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Industrial farming is an alternative mode for Pinctada maxima juvenile cultivation to
avoid mass mortality caused by natural disasters. Suitable and enough food is crucial
for successful industrial bivalve farming. To investigate the feasibility of live microalga
instead of spray-dried microalgal powder in P. maxima juvenile industrial farming, this
study replaces a positive control live microalgal diet [Isochrysis zhanjiangensis (L-iso) and
Platymonas subcordiformis (L-pla)] with spray-dried I. zhanjiangensis powder (P-iso) and
P. subcordiformis powder (P-pla). Continuous feeding trials (30 days) were conducted
on the P. maxima juvenile (1.2008 ± 0.0009 g initial weight and 30.12 ± 0.05 mm initial
shell length), under laboratory conditions. Survival, growth performance, and intestinal
microbial community were studied and compared across the groups. Results showed
that survival rate (SR) did not differ significantly across the groups (ranged from 84 to
86%, P > 0.05). The growth performance in spray-dried microalgal groups, including
total weight (TW), shell height (SH), absolute growth rate (AGR), and relative growth
rate (RGR) for SH and TW, was slightly lower than that in live microalgal groups, while
the activities of pepsin (PES), amylase (AMS), and lipase (LPS) were significantly higher
(P < 0.05). The best growth performance was observed in the L-iso group, followed by
the L-pla group. A 16S rRNA-based sequencing revealed that Proteobacteria was the
dominant phylum in P. maxima juvenile intestinal bacterial community under controlled
conditions, which accounted for 62–82% across groups. The intestinal bacteria at the
genus level were more sensitive to diets, whereas Burkholderia was the dominant genus
in both L-iso (66.52 ± 6.43%) and L-pla groups (54.00 ± 5.66%), while Mycoplasma,
Alphaproteobacteria, and Oxyphotobacteria were in both P-iso and P-pla groups. The
P-pla group got higher ACE, Chao1, and Simpson and Shannon indices (P < 0.05). The
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above results suggested that the spray-dried P-iso and P-pla can serve as substitutes
for live microalga in P. maxima juvenile industrial farming under controlled conditions.
The finding in this study provides basic data to optimize industrial farming technology
and healthy management for P. maxima juvenile.

Keywords: Pinctada maxima, juvenile, industrial farming, microalga substitution, spray-dried microalga powder

INTRODUCTION

The mollusks are the second-largest animal phylum with almost
100,000 species, of which 15,000 are bivalves (Barnes et al., 1993),
and bivalves culturing is considered a sustainable maricultural
practice as most bivalves obtain nutrition from natural seawater
without artificial food input (Zhou et al., 2006; Zheng et al.,
2020). Pearl oyster Pinctada maxima is known for producing
large-sized nucleated pearls, which are among the most expensive
pearls worldwide (Zhao et al., 2003). The species is naturally
distributed in the central Indo-Pacific region from Myanmar
to the Solomon Islands, including the Philippines, China,
Australia, Papua New Guinea, Indonesia, Polynesia, Micronesia,
and Southern Japan (Liang et al., 2016; He et al., 2021). In
China, P. maxima exists naturally along with the coastal areas of
southern provinces, such as Hainan, Guangxi, and Guangdong
provinces. In addition, researchers have studied the protocols for
seed production and pearl culturing of P. maxima since the early
1970s, while pearl production in this species was experimentally
successful in the 1980s. However, the P. maxima pearl production
industry has developed at a slow pace over the past decades,
for overfished wild populations and mass mortality at juvenile
stages. Aiming to solve this problem, researchers improved
the survival rates (SRs) by developing rearing protocols for
larvae, spat, and adults, as well as introducing wild populations
(Liang et al., 2016).

Raft and pile farming offshore are the dominant farming
modes of bivalves that are susceptible to natural disasters and
pollution of the sea area. In contrast, the industrial farming mode
can effectively reduce or avoid the above disadvantages, involving
a combination of culture engineering and water treatment
protocols (Wang et al., 2015). Under the industrial farming
mode, the animals can be fed on high-quality diets to improve
survival and growth rates. Pearl oyster P. maxima cultivation in
China generally occurs in inshore or nearshore estuarine areas,
where salinity fluctuates due to heavy rains and runoff in the
summer months. The changes in environmental factors are bad
for P. maxima juvenile survival and growth, even causing mass
mortality (Deng et al., 2013). Thus, the industrial farming mode
is an alternative and appropriate mode for P. maxima farming. In
general, the industrial farming mode involves high stocking and
requires a large demand for food diets. Phytoplankton, bacteria,
organic debris, and microzooplankton from the sea are the food
sources for bivalves, and phytoplankton is the dominant (Wang
et al., 2010). However, diets that solely comprise microalgae
can hardly meet the demand in bivalve industrial farming, and
large-scale microalgal culture is often susceptible to changes in
water temperature and salinity. Therefore, choosing suitable food
instead of live microalga, without affecting growth, physiology,

and meeting nutritional requirements from bivalves, is crucial for
the industrial bivalve farming mode development.

The partial or total replacement of microalgal foods by a
cheap, easily handled substitute with the same nutritive qualities
has been attempted by hatcheries, while studies on the nutritional
requirements and artificial feed of bivalve are relatively more
laggard than those on other aquatic animals. A few studies
of artificial diets in bivalve species have been reported, such
as bacterial proteins (Philippe and Christopher, 1994), yeasts
(Nell et al., 1996), microalgal concentrates (Brown and Robert,
2002), spray-dried microalgae (Arney et al., 2015), and so on.
Substituting 50% of the traditional microalgae with single-cell
detritus produced from seaweed (Porphyra haitanensis) can be
used as a partial microalgal substitute for the nursery culture of
the tropical oyster (Crassostrea belcheri) juvenile (Tanyaros and
Chuseingjaw, 2016). Palatable artificial diets have good potential
for replacement of costly natural diets of the green-lipped mussel
Perna canaliculus post-settlement juveniles (Gui et al., 2016a).
Chlorella sp. powder, Spirulina platensis powder, yeast powder,
and soybean meal are suitable protein sources in diets for pearl
oyster Pinctada fucata martensii (Yang et al., 2017a). Microalgae
are still the main nutrient sources for pipi clam, Paphies australis,
particularly for spat and juveniles, while corn flour should be
considered in the formulation of diets for laboratory grown
(Mamat and Alfaro, 2014).

However, information regarding artificial feed, reliable to
substitute for live microalgal feed for pearl oyster P. maxima, is
rare. In this study, we have attempted to explore the feasibility
of using spray-dried microalgae as daily food in P. maxima
juvenile industrial farming and developed industrial farming
methods and technology for P. maxima juvenile. The growth,
digestive enzyme activity, and intestinal microbial community
were characterized under laboratory-controlled conditions in this
study. To our knowledge, this study provides the first insights into
the impacts of diets on intestinal bacteria of P. maxima, where the
findings can provide some information on rearing protocols and
management of industrial farming mode.

MATERIALS AND METHODS

Experimental Animal and Management
The P. maxima juveniles were obtained from Sanya Maifeng
Industrial Co., Ltd. (Hainan, China). Before the experiment,
the juveniles were kept in an aerated cement tank (28 ± 2◦C,
30.0 ± 2 psu, pH 8.0 ± 0.2) for 7 days, fed daily with a mixture
of Isochrysis zhanjiangensis and Platymonas subcordiformis.
A total of 30% water exchange were taken every day to
promise that the water quality is good enough for P. maxima
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TABLE 1 | The survival and growth performance of Pinctada maxima juvenile after 30-day industrial farming.

L-iso P-iso L-pla P-pla

SR (%) 84.13 ± 1.37ab 85.71 ± 2.38a 84.54 ± 1.37a 86.51 ± 1.37a

TW (g) 2.6503 ± 0.1702a 2.3701 ± 0.0302bc 2.5002 ± 0.0201ab 2.2601 ± 0.0301c

SH (mm) 32.3747 ± 0.7783a 25.8183 ± 0.9737b 30.5350 ± 2.2149a 25.8000 ± 0.3885b

AGR of TW (g/d) 0.0469 ± 0.0060a 0.0372 ± 0.0010bc 0.0415 ± 0.0008ab 0.0340 ± 0.0010c

AGR of SH (mm/d) 0.2525 ± 0.026a 0.0339 ± 0.0325c 0.1912 ± 0.0738b 0.0330 ± 0.0129c

RGR of TW (%/d) 0.0391 ± 0.0050a 0.0310 ± 0.0008bc 0.0346 ± 0.0006ab 0.0280 ± 0.0009c

RGR of SH (%/d) 1.0345 ± 0.1063a 0.1391 ± 0.1330b 0.7832 ± 0.3025b 0.1366 ± 0.00531b

The significance level of P < 0.05 was used for all statistical tests. Different lower-case letters indicate significant differences.
SR, survival rate; TW, total weight; SH, shell height; AGR, absolute growth rate; RGR, relative growth rate.

juveniles, where total ammonia-nitrogen <0.05 mg/L and DO
(dissolved oxygen) ≥7 mg/L. Then, P. maxima juveniles were
divided into four rearing groups in triplicates for experiments,
according to different feeding strategies. Triplicate tanks (500 L)
containing 300 juveniles were used for each rearing group.
A total of 3,600 P. maxima juveniles were used in this study,
with 1.2008 ± 0.0009 g initial weight and 30.12 ± 0.05 mm
initial shell length.

Feeding Diets and Experimental Design
The trials of 30 days were carried out. Two species of
live microalgae (Isochrysis zhanjiangensis and Platymonas
subcordiformis) were used in the experimental groups,
respectively, the live I. zhanjiangensis group (L-iso group)
and P. subcordiformis group (L-pla group). However, spray-
dried microalgal powders (I. zhanjiangensis powder and
P. subcordiformis powder) were used for the other two groups,
namely, powder I. zhanjiangensis group (P-iso group) and
powder P. subcordiformis group (P-pla group).

Microalgal stock cultures were obtained from the Microalgae
Laboratories of Ocean College in Hainan University. These
microalgae were cultured in 5 and 45 L glass buckets and grown
at 25.0–27.0◦C in Ningbo 3# nutrient medium. The photoperiod
was 24:0 h (light/dark), and illumination was provided by 2-
day light (40-W) fluorescent tubes. Filtered (0.45 mm) and
UV-treated seawater (salinity, 30.2 psu) was used. Continuous
aeration was provided to enhance growth and prevent the
algae from settling. The microalgae were harvested during
an exponential phase for feeding. The spray-dried microalgal
powder was provided by SDIC Biotech Investment Co., Ltd.
(Beijing, China).

To control the final concentration of microalgae in the
experimental tanks, the feeding quantity was determined by
measuring the original concentration of the different microalgal
diets precisely. Prior to daily feeding, 2 g of each spray-
dried diet was suspended in 1,000 ml of filtered seawater and
pulsed in a commercial blender (JS39D-250, Supor, China).
The liquefied mixture was filtered through a 50-µm mesh to
eliminate foam and larger particles and then diluted to 15 L
with filtered seawater. The diluted suspension was used in
feeding. All diets were fed in culture media at a concentration
of 150,000 cells/ml once every 12 h. The cell counts were made
using a hemocytometer.

Survival and Growth Parameters
After the end of the experiment, the surviving pearl oyster,
P. maxima, in each group was counted to calculate the
SR. SR was calculated using the following equation: Survival
rate = (the number of surviving individuals at the end of the
experiment/the number of individuals at the beginning of the
experiment)× 100%.

The shell height (SH) was measured using a Vernier caliper
(an accuracy of 0.01 mm). In addition, the total weight (TW) was
weighed using an electronic balance (an accuracy of 0.0001 g).
The absolute growth rate (AGR) and relative growth rate (RGR)
were calculated for SH and TW using the following formulas:
AGR = (X2 − X1)/t, RGR = 100% × (X2 − X1)/(t × X1),
where “X1” and “X2” are the average of SH (or TW) at the
beginning and the end of the experiment, respectively, and “t”
is the experimental days.

Sample Collection
All experiments were complied with the standards of the
Guidance of the Care and Use of Laboratory Animals in China.
After the end of the culture, the intestinal tissue of each pearl
oyster was dissected in a sterile environment and stored in liquid
nitrogen for further bacterial community analysis, while soft
tissues except the intestinal tissue and gill were used for digestive
enzyme activity assay.

Assays for Digestive Enzyme Activity
The frozen soft tissues were homogenized on ice in 0.2 M
(w/v) of ice-cold physiological saline (Gawlicka et al., 2000),
and homogenates were centrifuged at 13,000 g for 10 min at
2◦C. The supernatant was separated for enzyme analysis in
triplicate. The activities of pepsin (PES, E.C.3.4.23.1), amylase
(AMS, E.C.3.2.1.1), and lipase (LPS, E.C.3.1.1.3) were used as
biochemical indicators and assayed by the commercial kits from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

DNA Extraction of Microbial Samples
Microbial DNA was extracted from intestinal contents using
the EZNA Stool DNA Kit (Omega Bio-tek, Norcross GA,
United States). The final DNA concentration was quantified by
using Qubit 3.0 Fluorometer (Invitrogen, United States) and
agarose gel electrophoresis (Zheng et al., 2019).
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FIGURE 1 | The digestive enzyme activity of Pinctada maxima juvenile after
30-day industrial farming. The significance level of P < 0.05 was used for all
statistical tests. Different lower-case letters indicate significant differences.
(A) AMS activity, AMS = amylase; (B) LPS activity, LPS = lipase; (C) PES
activity, PES = pepsin.

Amplicon Generation and Sequencing of
Bacteria 16S rRNA Gene
A total of 50 ng DNA were used to generate amplicons. The
V3–V4 region of the bacteria 16S ribosomal RNA gene was
amplified by PCR, using the forward primers containing
the sequence 341F (5′-CCTACGGGNGGCWGCAG-3′)
and reverse primers containing the sequence 805R (5′-
GACTACHVGGGTATCTAATCC-3′). The marker region
of bacteria was amplified by PCR (thermal cycling program:
98◦C for 30 s, 98◦C for 10 s, followed by 35 cycles at 54◦C for
30 s, 72◦C for 45 s, and a final extension at 72◦C for 10 min).
The PCR reactions were performed in triplicate in a 12.5 µl

mixture, containing 2.5 µl forward primer, 2.5 µl reverse primer,
25 µl dd H2O, and 50 ng template DNA. Amplicons were
extracted from 2% agarose gel and purified using the QIAquick
Gel Extraction Kit (Qiagen, Hilden, Germany) according to
the instructions of the manufacturer. Purified products were
subjected to Illumina MiSeq Sequencing platform (Hangzhou,
Lianchuan Gene Technology Company., Ltd., China), generating
paired-end reads.

Bioinformatics Analysis
Raw fasta files were demultiplexed, quality filtered, and analyzed
using QIIME 2.0 (Bolyen et al., 2019). The 250 bp reads were
truncated at any site of more than three sequential bases receiving
a Phred quality score of <Q20. Any reads containing ambiguous
base calls or barcode/primer errors were discarded. Operational
taxonomic units (OTUs) were clustered with 97% similarity
cutoff using UPARSE (version 7.1) (Edgar, 2013)1. Chimeric
sequences were identified and removed using UCHIME. The
phylogenetic affiliation of each 16S rRNA gene sequence was
analyzed by SILVA Classifier (release 132) (Quast et al., 2013)
against Silva 16S rRNA database using the confidence threshold
of 70%. According to the SILVA (release 132) classifier, the
characteristic abundance was performed with normalization by
the relative abundance of each sample, and then, five indexes
(ACE, Chao1, Shannon, Simpson, and Goods coverage) were
calculated using QIIME2 for alpha diversity analysis. Rarefaction
analysis was also performed using the Mothur program. The
structures of the microbial community in different samples were
compared through column diagrams and principal component
analysis (PCA).

Statistical Analysis
The data in this study were expressed as mean ± SE. For
all statistical tests, P-values <0.05 were considered to be
significant. Significant differences of each variable were first
detected using the t-test in enzyme activities among groups.
The least significant difference multiple-range test was used
to determine the significance of differences in growth, alpha
diversity metrics, and the relative abundance of phylum or genus
in the intestinal microbial community. Prior to analysis, data
were tested for normality using Kolmogorov-Smirnov’s test and
for homogeneity of variance using Cochran’s C test. Data that
did not meet the ANOVA assumptions were log-transformed
before analysis, and percentage data were arcsine square-
root-transformed. All statistical analyses were performed using
DPS14.5 software (Hangzhou Rui Feng Information Technology
Co., Ltd., Hangzhou, China).

RESULTS

Effect of Different Diets on Survival and
Growth Performance
The SR was not affected by different diets used in this study
(P > 0.05, Table 1). After 30-day industrial farming, the SR

1http://drive5.com/uparse/
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in all groups ranged from 84 to 86%, without significant
difference. The growth performances in L-iso, P-iso, L-pla,
and P-pla were different (P > 0.05, Table 1). The best growth
performance was observed in the L-iso group, followed by the
L-pla group. The TW in the L-iso group was 2.6503 ± 0.1702 g,
significantly higher than P-iso and P-pla groups (P < 0.05),
and TM for the L-pla group (2.5002 ± 0.0201 g) significantly
higher than the P-pla group (2.2601 ± 0.0301, P < 0.05).
The characteristics of the difference for AGR and RGR of
TW in groups were found the same as TW. The largest SH
was gained in L-iso and L-pla groups (32.3747 ± 0.7783
and 30.5350 ± 2.2149 mm, respectively), significantly
higher than P-iso and P-pla groups (25.8183 ± 0.9737 and
25.8000 ± 0.3885 mm, respectively). The best AGR and RGR of
SH was observed in the L-iso group (0.2525± 0.026 mm/day and
1.0345 ± 0.1063%/day respectively), followed by the L-pla group
(0.1912 ± 0.0738 mm/day, 0.7832 ± 0.3025%/day, respectively).
The significant difference for AGR and RGR of SH was not
existed between P-iso and P-pla groups (P < 0.05).

Effect of Different Diets on Digestive
Enzyme Activity
Oyster filtered out all the diets fed in the experimental groups,
without exception. The microalgal species, used as a daily food
in this study, did not cause a significant difference in digestive
enzyme activity of P. maxima juvenile after 30-day industrial
farming (P > 0.05), while the microalgal types (live or spray-
dried powder) did (P < 0.05, Figure 1). The PES and LPS
activities in the P-iso group were observed highest (1.81 ± 0.20
and 24.22 ± 0.57 U/mg prot, respectively), followed by the P-pla
group (1.74 ± 0.17 and 22.95 ± 1.95 U/mg prot, respectively),
significantly higher than L-iso and L-pla groups (P < 0.05).
In addition, the highest AMS activity (1.61 ± 0.29 U/mg prot)
was found in the P-pla group, followed by the P-iso group
(1.51± 0.20 U/mg prot), significantly higher than L-iso and L-pla
groups (0.57 ± 0.05 and 0.72 ± 0.07 U/mg prot, respectively,
P < 0.05).

Statistical Analysis of Sequences
Through the detection of intestinal microbiota, a total of
1,134,712 high-quality sequences from nine samples were
obtained, with an average of 75,647 sequences per sample-based.
A total of 4,872 OTUs at 97% sequence similarity were obtained,
with an average of 353 OTUs in each sample. In addition,
rarefaction curves indicated that the obtained sequence could
reflect the majority of bacteria diversity in each sample (Figure 2).

In this study, results from the analysis of alpha diversity
metrics showed that the diversity and richness of the intestinal
microbial community had a significant difference in different
diet groups (P < 0.05, Table 2). The ACE and Chao 1 were
used as estimators of community richness, and Shannon and
Simpson were used as estimators of community diversity. The
ACE and Chao1 ranged from 331.92 ± 20.25 to 386.40 ± 20.42
and 331.37 ± 12.48 to 382.16 ± 19.19, respectively, where
Chao1 in the P-iso group was significantly lower than other
groups (P < 0.05). The Simpson in P-iso and P-pla groups was

0.73 ± 0.05, 0.77 ± 0.06, respectively, significantly higher than
L-iso and L-iso groups (0.56± 0.03 and 0.77± 0.06, respectively,
P < 0.05).

Taxonomic Composition
Different diets could significantly affect the relative abundance
of phylum or genus in the intestinal microbial community of
P. maxima juvenile. A total of 31 phyla and 413 genera were
detected in all groups (Figure 3, P < 0.05).

Proteobacteria was the most abundant phylum in all groups,
relative abundance ranged from 62.31 ± 6.17% to 82.37 ± 9.33%
(Figure 3A). In addition, Tenericutes was the core phylum both
in L-pla and P-pla groups (10.19 ± 1.1% and 20.50 ± 2.05%,
respectively). Furthermore, Chlamydiae (7.79 ± 0.67%) and
Firmicutes (5.43 ± 0.66%) were the abundant phyla in the L-iso
group, while Actinobacteria (3.28 ± 0.13%), Planctomycetes
(6.40± 0.58%), and Chloroflexi (1.79± 0.11%) in the P-iso group
and Cyanobacteria (10.52± 1.10%) in the P-pla group.

Burkholderia was the dominant genus in both L-iso
(66.52 ± 6.43%) and L-pla groups (54.00 ± 5.66%), while
Mycoplasma, Alphaproteobacteria, and Oxyphotobacteria were
in both P-iso and P-pla groups. Furthermore, Simkaniaceae and
Variovorax were the dominant genera in the L-iso group, and
hence relative abundance was significantly higher than the other
groups (P < 0.05). Amphritea, Cohaesibacter, and Kiloniella were
the dominant genera in both P-iso and L-pla groups (Figure 3B).

In addition, the principal component analysis (PCA) indicated
that the bacteria community in L-iso and L-pla groups clustered
together, while P-iso and P-pla groups clustered together. The
bacteria community in L-iso and L-pla groups widely differs from
that in P-iso and P-pla groups (Figure 3C).

DISCUSSION

Survival and growth performances are the most important factors
in the pearl oyster industry (Liao et al., 2020). In this study,
we initially attempted to investigate the feasibility of spray-dried
microalgae instead of live microalgae in P. maxima juvenile
industrial farming. After an interview with the technician on the
farm, we confirmed that the growth performance of P. maxima
juveniles from industrial farming in this study was not good
as that cultured in sea area, maybe due to the limited food
availability, and is considered as the bottleneck for developing the
culture mode for bivalves (Yang et al., 2017a,b). Similar results
have been reported previously in species of some bivalves. For
example, the absolute and RGRs of shell length and TW of
the pearl oyster Pinctada martensii spat were lower than those
cultured in the sea (Yang et al., 2015). Even so, the results in
this study showed that P. maxima juvenile cultured indoor can
promise the SR (ranged from 84 to 86%, no significant difference
was observed) and significantly higher than those cultured in the
natural sea (10%, unpublished data form farm). This is because
culturing pearl oyster indoor can avoid the influence of extreme
weather factors effectively, such as typhoons (usually happen
in Hainan from August to October), temperature and salinity
change caused by rain, and so on.
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FIGURE 2 | Rarefaction analyses of all samples. Rarefaction curves represented the number of OUT detected in the L-iso group (L-iso 1, L-iso 2, and L-iso 3), P-iso
group (P-iso 1, P-iso 2, and P-iso 3), L-pla group (L-pla 1, L-pla 2, and L-pla 3), and P-pla group (P-pla 1, P-pla 2, and P-pla 3). Sequences were clustered at 97%
sequence similarity. OTU, operational taxonomic unit.

TABLE 2 | OTUs, ACE, Chao 1, Simpson, Shannon, and Good’s coverage for 16s rRNA libraries of all samples.

L-iso P-iso L-pla P-pla

OTUs 327.33 ± 32.01a 377.67 ± 12.66a 349.67 ± 29.40a 359.00 ± 29.61a

ACE 331.92 ± 20.25a 340.33 ± 14.56a 362.75 ± 21.16a 366.40 ± 20.42a

Chao1 331.37 ± 12.48b 335.38 ± 15.46b 373.28 ± 11.32a 382.16 ± 19.19a

Simpson 0.56 ± 0.03b 0.73 ± 0.05a 0.59 ± 0.04b 0.77 ± 0.06a

Shannon 2.54 ± 0.54a 2.89 ± 0.22a 3.15 ± 0.65a 3.19 ± 0.33a

Goods coverage 1.00 ± 0.00a 1.00 ± 0.00a 1.00 ± 0.00a 1.00 ± 0.00a

The significance level of P < 0.05 was used for all statistical tests. Different lower-case letters indicate significant differences.
OTU, operational taxonomic unit; ACE, abundance-based coverage estimator.

Filter-feeding bivalves usually take phytoplankton as a part
of the natural diet. Isochrysis zhanjiangensis and Platymonas
subcordiformis are the main microalgal species widely used
in the fodder industry as good bait for aquaculture activity
(Zheng et al., 2011; An et al., 2015; Cheng et al., 2020). But an
operation to culture live microalgae requires dedicated staff and
facilities that represent 30–50% of the costs (Gui et al., 2016b),
and live microalgal growth is easily affected by environmental
factors. Therefore, replacing live microalgae with a substitute and
the same nutritive quality food is important and necessary in
filter-feeding bivalve industrial farming. In this study, we used
the spray-dried microalgal powder instead of live microalga.

The results indicated that spray-dried microalgal powder can
promise the P. maxima juvenile SR as live microalgae in
industrial farming, improving pearl oyster production. However,
the growth performance was slower than that in the live
microalgal group. The difference may be caused by the spray-
dried microalgal powder that was insufficient in other essential
nutrients for the growth of pearl oyster juveniles, such as
carbohydrate and protein, or not easy to digest as live microalga
(Numaguchi, 2002; Cheng et al., 2020).

Digestive enzyme activity is often used as an indicator
of digestive processes and nutritional condition of fish,
including AMS, PES, and LPS, and reflects growth performance
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FIGURE 3 | Composition of intestinal microflora of P. maxima fed with different
diets. (A) Microbiota composition at the phylum level with relative abundance.
(B) Microbiota composition at the genus level with relative abundance.
“Others” meant the means of the sum of phylum or genus with relative
abundance < 2% in L-iso, P-iso, L-pla, P-pla groups, respectively. (C) PCA
analisys of bacteria community in different diet groups. The colored plot
represents the bacteria from L-iso, P-iso, L-pla, and P-pla groups.

(Cahu et al., 1998). Various digestive enzymes are involved
in digestive and absorptive processes and are important
indicators of the growth performance of aquatic animals

(Abolfathi et al., 2012). In this study, P. maxima juveniles fed
with spray-dried microalgal powder displayed higher PES,
AMS, and LPS activities than those with live microalgae.
The phenomenon due to spray-dried microalgal powder needs
more energy to digest and absorb nutrients. Thus, the
growth performance is slightly lower, compared with the live
microalgal group.

Intestinal microbiota, composed of a diverse and vast
population of microorganisms, interacting with each other to
form a complex ecological network through various types of
interactions, plays key functions in host growth, physiology,
and development (Nayak, 2010; Deng et al., 2012; Tremaroli
and Bäckhed, 2012). In addition, intestinal microbiota activity
is reported to be related to host longevity (Nayak, 2010).
A disturbance in the intestinal microbial community can lead
to changes in the microbial diversity and abundance of certain
bacteria, resulting in beneficial or harmful effects in the aquatic
animal (Gómez and Balcázar, 2008). An altered microbiota in
the intestine can lead to altered immune functions of hosts
and increase the risk of disease (Morgan et al., 2012). Thus,
maintaining a functional and steady intestinal microbiota is
important to the host. The composition of the intestinal bacterial
community varies with a unique core microbiome in each
specific host species. In comparison to mammals, the intestinal
microbial composition in aquatic animals is susceptible to diet
(De Filippo et al., 2010; Ringø et al., 2016), drugs (Zwolinska-
Wcislo et al., 2011), stresses (Galley et al., 2014), and so on.
The results in this study indicated that the Proteobacteria was
the dominant bacteria in pearl oysters at the phylum level,
consistent with the findings on oysters (Fernandez-Piquer et al.,
2012; Trabal Fernández et al., 2014). Proteobacteria is the largest,
most phenotypically diverse, and abundant phylum throughout
all the life stages of animals (Qin et al., 2010; Sevellec et al.,
2014; Zhou et al., 2018; Liao et al., 2020). Proteobacteria could
catabolize feedstuff components (Jumpertz et al., 2011) and may
play an important role in degrading cellulose and agar, the major
components of food consumed by bivalve mollusks, as well as
fixing nitrogen in the gastrointestinal tract of bivalves (Prieur
et al., 1990; Harris, 1993; Newell, 2004; Liao et al., 2020). The
relative abundance of Proteobacteria in spray-dried microalgal
powder groups was significantly lower than that in live microalgal
groups in this study, and this phenomenon may consequently
result in slower growth performance of P. maxima juveniles in
spray-dried microalgal powder groups.

Microbial identification is meaningful only when microbiota
can be classified at the level of genus or species in relation
to animal husbandry (Petrosino et al., 2009). Burkholderia was
found as the main genus of P. maxima juvenile intestinal
microbial community that from live microalgal groups, while
Mycoplasma, Alphaproteobacteria, and Oxyphotobacteria in
spray-dried microalgal powder groups. This phenomenon
indicated the intestinal bacteria of P. maxima juvenile at
genus were more sensitive to diets. Additionally, the top 10
representative genera mainly comprised of facultative anaerobes
and anaerobes. Both Gram-positive and negative bacteria can
produce phosphatases, helping in nutrient absorption (Ramirez
and Dixon, 2003; Rasheeda et al., 2017). Although the genus
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observed in this study is reported to contain opportunistic
pathogens, such as Burkholderia and Vibrio, all the P. maxima
juvenile examined were healthy. The presence of pathogenic
microbes in the intestinal of aquatic animals can be seen as
a common phenomenon, playing a vital role in the internal
metabolism and immune, rather than playing the role of a
pathogen (Grimes et al., 1985; Pujalte et al., 2003; Valdenegro-
Vega et al., 2013; Wu et al., 2013; Rasheeda et al., 2017).
Alphaproteobacteria was the dominant Proteobacteria, widely
distributed in marine environments (Wagner-Döbler and Biebl,
2006). Mycoplasma is the abundant member of gut microbiota in
numerous vertebrate hosts and has been found to dominate in the
gut of Atlantic salmon (Holben et al., 2002), farmed rainbow trout
Oncorhynchus mykiss (Lyons et al., 2017), Trinidadian guppies
(Sullam et al., 2015), and the long-jawed mudsucker Gillichtythys
mirabilis (Bano et al., 2007).

The intestinal microbiome revealed rich biodiversity that
predictably reacts to changing gut conditions, and diet
components played a key role in regulating the intestinal bacterial
community (Hennersdorf et al., 2016; Huyben et al., 2017). The
overall intestinal bacterial diversity increased in pearl oysters
P. maxima juvenile fed with spray-dried microalgal powder in
this study. Therefore, the spray-dried microalgal powder leads to
a high biodiversity level, benefit to maintain the intestinal micro
ecological balance. The antioxidant capacity and immunity may
be related to the biodiversity level of intestinal bacteria (Nie et al.,
2017; Wang et al., 2017). Thus, the change of antioxidant capacity
and immunity in P. maxima juveniles that feed with spray-dried
microalgal powder need to be established and investigated in the
future, as well as the underlying mechanisms.

CONCLUSION

In summary, this study is the first to analyze the feasibility
of spray-dried microalgal powder instead of live microalga in
P. maxima juvenile industrial farming. The survival, growth, and
intestinal microbial community were used as an indicator for
comparative profiling. The results indicated that the spray-dried
microalgal powder used in this study (Isochrysis zhanjiangensis
and Platymonas subcordiformis powder) can promise the SR
as live microalgae, even though the growth performance is
slightly lower. The characterization of the intestinal bacterial
community of P. maxima juveniles under controlled conditions

was first presented in this study, with Proteobacteria as the
dominant phylum, and intestinal bacteria at the genus level
were more sensitive to diets. However, the relationship between
intestinal bacteria of P. maxima juveniles and diet needs further
research. The results in this study suggested that the spray-dried
I. zhanjiangensis powder and P. subcordiformis powder can serve
as substitutes for live microalgae in P. maxima juvenile industrial
farming under controlled conditions. The findings in this study
will be helpful to develop the industrial farming mode for
P. maxima juvenile, to avoid mass mortality caused by increasing
pollution offshore or unexpected natural disasters. Furthermore,
this study provides basic data to optimize industrial farming
technology and healthy management for P. maxima juvenile.
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