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INTRODUCTION

The intertidal barnacle Semibalanus balanoides (Crustacea, Cirripedia) is a common organism on
North Atlantic rocky shores (Hutchins, 1947; Bousfield, 1954; Crisp, 1964; Jenkins et al., 2000;
Flight et al., 2012; Crickenberger and Wethey, 2018). Adults are sessile and reproduce through
pelagic larvae. Due to its wide niche breadth, its various ecological roles (filter-feeder, competitor,
facilitator, and prey), and its utility as an ecological indicator, it has often been used as a model
species to advance ecological theory (Connell, 1961; Menge and Sutherland, 1976; Bertness et al.,
1999; Belt et al., 2009; Burrows et al., 2010; Crickenberger andWethey, 2018; Scrosati and Freeman,
2019; Scrosati, 2021). Recruitment is an aspect of its life cycle that has particularly been investigated,
given its relevance for population replenishment and persistence. For barnacles, recruitment refers
to the appearance of new organisms on the substrate as a result of the metamorphosis of settled
larvae. Settlement refers to the permanent attachment that the pelagic larvae establish on a substrate
(Jenkins et al., 2000; Blythe and Pineda, 2009).

The magnitude of annual recruitment is often estimated as recruit density measured at a
point in time selected by the researcher. When the timing of the recruitment season (the period
during which recruits appear on the shore) can be anticipated with some confidence, recruit
density is typically measured as close as possible to the end of this period to quantify annual
recruitment. This approach, however, may miss early recruits that may die and be removed from
the substrate by natural causes before recruit density is measured. The resulting underestimation
of annual recruitment may thus limit our understanding of recruit ecology (Minchinton and
Scheibling, 1993; Shanks et al., 2014). On the other hand, unpredictable natural variation may
add additional recruits after recruit density is measured if the recruitment season is longer than
anticipated. Thus, recruitment dynamics are best studied through frequent field surveys spanning
the recruitment season and dates beyond its suspected end. Conducting frequent surveys during
the recruitment season also matters because the drivers of recruit performance (e.g., pelagic food
supply, environmental stressors, and benthic predators) often vary in intensity during that period
(Menge, 2000).

On the open Atlantic coast of Nova Scotia (Canada), the recruitment of Semibalanus balanoides
typically takes place in May and June (Ellrich et al., 2016a). This article discusses the recruitment
and post-recruitment dynamics of S. balanoides from this coast using data on recruit appearance,
mortality, density, and size collected frequently between May and October 2019. We discuss the
salient temporal patterns in a context related mainly to S. balanoides recruitment.

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.799514
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.799514&domain=pdf&date_stamp=2021-12-08
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rscrosat@stfx.ca
https://doi.org/10.3389/fmars.2021.799514
https://www.frontiersin.org/articles/10.3389/fmars.2021.799514/full


Scrosati and Holt Barnacle Recruitment and Post-recruitment

MATERIALS AND METHODS

We did this study at Western Head, a prominent rocky headland
located on the Atlantic coast of Nova Scotia (43.9896◦ N,
64.6607◦ W; Figure 1A). We took all measurements in intertidal
bedrock areas that directly face the open ocean, so these are wave-
exposed habitats (Figure 1B).Maximumwater velocitymeasured
in nearby wave-exposed intertidal habitats can reach 12m s−1

(Hunt and Scheibling, 2001). To establish our sampling units,
we first determined the elevation (in m above chart datum,
or lowest normal tide) of the upper distribution boundary
of the sessile perennial species that occurred highest on the
shore (coincidentally, Semibalanus balanoides) on rocky surfaces
excluding tide pools and crevices. This vertical distance was
2.2m, which is similar to the maximum tidal amplitude for this
location (2.3m, Tide and Current Predictor, 2021). We then
divided this vertical distance in three and measured all recruit
variables (named below) just above the lower boundary of the
upper third of this vertical range. Therefore, our barnacle data
were measured at an elevation of 1.5m. This high-to-middle
elevation was selected because barnacles are abundant there and
also to make our data comparable with recent barnacle surveys
done at that elevation at other wave-exposed locations along the
Atlantic coast of Nova Scotia (Scrosati and Ellrich, 2018, 2019).

To measure barnacle recruitment unaffected by other sessile
species, in late April 2019 (shortly before the recruitment season)
we cleared eight patches of rocky substrate spaced at random
along the coastline at the targeted elevation. From each patch,
we removed all sessile organisms with a chisel and a metallic
scrubber. At the center of each patch, we delimited a square area
(10 cm × 10 cm) permanently by marking two vertices on the
substrate to ensure accurate relocation of such clearings across
sampling dates. On the Nova Scotia coast, natural rock clearings
provide more realistic measures of barnacle recruitment than
plates covered with 3M Safety-Walk tape, which are used on other
coasts (Scrosati and Ellrich, 2018). We took photographs of the
square clearings during low tides (framing the clearings with a
100-cm2 quadrat) on 2 May, 9 May, 10 May, 17 May, 23 May, 28
May, 1 June, 9 June, 13 June, 24 June, 3 July, 22 July, 20 August,
2 September, and 26 October. The surveys were more frequent
during May and June to discern the dynamics of recruitment,
although surveys could not then be done more often because of
tide dynamics and wave action.

We analyzed the photographs with ImageJ to determine the
appearance, size, and survival of each recruit throughout time.
These measurements were possible because barnacles remain
permanently attached to the substrate after larval settlement and
metamorphosis (Blythe and Pineda, 2009). The appearance of a
recruit was recorded for a given sampling date when that recruit
was absent in the previous sampling date. The size of a recruit was
measured as the basal diameter of its shell (Bertness et al., 1991).
The mortality of a recruit was recorded for a given sampling date
when only the shell plates of a previously live individual were
observed on that date (“empty” shell).

Because of natural topographic heterogeneity (Helmuth et al.,
2006; Harley, 2008; Mislan et al., 2011; Sejr et al., 2021),
differences among the clearings relevant to this study became

apparent during the surveys. Some clearings seemed to receive
more wave splash than others. Thus, for most dates inMay (when
wave action was often intense), a visually reflective film of water
remained over four of the eight clearings during the low tide; this
water layer could not be removed to take pictures due to wave
action. In addition, ephemeral green algae appeared on those
four clearings during May, likely favored by those conditions.
These unexpected developments prevented us from accurately
identifying the barnacle recruits from those four clearings for
most of May. Therefore, we are reporting results for the four
clearings that were possible to monitor in detail throughout
the entire study period. These clearings are representative of
Western Head because they spanned the studied coastline along
the targeted elevation.

In this article, the barnacles that appeared in May and
June and were monitored until October are always referred to
as recruits even though many of them reached adult size in
October. This approach facilitates the description of temporal
patterns by making clear that only the organisms recruited in
May and June 2019 were monitored. The data collected for this
article are freely available from the figshare online repository
(Scrosati and Holt, 2021).

RESULTS

Barnacle Recruitment
The first recruits appeared at some point between 2 and 9 May
(no recruits were seen on 2 May) and the last recruits appeared
between 13 and 24 June (no new recruits were seen after 24 June).
During this period, the daily rate of barnacle recruitment varied
significantly over time (repeated-measures ANOVA, F = 3.43, P
= 0.017; Figure 2A). By 17 May, 74% of the recruits identified in
this study had already appeared on the substrate, while 90% of
all identified recruits were on the substrate by 28 May. Therefore,
recruitment in June was low. The highest value of recruitment
rate obtained for a single quadrat (11 recruits dm−2 day−1) was
recorded on 10May. A visual example of the temporal changes in
recruitment is offered in Figure 1C.

Recruit Mortality
No recruit deaths were recorded during the recruitment
season (May and June) or in early July. Dead recruits were
only found between 22 July and the end of the study on
26 October. During this period, the daily mortality rate of
recruits did not vary significantly (repeated-measures ANOVA,
F = 0.95, P = 0.456; Figure 2B). Overall, mortality was
considerably lower than the recruitment seen during May.
Relative to the values of recruit density recorded on 24 June
(peak recruit density before any mortality had occurred), the
average percent mortality rate on 26 October was 10.5% (N =

4 quadrats).

Recruit Density
During the studied period, the density of live recruits varied
significantly over time (repeated-measures ANOVA, F = 7.70,
P < 0.001; Figure 2C). One of the four clearings could not
be surveyed on 10 and 17 May because of intense wave
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FIGURE 1 | (A) Map showing the position of Western Head and other intertidal locations from the Nova Scotia coast mentioned in the text. (B) View of the coast of

Western Head during a low tide. (C) Photographs of one of the clearings taken at low tide on eight representative sampling dates (see section Materials and Methods

for the full list of sampling dates). Each photograph shows the inner frame (10 cm × 10 cm) of the PVC quadrat that was used as a size reference to measure the body

size of each barnacle recruit. The arrow in the photograph for the last sampling date points to a dead barnacle (empty shell). These photographs were taken by R. A.

Scrosati.

action. As that clearing had a lower recruit density than the
others, the mean recruit density reported for those two dates
is higher than the means expected from the dotted line shown
in Figure 2C joining the means for 9 and 23 May, which
were calculated (like for all other dates) using density data for
all four clearings. Overall, recruit density increased strongly
during May and weakly during June and decreased weakly
due to mortality between late July and October. On average
for the four surveyed clearings, peak recruit density (recorded

on 24 June at the end of the recruitment season) was 58.5
recruits dm−2.

Recruit Size
The temporal change in recruit size is shown in Figure 2D.
This figure summarizes the data for the recruits found on
9 May because those are the earliest (and most numerous)
group of recruits that appeared on the shore. This approach
allows us to evaluate growth during the entire study period
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FIGURE 2 | Temporal change (mean ± SE) in (A) barnacle recruitment rate (number of recruits appeared on the substrate since the previous sampling date expressed

per day and per unit area), (B) mortality rate of recruits (number of dead recruits appeared on the substrate since the previous sampling date expressed per day and

per unit area), (C) recruit density (number of live recruits per unit area), and (D) barnacle body size (basal shell diameter of live recruits).

using the same organisms. During the studied period, recruit
size varied significantly over time (repeated-measures ANOVA,
F = 1,028.95, P < 0.001). For size calculations, we did
not measure the size of the empty barnacle shells found
between 22 July and 26 October because they indicated
dead barnacles. Overall, recruit size followed a sigmoidal

pattern throughout the study period, growth increasing from
May to July and decreasing from July to October. The
largest barnacle recorded at the end of the study period
on 26 October was 1.1 cm in basal shell diameter. A visual
example of the temporal changes in recruit size is offered in
Figure 1C.
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DISCUSSION OF THE SALIENT PATTERNS

The short recruitment season of Semibalanus balanoides
compared with other barnacle species whose recruitment spans
several months (e.g., on the NE Pacific coast; Navarrete
et al., 2008) suggests that monthly variation in the drivers of
recruitment may be particularly critical for S. balanoides. For
example, unusually extreme events (e.g., food shortages, heat
waves) in May might result in recruitment failures or diminished
recruitment affecting population persistence. Such monthly
events would not equally affect barnacle species for which
strong recruitment in other months could have a compensatory
influence. On the other hand, the appearance of most S.
balanoides recruits in the first few weeks of the recruitment
season at Western Head parallels the general trend found for
S. balanoides in Europe, even though differences among sites
naturally occur (Jenkins et al., 2000).

The timing of recruitment of Semibalanus balanoides changes
latitudinally along the Atlantic coast of North America. Past
studies in Nova Scotia yielded similar results. For example, a
study done in 1988 at Sandy Cove (103 km northeast of Western
Head) found that settlement started on 22 April and that the
main settlement period ended on 15 June at middle and low
elevations (Minchinton and Scheibling, 1993). A study done in
2011 at Glasgow Head (328 km northeast of Western Head)
in semi-exposed habitats found that recruitment started after 2
May and that no settlement occurred after 15 June at the high
intertidal zone (Ellrich et al., 2016a). Studies done at Deming
Island (308 km northeast of Western Head) in semi-exposed
habitats found that recruitment started on 30 April in 2012 and
on 9 May in 2013 on areas located predominantly at the mid-
intertidal zone (Ellrich et al., 2016b). It is thus possible that, in
Nova Scotia, recruitment may start a few days earlier at middle
elevations than at high elevations. Field observations done by
R. Scrosati at various wave-exposed locations spanning 415 km
of the Atlantic coast of Nova Scotia between 2014 and 2021
never found any settled cyprids or recruits before early May
at high-to-middle elevations (the zone surveyed for this study).
Therefore, the recruitment season in these environments spans
May and June. Toward lower latitudes along the Atlantic coast
of North America, recruitment occurs increasingly earlier in the
year. For example, in southern New Brunswick (situated between
Nova Scotia and New England, USA), settlement begins in April
and ends in May (Bousfield, 1954; Le Tourneux and Bourget,
1988). In New England itself, recruitment takes place between
January or February and April or May (Hutchins, 1947; Bertness
et al., 1992; Jarrett and Pechenik, 1997; Pineda et al., 2002, 2006;
Blythe and Pineda, 2009) and settlement ceases in late May in
Maine, to the north, but in late March in Rhode Island, to the
south (Bertness and Gaines, 1993). A similar latitudinal gradient
in the timing of S. balanoides recruitment occurs in Europe,
as recruitment occurs in summer on the Barents Sea coast in
northern Russia (Hutchins, 1947) but in mid- to late winter in the
United Kingdom and NW Spain, near its southern distribution
limit (Hutchins, 1947; Lewis, 1986).

The mortality of recruits observed between July and
September at Western Head was likely caused by heat and

desiccation stress during low tides (Bertness and Gaines, 1993;
Menge, 2000). For instance, temperature measured at low tide
on the rocky substrate near the surveyed clearings at Western
Head exceeded 30◦C on 8 days in July-August 2019 (with a
maximum value of 35◦C), while sea surface temperature (SST)
measured at high tide barely surpassed 17◦C during that period.
In June, temperature at low tide only surpassed 28◦C in 2 days
and was lower than 25◦C in 22 days (Scrosati et al., 2020). At
the surveyed high-to-middle elevations in these wave-exposed
habitats, barnacle predators (dogwhelks, Nucella lapillus) were
rare during the studied period. Dogwhelks are more common
at lower elevations on more sheltered habitats (Minchinton and
Scheibling, 1993; Menge, 2000).

The ultimate drivers of recruit density at the end of the
recruitment season at Western Head remain to be determined,
although larval and food supply (Menge and Menge, 2019;
Shanks and Morgan, 2019) together with benign conditions
before the summer and scarcity of predators must play a
predominant role. At lower elevations in wave-exposed habitats
at Western Head, recruitment is higher, likely because of
increased larval supply due to the longer submergence periods
(Scrosati, 2020); a similar pattern was found in Rhode Island
(Bertness et al., 1992). At other wave-exposed locations surveyed
at high-to-middle elevations on the Nova Scotia coast, recruit
density can be higher (up to a locationwise average of 212 recruits
dm−2) and positively related to planktonic food supply and
SST (Scrosati and Ellrich, 2018). On other shores, Semibalanus
balanoides can exhibit even higher recruitment. For example,
recruit density in wave-exposed locations can range between
800–1,100 recruits dm−2 in Maine (Menge, 1978) and 1,600–
2,000 recruits dm−2 in Ireland (Jenkins et al., 2000). Thus, wave-
exposed intertidal environments on the open Atlantic coast of
Nova Scotia show relatively moderate values.

The recruits of Semibalanus balanoides showed a classic
sigmoidal growth pattern (Sköld et al., 2001; Tjørve and Tjørve,
2017) until reaching adult sizes in the fall. Organisms of a similar
age collected in 2011 at GlasgowHead, north ofWesternHead on
theNova Scotia coast, had reached reproductivematurity because
they had eggs (Ellrich et al., 2016a). Thus, the grown recruits
seen in October at Western Head may have been reproductive
as well. This assumption is further supported by the notion that
S. balanoides individuals with basal widths <4mm are typically
non-reproductive (Pineda et al., 2002; Bouchard and Aiken,
2012). We also note that, at Western Head, S. balanoides recruits
generally grow larger than at other wave-exposed sites surveyed
at the same elevation zone along the Atlantic coast of Nova Scotia.
This growth is positively related to nearshore phytoplankton
abundance (Scrosati and Ellrich, 2019), which could be driven
in part by coastal upwelling, a phenomenon that is prevalent in
summer at Western Head (Scrosati and Ellrich, 2020a,b). Body
size and coastal phytoplankton abundance are also related in S.
balanoides from Europe (Burrows et al., 2010).

Finally, the relative importance of recruitment vs. post-
recruitment processes for population maintenance has received
considerable attention in intertidal ecology, with results that
often depend on the environmental context (Scrosati, 1998;
Menge, 2000; Svensson et al., 2004). The data hereby described
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for Western Head and the positive recruit–adult relationship
found for similar habitats along the Nova Scotia coast
(Scrosati and Ellrich, 2018) suggest that recruitment plays an
important role in structuring barnacle populations in mid-to-
high intertidal, wave-exposed environments on this coast.

MAIN CONCLUSIONS

• Recruitment of Semibalanus balanoides in wave-exposed rocky
intertidal habitats at Western Head occurred in May and June,
which is thus confirmed to be the recruitment season.

• Nearly 3/4 of the recruits appeared during the first half of
May, while 9 in 10 recruits were on the substrate by the end
of May, so recruitment during June was low, with no recruits
appearing near the end of that month.

• No recruit mortality occurred during the recruitment season
or in early July.

• Recruit mortality only occurred between late July and the end
of the study (late October), although with rates considerably
lower than May recruitment rates.

• Recruits grew in size following a sigmoidal pattern until
reaching adult sizes in the fall.

• Overall, these findings indicate that recruit density measured
between late June and early July would accurately represent the
rate of annual recruitment for S. balanoides.
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