and the delta method as follows:

Var (xP) ≈ (∇xP)T V (∇xP) . (6)

In Equation (6), the complete variance-covariance matrix V
for (ζµ, σ, k) is

V =

 ζµ(1− ζµ) 0 0
0 v1,1 v1,2
0 v2,1 v2,2

 (7)

where ζµ is the proportion of data exceeding µ and vi,j is the
variance-covariance matrix of σ and k. (∇xP)T is calculated using
Equation (8).

(∇xP)T =
[
∂xT
∂ζµ

∂xT
∂σ

∂xT
∂k

]
(8)

In this study, we mainly used the POT method to compute
extreme SST values using satellite data. Although the POT
method complements the defects of the prior method, the
variations in its calculated extreme value were amplified if
the data for this approach were insufficient (see section
“Discussion”). Because the estimated values of the parameters
vary depending on the threshold value, it is necessary to consider
which value to be selected as the threshold (e.g., 98th percentile).
The details of the method applied in this study are explained in
the following section.

Statistical Methods for Extreme Sea
Surface Temperature Computation
Figure 2 shows the example results of computing extreme SSTs
by applying the three representative EVA methods to the long-
term satellite SST observation data at an arbitrary point (133.88◦
E, 37.88◦ N) in the central region of the EJS. Figures 2A,B show
the approximation results by applying the IDM to all of the daily
data and the BMM to the annual maximum daily data from 1982
to 2018, respectively. Figure 2C shows the result of applying the
POT method to satellite SST values, which is approximated by
assuming that the values above the threshold (98th percentile in
this study) follow the GPD. Consequently, the 100-year-return-
period SST was computed as 29.55, 30.13, and 29.74◦C by the

IDM, BMM, and POT methods, respectively. All the computed
extreme SSTs were higher than the mean values of the upper
5th-percentile SSTs of 26.62◦C.

The approximation accuracy of each statistical distribution
varies depending on the characteristics of the SST distribution
at each point. Overall, as shown in the quantile-quantile plot
(Q-Q plot) in Figure 2D, the SST does not exactly follow the
Gumbel distribution of the IDM. Although the GEV distribution
of BMM seems to be comparatively well-followed, few differences
still exist between the points. This may be a limitation owing
to the use of only the annual maximum value among the data
(Figure 2E). In contrast to the IDM and BMM, the POT method,
applied to the long-term return SST values, produced the most
appropriate coincidences between the predicted and observed
quantiles with remarkable fitting to the GPD with values over a
specific threshold (e.g., 98th percentile; Figure 2F). The predicted
quantiles using the probability density fitted by POT show good
agreement with the observed quantiles from the satellite data;
therefore, we computed the 100-year SST values by applying the
POT method in this study.

The detailed process of the POT method is shown in Figure 3.
First, after loading the daily SST data, the values out of three
standard deviations within a 3 × 3 (∼ 0.75◦ × 0.75◦) window
were removed to remove abnormally high or low SST values. If
there is a trend in the observed data over time, a non-stationary
model is applied because the assumption of stationarity cannot
be applied (Coles, 2001; Khaliq et al., 2006). In the global ocean,
previous studies have revealed an obvious warming trend (Baker
et al., 2004; Sutton et al., 2007; IPCC Climate Change, 2014; Stott,
2016). Similarly, the warming trend of the EJS has been well-
documented in numerous studies (e.g., Kim et al., 2001; Yeh
et al., 2010; Lee and Park, 2019). Prior to the computation of
the extreme value based on the GPD fitting, the stationarity or
non-stationarity of the SST data was determined through the
Mann-Kendall test with the SST anomaly time series in which
the annual cycle was removed (Mann, 1945; Kendall, 1955). The
analysis showed that the SST data of the EJS could be regarded as
non-stationarity, indicating a significant warming trend mainly
caused by the mean trend except for a few points. Therefore,
the coefficients were estimated by reflecting the non-stationary
characteristics in the subsequent fitting process. In this study, the
scale parameter was given as a parameter that changes with time,
and a linear model was applied as follows:

σ (t) = σ0 + σ1t (9)

for parameters σ0 and σ1. The maximum likelihood estimation
was applied to estimate the parameters of the GPD (Fisher, 1925).
The application of this non-stationary model with a linear trend
in the scale parameter was confirmed using the likelihood ratio
test (Koch, 1988). The long-period return level computed by
applying the non-stationary model changes with time, as more
observed data were added from the past to the latest. The longer
the return period, the more the deviation between extremes from
non-stationary and stationary models tends to increase.

Another important process is setting the thresholds for
POT. In this study, the 98th-percentile value was selected as
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FIGURE 2 | Examples of the distribution of probability of SST values, where the red line represents the fitted distribution for the computation of the extreme SST by
(A) initial distribution method (IDM), (B) block maxima method (BMM), and (C) peaks-over-threshold (POT) method, respectively. (D–F) The comparison results
between the predicted and observed quantiles from panels (A–C).

FIGURE 3 | Flow chart for the computation of extreme SST using the POT method based on generalized Pareto distribution (GPD).
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FIGURE 4 | (A) Shape parameter (k) and (B) modified scale parameter (σ∗) with 95% confidence intervals for every value of the threshold (µ). The red dot indicates
the 98th percentile of SSTs.

the threshold by checking the change and significant interval
of the shape (k) and scale (σ) parameters according to the
threshold setting, as shown in Figure 4. We selected the
thresholds marked by red dots in Figure 4. These values have
also been used in previous studies (Laurent and Parey, 2007;
Parey et al., 2007; Cheng et al., 2014), which compute the
extreme values of surface air temperatures. A similar approach
was applied to calculate the extreme values of precipitation
(Cheng and AghaKouchak, 2014).

RESULTS

An Example of the Computation of
Extreme Sea Surface Temperature
Prior to applying the POT analysis to the entire EJS region, we
tested whether this method could successfully resolve the 100-
year-return SST value as an extreme value at an arbitrary position.
The position was selected in the central region (133.88◦ N, 37.88◦
E), and a time-series of daily SSTs was extracted for the study
period. The time-variable SST data of the EJS has an obvious
tendency to increase with time, with statistical significance. Based
on this test, we assumed that the SST data could be treated as non-
stationary data; under this assumption, a non-stationary POT
analysis method is applied. The expected return level of SST
for each return period was calculated using the 95th-percentile
confidence interval. The confidence interval was calculated using
the method described by Coles (2001).

Figure 5 shows the results of the long-period-return level
of SST values as a function of return periods up to 100 years,

FIGURE 5 | An example of the result of extreme SST derivation (solid line)
using the POT method under the assumption of non-stationary data, wherein
the dashed lines represent the limits of the 95% confidence interval.

calculated by applying the POT method using the long-term
satellite SST observation data at the point. The dashed lines in
Figure 5 represent the upper and lower limits of the return
SST levels for each given return period from 1 to 100 years.
The differences between the upper and lower levels within the
95% confidence intervals were amplified with increasing return
periods. As the return period increased from 1 to 100 years,
the return level of SST tended to rapidly increase at a range
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FIGURE 6 | Spatial distribution of estimated parameters for GPD. (A) threshold (µ), (B) shape parameter (k), and (C) scale parameter (σ0).

of relatively small return periods of <20 years and gradually
increased from 60 to 80 years, and eventually converged toward
a 100-year return SST with feeble increasing features. The
computed extreme SST value, corresponding to a 100-year return
value, was approximately 28.93◦C as shown by the solid line at
a return period of 100 years. Within the 95% confidence level,
the lower and upper extreme values were 28.77 and 29.11◦C,
with a difference of 0.34◦C. This feature suggests that the
present approach of POT analysis can yield a computation of
extreme SST values.

Spatial Distribution of Extreme Sea
Surface Temperatures
To calculate the 100-year SST in the entire area of the EJS by
applying the POT method, the parameters were first estimated
using the maximum likelihood estimation method. Figure 6
shows the estimated parameters for the optimal fitting of the SST
data above the threshold to the GPD at each point. As shown in
Figure 6, the threshold (µ) showed a similar distribution to that
of the mean SST value at each point, and the shape parameter
(k) and scale parameter (σ0) also seemed to indicate the SST
distribution characteristics according to the points. Overall, a
spatial regularity was confirmed. We computed the 100-year SSTs
by applying the POT method to the satellite-observed SST dataset
for the entire area of the EJS (Figure 7A). The spatial distribution
of the computed 100-year SST was similar to that of the mean
SSTs in the EJS with contrasting north-south temperatures across
the subpolar front, roughly along 40◦ N in the central part (Park
et al., 2007). The isotherms of the computed 100-year SSTs ranged
from a minimum value of 19.04◦C in the northern part to a
maximum value of 30.96◦C in the southern part of the EJS.
Overall, the computation of 100-year-return SSTs showed values

higher than approximately 26◦C south of the subpolar front
along 40◦ N. In particular, along the western coast of Japan, the
extreme SST reached approximately 28◦C around the Tsugaru
Strait near 41◦ N and approximately 24◦C around the Soya Strait
near 45◦ N. These extreme values are considerably higher than
those in the western part of the EJS. This implies that the spatial
distribution of extreme SSTs was similar to the pattern of mean
SSTs with higher SSTs due to the Tsushima Warm Current along
the western coast of Japan.

To understand how large such 100-year-return extreme SST
values are compared to the maximum records of SST values over
the past decades, we derived the maximum SSTs by considering
the average of the upper 5th-percentile SST values observed
in the past 37 years (1982–2018). Figure 7B shows the SST
differences between the 100-year SST and the mean value of
the upper 5th-percentile of the observed SST. Overall, the
differences ranged from 1.60 to 3.44◦C, which implies that the
calculated 100-year SST value was higher than the mean of
the upper 5th-percentile SST in the past in the entire EJS. In
other words, it signifies that considerably higher extreme SST
would occur in the future compared to the past extreme SST
in all areas of the EJS. The maximum difference between the
extreme SST in the future and that in the past amounted to
3.44◦C in the northern part. The northwestern part, including
the offshore regions off the Russian coast, south of Vladivostok,
and over West Korea Bay, showed relatively high values of
2.70◦C. This region coincides with that affected by strong
winds from the continental side during winter. In contrast,
the southern region showed relatively low differences in the
extreme SST. One important feature is that all the 100-year
return SST values are positive in the entire EJS. This suggests
that the warming features of extreme SSTs will be strengthened
in the future.
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FIGURE 7 | (A) Computed result of the 100-year SST using the POT method and (B) difference between the computed result of the 100-year SST and mean of the
upper 5th percentile of observed SST (100-year SST minus the maximum SST) using satellite SST data from 1982 to 2018.

Monthly Distribution of Extreme Sea
Surface Temperatures
The SSTs of the EJS have dominant seasonality with higher
amplitudes of approximately 9◦C at most than those of the
Northwest Pacific at similar latitudes (Park et al., 2005). Thus, it is
necessary to understand the seasonal distinctions of extreme SST
values in space. Prior to the derivation of the seasonal variations,
it was necessary to check whether the computed extremes were
statistically significant by applying the POT method to the
monthly observation data. GPD fitting was conducted on the
observed data distribution at a point (134.88◦ E, 42.88◦ N)
for each month from January to December (Figures 8A–L).
In each monthly plot, the red curves represent the fitted GPD
distributions at relatively high SSTs during each month. As
inferred from the tail of the GPD distribution, the end of the tail
reached a much higher temperature range by revealing a slower
decrease in August compared to January, with a rapid drop in the
GPD distribution. Therefore, it is expected that the extreme SSTs
would yield much higher values in summer than in winter, with
exceptions near the frontal region. As a result of the Q-Q plots
of all months in Figure 8M, we found that all the monthly data
distributions followed the GPD well for all months. The predicted

quantiles showed good agreement with the observed quantiles
of the SST data for each month from January to December.
This coincidence implies that monthly SST data are statistically
significant enough to calculate monthly 100-year SSTs.

Based on the aforementioned results, monthly 100-year return
extreme SSTs of the entire EJS were calculated using the POT
method. As shown in Figure 9A, the extreme SST was highest
in August and lowest in February, similar to the seasonal
variational characteristics of the SST in the EJS. The monthly
distribution of SST extremes showed the general features of
SST distribution. However, highly extreme SSTs up to 40◦C
were derived at some points with a red circle-like feature
in the southern part of the EJS in August. This may be
induced by the POT method, which computes the extreme
values based on the statistical distribution function by analyzing
only past observations. Overall, potential extreme values were
simulated comparatively well by the POT method. However,
if the number of observed data is insufficient, the method
may have limitations in computing abnormally large values, as
mentioned in the previous section (Materials and Methods); this
is further discussed in the subsequent section (“Discussion”).
Figure 9B shows the monthly maps of the differences between the
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FIGURE 8 | Examples for the computed result of the monthly extreme SST. (A–L) Distribution of the probability of monthly SST values, where the red line represents
the fitted distribution for the computation of the extreme SST by the POT method and (M) Q-Q plot for all months.

computed 100-year SST values and the mean of the upper 5th-
percentile SST values over the past decades. Regardless of time,
all monthly difference maps illustrated positive differences larger
than 0.18◦C, implying that extreme SST estimations appeared
larger than the past observations over the entire EJS. The
computed extremes exceeding 2◦C were distributed near the
subpolar front in the central region from December to April,
in contrast with relatively low differences in the northern and
southern regions, which were <1◦C. The smallest differences
appeared with an average of 0.95◦C in March. In contrast, the
positive differences were broadly distributed over the entire
region of the EJS, with particular amplified features in October
and November. The derived SST extremes tended to be much
higher than the observed maximum SSTs in summer (June to
August) and autumn (October and November).

In order to analyze the monthly variations of the difference
in Figure 9B more quantitatively, the number of pixels with
differences >2◦C for each month is plotted in Figure 10.
The number histogram showed that the relatively higher
extremes, as compared with the upper 5th percentile of the
SST data, showed high values in the order of October, July,
November, and June. In contrast, small extremes appeared in
March and February. Overall, there are many pixels where
the extreme SST is computed to increase significantly from
June to November. That is, it was expected that the 100-
year return SSTs would be much higher (>2◦C), mainly in
the summer–autumn period. Conversely, in late winter–early
spring (February–March), the 100-year SST was computed to
be not considerably higher than in the past (<2◦C) at many
points. This seasonal distribution is similar to that of the
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FIGURE 9 | Spatial distribution of (A) monthly 100-year return SSTs using the POT method and (B) temperature differences between the computed SST extremes
and mean values of satellite-observed SSTs (1982–2018) within the upper 5th percentile.

FIGURE 10 | The number of pixels with differences over 2◦C between the
computed 100-year SSTs and mean satellite-observed SSTs within the upper
5th percentile from 1982 to 2018.

warming trends in the EJS, as presented in a previous study
(Lee and Park, 2019).

Comparison of the Computed Extreme
Sea Surface Temperatures to Numerical
Model Simulation
The results of numerical simulations have been extensively
used to understand SST warming in the future. CMIP5 is

one of the representative models for climate change scenarios.
Using the model results of the selected CMIP5 model, we
obtained the monthly mean SST value for the period from
2005 to 2099, which is closest to the 100-year future.
Figure 11 shows the spatial distribution of the maximum
SST values for each pixel for the future period. Although the
spatial grid is too large to represent the spatial distinction,
there is an obvious contrast in temperatures between the
northern and southern parts. The simulated maximum values
ranged from 16.52◦C in the northern part to 33.14◦C in
the southern part. One remarkable feature was found in the
near-coast regions of Japan (34◦–40◦ N) and North Korea
(∼40◦ N). The simulated temperatures were distributed in
a wider range compared to the 100-year SST value (19.04–
30.96◦C) computed by applying the POT method to the
OISST data for the past 37 years (Figure 7A). There were
slight differences between the computed SST extremes and
the simulated model SSTs in terms of the temperature and
spatial distribution. The model SST maximum revealed a
characteristic feature with higher SSTs in the coastal region
of the Korean Peninsula and Japanese coast than those in the
open sea areas. Concentrated on the isotherm of approximately
26◦C, the maximum SSTs from the model simulation were
spatially dominant in the coastal region of the Korean
Peninsula up to 42 ◦N compared to the offshore region in the
central part of the EJS. The limitation of this characteristic
distribution is that it is difficult to compare accurately because
both satellite and model data have relatively low accuracies
in coastal regions (Lee and Park, 2020). In particular, for
different spatial resolutions, 1◦ resolution model data and 0.25◦
resolution satellite data produced relatively large errors in
the coastal region.
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FIGURE 11 | Spatial distribution of CMIP5 model-simulated maximum SSTs
for a period from December 2005 to November 2099 in the future.

Figure 12 shows a comparison between the computed 100-
year SST values and simulated SST values from the CMIP5 model.
The computed 100-year SST values included in the CMIP5
model grid with a 1◦ interval were averaged and compared
with the model-estimated maximum value. In narrow channels
such as the Tatar Strait in the northern EJS, the comparison is
impossible owing to large differences in the grids. Accordingly,
the data in the northern part at latitudes higher than 46 ◦N
were excluded from the comparison because of their low spatial
resolutions. The maximum value of the model-simulated SST
data ranged from 22.36 to 33.14◦C, and the 100-year SSTs
calculated from the OISST data ranged from 21.98 to 30.62◦C.
The differences between the two values (computed 100-year SST–
model-simulated maximum SST) were close to zero when the
model-simulated maximum SST was in the middle range of 25–
28◦C. However, in other ranges, the 100-year SST values tended
to be lower than the model results. The bias of the differences was
negative at about –0.36◦C, implying higher SST maximum values
than the 100-year SST computations. The RMS of the differences
amounted to 1.33◦C. As both SST extremes are fundamentally
different in terms of the conceptual approach, the relatively high
RMS and bias errors do not emphasize which SSTs are more

FIGURE 12 | Comparison of the computed 100-year return SSTs based on
the POT method and the maximum SSTs from the CMIP5 model-simulated
data for a period from December 2005 to November 2099.

pertinent to understanding the extreme SST values. Additionally,
both data have uncertainties, such that the brief coincidence of
the trends can be acceptable for understanding the upcoming SST
extremes in the future.

DISCUSSION

Abnormally High Sea Surface
Temperature Extremes
In this study, we have shown the possibility that extreme SSTs
could be computed as long-period-return SSTs by applying the
POT method through satellite-observed data. However, some
pixels produced abnormally high extreme SSTs of >40◦C in
the application of monthly extremes, especially in August, with
an annual maximum for a year (Figure 9A). Unexpected high
extremes of this type can be produced in the following cases:
the first case can be found when high SST values are rarely
observed because of the low observation frequency of large
values. Relatively small data facilitate the generation of an
unusually long tail in the direction of the higher SST values
in the GPD fitting process. This tendency may produce the
computed extreme SSTs from the fitted PDF curve. This problem
originating from the low number of observations is expected to
be resolved as more data are collected with the extension of the
observation period. Extremely high SSTs with spatial dominance
were detected in only a few pixels in a certain month of summer.
From this perspective, the computed SST extremes over the entire
period can be regarded as reasonable results fitted comparatively
well to the GPD.
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Uncertainty of the Result From the
Model Simulation
For the comparison of the 100-year return extreme SSTs based
on the POT method, this study selected one of the prediction
results of the climate change models. As the result of the
comparison, the two SST extreme values showed a similarity in
the overall spatial distribution, except for some coastal areas.
There were slight differences with a bias of –0.36◦C and an
RMS difference of 1.33◦C. These differences can be regarded
as acceptable errors because of substantial differences in the
present approach from the maximum SSTs of the climate model
simulation. Additionally, both the 100-year SST extremes and
the model prediction results have their own uncertainty from
different sources. Model simulation requires several assumptions
with many limitations and arguments. The present approach
focuses only on the statistical shape of the non-stationary data.
In terms of dealing with extreme values, however, the model
results were positively comparable to the results of this study with
similar spatial patterns. It is encouraging that the POT method
can be applied to satellite SSTs and can simulate a similar feature
to the climate model without the limitation of computations
for a complete understanding of the climate system. In light of
this, our study can help us know in advance what the future
oceanic world will look like though rough statistical predictions
of extreme SSTs in the future based on satellite-observed SST data
over the past decades.

CONCLUSION

In this study, we computed the 100-year return SSTs, as extreme
SSTs, using the POT method as a statistical method for non-
stationary data. Prior to the application of the non-stationary
method, we investigated whether the satellite SST data can be
treated as non-stationary data through significance tests of the
long-term trend of the SSTs within the 95-percent confidence
level. The POT method was superior to other methods (IDM
and BMM) in deriving extreme SSTs based on the GPD statistical
distribution. The POT application confirmed the possibility of
computing extreme SSTs. The results presented that extreme SSTs
were higher than the maximum SSTs of previously observed
satellite data by 1.60–3.44◦C. Monthly variations of the SST
extremes revealed proper features except for a few pixels, partly
because of less observation in the local regions in summer. The
spatial distribution of the computed SST extreme values showed
good agreement with the maximum SSTs predicted by the model
simulation of climate change. The magnitudes of the extreme
SSTs were comparable to the model-simulated SSTs.

Based on these results, the EVA method, especially the POT
method, can be useful tools to compute the long-term return
SSTs as an alternative to model prediction, which requires a

large amount of input data and a long computational execution
time. This study was the first to use the POT method to derive
the 100-year return extreme values of SST as one of the most
representative oceanic and atmospheric variables, and suggested
the possibility of its application in understanding the future ocean
using satellite SST data accumulated over the past decades. This
study focused on the EJS; however, it can be extended to the
global ocean as well as to many marginal seas. Thus, this study
is expected to contribute to the monitoring of future extreme SST
changes in the global ocean.
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