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Shallow coastal soft bottoms are important carbon sinks. Submerged vegetation has
been shown to sequester carbon, increase sedimentary organic carbon (Corg) and thus
suppress greenhouse gas (GHG) emissions. The ongoing regression of seagrass cover
in many areas of the world can therefore lead to accelerated emission of GHGs. In Nordic
waters, seagrass meadows have a high capacity for carbon storage, with some areas
being recognized as blue carbon hotspots. To what extent these carbon stocks lead
to emission of methane (CH4) is not yet known. We investigated benthic CH4 emission
(i.e., net release from the sediment) in relation to seagrass (i.e. Zostera marina) cover
and sedimentary Corg content (%) during the warm summer period (when emissions are
likely to be highest). Methane exchange was measured in situ with benthic chambers at
nine sites distributed in three regions along a salinity gradient from ∼6 in the Baltic Sea
(Finland) to ∼20 in Kattegat (Denmark) and ∼26 in Skagerrak (Sweden). The net release
of CH4 from seagrass sediments and adjacent unvegetated areas was generally low
compared to other coastal habitats in the region (such as mussel banks and wetlands)
and to other seagrass areas worldwide. The lowest net release was found in Finland. We
found a positive relationship between CH4 net release and sedimentary Corg content in
both seagrass meadows and unvegetated areas, whereas no clear relationship between
seagrass cover and CH4 net release was observed. Overall, the data suggest that Nordic
Zostera marina meadows release average levels of CH4 ranging from 0.3 to 3.0 µg CH4

m−2 h−1, which is at least 12–78 times lower (CO2 equivalents) than their carbon
accumulation rates previously estimated from seagrass meadows in the region, thereby
not hampering their role as carbon sinks. Thus, the relatively weak CH4 emissions from
Nordic Z. marina meadows will not outweigh their importance as carbon sinks under
present environmental conditions.
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INTRODUCTION

Methane (CH4) is a very potent greenhouse gas (GHG), with
a global warming potential that is estimated to be 28–34 times
higher than carbon dioxide (CO2) per mole of carbon over
a 100-year period (Myhre et al., 2013). It has been estimated
that about half of the global CH4 emissions generate from
aquatic sources, although there is high variability between regions
and ecosystems (Saunois et al., 2020; Rosentreter et al., 2021).
Oceanic shelves, although marginal in area compared to deep
oceans, contribute to about 75% of the CH4 emission from
oceans worldwide (Bange et al., 1994). Methane in the marine
environment is mainly produced in sediments during anaerobic
degradation of organic matter by methanogenic archaea (Bakker
et al., 2014; Wilson et al., 2020). The produced CH4 may
be oxidized to CO2 in the sediment or released to the water
column in solution by diffusion, via plant–tissue or as gas
bubbles (Reeburgh, 2007; Jeffrey et al., 2019). Generally, only
a small portion of the produced CH4 eventually reaches the
atmosphere, since most CH4 is oxidized by microorganisms
in the sediment and water column (Reeburgh, 2007). Seeping
bubbles released from sediments lose most of their CH4 content
during their passage through the water column and the extent
of that loss depends on the bubble size and water depth (Weber
et al., 2019). This explains why most marine CH4 emissions
derive from the nearshore coastal environment, where there is
less likelihood that the CH4 is oxidized before reaching the
atmosphere (Weber et al., 2019).

Natural wetlands, i.e., vegetated ecosystems where the soil
is water-saturated for most part of the year and which
store large amount of carbon in their soils, account for 20–
30% of the global yearly CH4 emissions and are thus the
single largest non-anthropogenic source of CH4, adding up
to 164 Tg yr−1 to the atmosphere (IPCC, 2001; Bridgham
et al., 2013; He et al., 2015). In the coastal zone, vegetated
habitats (i.e. saltmarshes, mangroves, and seagrass meadows)
are estimated to emit around 4 Tg yr−1 (Al-Haj and Fulweiler,
2020). This emission level is hence low compared to their
terrestrial counterparts, although greater than the release from
open oceans, which are estimated to release between 0.4
and 1.8 Tg yr−1 (Rhee et al., 2009; Borges et al., 2016).
Photosynthetically derived oxygen from submerged plants can
potentially be used by methane-oxidizing bacteria (MOBs) in
the sediment and water column, converting CH4 to CO2, and
thereby hinder emission of CH4 to the atmosphere in these
submerged vegetated ecosystems (Laanbroek, 2010). This may
contrast with conditions in terrestrial and coastal wetlands where
vegetation is emerged, i.e., in direct contact with the atmosphere,
and therefore CH4 will be released without being processed in
the water phase by MOBs (Laanbroek, 2010). Up to 90% of
the CH4 produced in sediments with submerged vegetation can
be reoxidized in the water column (King et al., 1990), but if
the oxygen levels are low, due to for instance stagnant waters
and during high consumption rates, the CH4 may be emitted
to the atmosphere.

High organic loading and anoxic sediments provide
conditions for long-term storage of refractory carbon.

Consequently, coastal vegetated ecosystems such as saltmarshes,
mangroves, and seagrass meadows are efficient sinks of
atmospheric CO2 and referred to as blue carbon habitats
(e.g., Mcleod et al., 2011; Duarte, 2017; Howard et al., 2017).
However, the same conditions that make these habitats
ideal for carbon storage also provide the potential for CH4
production (Al-Haj and Fulweiler, 2020). Conditions that
favor methanogenesis could tip these coastal habitats from
sinks to sources of CO2 and CH4 and thereby accelerate
the greenhouse effect. It is therefore of great importance to
understand the conditions governing the release of CH4 and
other GHGs from these habitats. Studies from tidal saltmarshes
show that CH4 emission is strongly salinity dependent, with
significantly lower emissions at salinities over 18 (Poffenbarger
et al., 2011), while in fresh- to brackish water marshes such a
salinity-driven threshold has been reported to occur already
at salinities above 10 (Wang et al., 2017). In peatlands, sulfate
reduction inhibits methanogenesis and the release of CH4
is low (Dowrick et al., 2006). However, in anoxic marine
sediments, sulfate reduction and methanogenesis may co-occur
(Oremland and Taylor, 1978; Holmer and Kristensen, 1994;
Sela-Adler et al., 2017).

Seagrass meadows have been reported to naturally emit
low to moderate levels of CH4, ranging from 2–5 (Oremland,
1975) to 378 µg m−2 h−1 (Garcias-Bonet and Duarte, 2017).
This is substantially lower than what has been observed in
other marine habitats; for example, saltmarshes can emit over
10,000 µg m−2 h−1 (Whiting and Chanton, 1993). However,
stressors (such as light reduction, habitat fragmentation, and
warming) can dramatically increase CH4 emission in seagrass
systems (Lyimo et al., 2018; Burkholz et al., 2020; George
et al., 2020). Vegetation loss or alteration in macrophyte
species composition may also stimulate methanogenesis in the
sediment (Sutton-Grier and Megonigal, 2011; Lyimo et al., 2018;
Al-Haj and Fulweiler, 2020).

In the Nordic region, seagrass meadows have high capacity for
storing large amounts of carbon in the sediment, in particular,
some sites along the Swedish Skagerrak coast are suggested to
be global hotspots for blue carbon (Dahl et al., 2016; Röhr
et al., 2018; Moksnes et al., 2021). It is previously known
from the coastal southern Baltic Sea that CH4 emissions are
positively correlated to the organic carbon content in sediments
(Heyer and Berger, 2000). Therefore, it is of particular interest
to study blue carbon habitats, such as seagrass meadows,
that may store large amounts of organic carbon (Corg) in
their sediments to understand the fate of stored carbon as
potential sources for GHG emissions. No previous reports
have, however, focused on CH4 emissions from Zostera marina
beds in northern European coastal waters. In the current
study, we aimed to investigate (i) the extent and variability
in CH4 (g) emission from seagrass (Z. marina) dominated
coastal soft bottom sediments in three regions along the
salinity gradient from the Baltic Sea to the North Sea, (ii)
to what degree vegetation cover (in terms of Z. marina)
modifies CH4 (g) emission from the substrate, and (iii)
whether CH4 (g) emission is correlated to the sedimentary
organic carbon content.
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MATERIALS AND METHODS

Study Area
Nordic coastal areas are of particular interest since they stretch
from the Baltic Sea, which is a semi-enclosed water body and
one of the largest brackish water areas in the world, to the
marine environments of Skagerrak and Kattegat through the
Danish straits (Storebælt, Lillebælt, and Öresund). The region is
therefore characterized by a strong, large-scale salinity gradient
from freshwater conditions (0–2) in the Bothnian Bay to marine
conditions (∼34) in the North Sea (Helcom 2017-2018)1. Coastal
shallow habitats in northern areas are deemed by climate scenario
models to be exposed to faster warming than the global average,
with an expected temperature increase ranging from 2◦C in the
southern part of the Baltic Sea to 4◦C in the northern part by
the end of this century (i.e., year 2100, Andersson et al., 2015),
which may influence CH4 emissions from coastal blue carbon
habitats in the future. Further, the coastal waters of the Baltic
Sea, the Kattegat and Skagerrak are surrounded by nine countries
and human activities in the area, adding pressure on the seagrass
ecosystems (Boström et al., 2014). For instance, severe seagrass
loss of about 60% has been reported on the Swedish west coast
between 1980s and 2000s (Baden et al., 2003; Nyqvist et al.,
2009). From some of these areas in Sweden where historical
losses have occurred, it has been estimated that the resulting loss
of carbon from the sediments could be up to 60 Mg C ha−1

(Moksnes et al., 2021).

1http://stateofthebalticsea.helcom.fi/

The current study was carried out during a warm summer
period (with water temperatures ranging from 20 to 23.5◦C; see
Supplementary Table 1) in August 2018 in Z. marina meadows
and adjacent unvegetated areas within three regions, along the
salinity gradient stretching from the Baltic Sea archipelago west
of Turku in Finland (three sites) to the fjords east of Fyn Odense
in Denmark (two sites) and the Gullmar Fjord on the Swedish
Skagerrak coast (four sites) (see Figure 1 and Table 1). At the
Finnish study area, Z. marina grows at the lower end of its salinity
propagation limit (∼6), while the Danish sites have intermediate
salinities (∼20) and the Swedish sites have salinities varying
between 18 and 30 in the surface waters, with a yearly average
of ∼26. Water temperatures were between 20 and 23.5◦C in all
study areas during the sampling period. In Finland, the sites are
moderately exposed, and the sediment consists mainly of fine
to coarse sand with low levels of organic content. In Denmark,
the Nyborg site is exposed to easterly winds and the sediment
is sandy with a low organic content, while the Holckenhavn
Fjord is sheltered, and the sediment is siltier with a low organic
content. In Sweden, the sites are situated in shallow bays exposed
to different levels of hydrodynamic forces and the topmost layers
in the sediments are sandy, silty, or muddy.

Incubation Chambers for Sampling CH4
at Sediment–Water Interface
Incubation chambers, produced by transparent Plexiglas cores
(inner diameter: 4.7 cm, height: 45 cm; Figure 2) containing an
air-filled gas pocket with a gas-tight septum for extraction of

FIGURE 1 | Map of sites (green dots, n = 2–4) in the three sampling regions (countries) with average methane emissions from sediments in seagrass meadows and
unvegetated areas in each region as well as overall for all countries.
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TABLE 1 | Sampling design showing number of replicates, water depth and water temperature in seagrass meadows and adjacent unvegetated habitats at the different
sampling sites, and mean salinity for each of the three sampling regions.

Sampling regions Seagrass replicates Unveg. replicates Seagrass depth Unveg. depth Temp. (◦C) Salinity (mean)

Sites (n) (n) (m) (m)

Finland (Fin) 6

Fårö 6 6 2 2 20

Hummelskär 6 6 2.1–2.2 2.3–2.4 20

Ängsö 6 6 2–2.3 2–2.1 20

Denmark (Den) 20

Holckenhavn Fjord 6 6 2 2 21

Nyborg 5 5 2.5 2.5 23.5

Sweden (Swe) 26

Getevik 6 6 2.2 2.6 21.5

Kristineberg 6 4 3.1 3.5 21.6

Skallhavet 6 6 2.2 2 22.3

Gåsö 6 6 2.5 2.7 23.5

FIGURE 2 | Deployed incubation chamber in a seagrass meadow (left) and collection of a gas sample (top right). Illustration (bottom right) of the sampling
methodology using an incubation chamber inserted 15 cm into sediment with a 20 cm water column above the sediment. On the top, a 5 cm air-pocket is
connected to a gas-tight septum from where a gas-sample (including methane) released from the sediment could be collected (using a syringe). Gas-samples were
extracted periodically after insertion from the chamber and stored in gas-tight exetainers until analyzed with gas-chromatography (GC). Photos: K. Gagnon.

gas samples, were placed in seagrass meadows (n = 6) and in
adjacent unvegetated areas (n = 5 or 6) at 2–3 m water depth using
scientific (SCUBA) diving. For details of the sampling regions
and sites, see Table 1. The start time for incubations was set to
around 10 am to catch the midday hours when productivity is
expected to be highest. The chamber cores were pushed down
15 cm into the sediment, leaving a 20-cm water column and a 5-
cm gas pocket (volume: 87 cm3) above the water in the chamber.
A “start” gas sample (5 mL) was withdrawn from the pocket about
10 minutes after placing the chamber into the sediment and the
time was noted. The incubations were conducted for about 5–6 h,
whereafter an “end” gas sample was extracted from the gas pocket
and the ending time was noted. The gas samples were directly

transferred into gas-tight exetainers containing 58.3 mM zinc
chloride (aq) for storage and to prevent any potential bacterial
breakdown of CH4 until analysis. The exetainers were stored
upside-down in the refrigerator (4◦C) until analysis. At the
Swedish sites, the development of CH4 release in the chambers
was observed at several time points during the incubation period
to follow and confirm linearity in the CH4 release.

Salinities and temperatures were measured at each site prior
to incubations. In the seagrass sites, seagrass shoot density
(shoots per m2) were either measured, in field, in quadrats
(25 × 25 cm, n = 6) or measurements from previous studies
(Gullström et al., 2012; Staveley et al., 2017) (see Supplementary
Table 1) were used.
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Analysis of Methane

The gas in the collected exetainer samples were analyzed by
means of headspace analysis and gas chromatography (GC).
Briefly, 1 mL headspace was injected into a gas chromatographer
(GC 8A, Shimadzu Corporation) equipped with a Porapak N
column (80–100 mesh) and a flame ionization detector (FID).
The carrier gas for the FID was nitrogen, while the fuel gas
was hydrogen and the oxidant air. For calibration, certified
standards at atmospheric concentration (1.9 ppm) and with
49.9 ppm CH4 (AirLiquide Gas AB) were used. Using the Ideal
Gas Law (PV = nRT), the ppm concentrations were converted
into molar concentrations (µmol CH4 L−1), which were plotted
against incubation time. The CH4 emissions per surface area
of the sediments were calculated as the total amount of CH4
accumulating over time within the gas-filled pocket of the
incubation chamber and reported as µg CH4 m−2 h−1. Since
measurements were only conducted during daytime, values were
not extrapolated to full diurnal estimates.

Collection of Sediment Cores
After incubation, a sediment core was collected adjacent to each
incubation chamber using a push corer (diameter: 4.7 cm, height:
60 cm). The cores were sliced into three different depth sections:
0–1 cm representing the oxidized zone, 1–15 cm representing the
rhizosphere and below 15 cm representing the sediment without
living seagrass. Sediment compression was accounted for in all
cores by measuring the distance from the top of the core to the
sediment surface, inside and outside the core after being inserted
into the sediment (Glew et al., 2002).

Analysis of Organic Carbon Content in
the Sediment
Sediment core slices were weighed wet, homogenized and a
subsample of 60 mL from each depth was then dried (60◦ C,
∼48 h) until constant weight, whereafter the dry bulk density
(g DW cm−3) was calculated. The dry sediment samples were
grinded to a powder using a Retch 400 mixing mill for subsequent
carbon analyses. The total carbon and nitrogen content (%
C and % N) in each sediment depth section was analyzed
using a carbon–nitrogen elemental analyzer (Flash 2000, Thermo
Fisher Scientific). Previous research in the studied regions have
documented that the inorganic carbon content generally is low
(<5%) and was therefore not accounted for Röhr et al. (2016);
Dahl et al. (2020).

Data Analysis
Variations in CH4 emission rates were compared between
the different regions for the two habitat types, i.e., seagrass
meadows vs. unvegetated areas separately, and then overall
between seagrass meadows and unvegetated areas, using non-
parametric Kruskal–Wallis tests (since with the log10[x + 1]
transformation, homogeneity of variance was not achieved).
A Bonferroni correction of the significance level was applied
for multiple testing to limit the probability of Type 1 error
(Holm, 1979). Potential relationships between CH4 emission

and environmental variables such as sedimentary Corg content
and seagrass shoot density, respectively were tested with linear
regression analysis. All data analyses were performed in IBM
SPSS statistics (version 27).

RESULTS

The CH4 emissions were generally low but varied substantially
both within and between sites, resulting in a net release of CH4
to the air phase ranging from 0.3 to 1.8 µg CH4 m−2 h−1 at
the Finnish sites to 2.0–2.5 µg CH4 m−2 h−1 at the Danish sites
and 0.4–3.0 µg CH4 m−2 h−1 at the Swedish sites (Figures 1, 3).
Pairwise comparisons showed that the overall CH4 emissions
from seagrass meadows were significantly higher in both the
Swedish and Danish sites when compared to the Finnish sites,
while there was no significant difference between the Swedish
and Danish sites (Table 2). For the unvegetated areas, CH4
emissions were significantly higher in the Swedish sites compared
to the Finnish sites (Table 2). Overall, there was no difference in
emissions between seagrass covered- and unvegetated sediments,
even though differences between these habitat types occurred at
some sites within each region (Table 2 and Figure 3).

Methane emission increased along the salinity gradient
(Figures 1, 4), although this pattern likely also is reflecting the
inherent conditions of the three regions. The mean integrated
(0-15 cm) organic carbon (Corg) content in the sediment varied
between 0.1 and 6%, with the largest levels found in the
Swedish sites (Supplementary Tables 1, 2). There were linear

FIGURE 3 | Box-and-whisker-plot showing the variation of methane emission
from the sediment to the gas-filled pocket in the incubation chambers of
seagrass meadows and adjacent unvegetated areas in Finland (FIN), Denmark
(DEN), and Sweden (SWE). The solid lines within the boxes indicate median
values, the boxes represent the 25th to the 75th percentiles and the vertical
whisker bars show the 5th and 95th percentiles of the data.
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TABLE 2 | Summary of non-parametric Kruskal–Wallis tests of methane emissions
among regions within (seagrass meadows and unvegetated areas) and between
habitats.

Pairwise
comparison

Test statistic Std. error Std. test statistic Adj p

Region-seagrass (total N = 51, df = 2, model p = 0.005)

Fin vs Den 14.483 5.823 2.487 0.039

Fin vs Swe −14.479 4.798 −3.018 0.008

Den vs Swe 0.004 5.413 0.001 1.000

Region-unvegetated (total N = 47, df = 2, model p = 0.002)

Fin vs Den 7.321 5.443 1.345 1.000

Fin vs Swe −16.010 4.635 −3.454 0.003

Den vs Swe −8.688 5.103 −1.703 0.532

Habitat (total N = 98, df = 1, model p = 0.806)

Significant values (p < 0.05) are shown in bold. Countries with bolded text indicate
the higher values in the pairwise comparisons. Std. error, standard error, Adj p,
Adjusted p-value.

FIGURE 4 | Box-and-whisker plot summarizing methane emissions from the
sediment to the gas-filled pocket in the incubation chambers in seagrass
meadows and adjacent unvegetated areas in relation to average salinities in
the different regions. The solid lines within the boxes indicate median values,
the boxes represent the 25th to the 75th percentiles and the vertical whisker
bars show the 5th to the 95th percentiles of the data.

relationships between sedimentary Corg and CH4 emissions in
seagrass meadows (Adj R2 = 0.12, p = 0.01, Supplementary
Figure 1A) and in unvegetated areas (Adj R2 = 0.21, p < 0.01,
Supplementary Figure 1B), respectively, although the adjusted
R2 value were low indicating that there are other factors
influencing the CH4 mean net release.

Seagrass meadows average shoot densities, as presented
in previous works, varied from 101 to 652 shoots m−2

(Supplementary Table 1). There was no significant relationship

between the average seagrass shoot density and CH4 emission in
the current study.

DISCUSSION

This study shows that CH4 emissions from cold-temperate
Nordic seagrass meadows are relatively low, both when compared
to seagrass areas worldwide and when compared to other
shallow-water habitats in the Nordic region. The amount of
Corg stored in the sediment appeared to influence the emissions,
as there was a positive correlation between CH4 emission
and the sedimentary organic carbon content. The relatively
low explanatory value suggests that besides the sedimentary
Corg content, there must be other factors that are of major
importance for methane release from these coastal sediments.
Nevertheless, we found no significant influence of vegetation or
salinity on CH4 emissions. The current study was conducted
during the warm high-productive season, when also the net
release of methane is expected to peak, and represents the first
survey of methane emissions from seagrass meadow sediments
in Nordic coastal waters.

Methane net release from Z. marina meadow sediments varied
from 0.3 to 3.0 µg m−2 h−1. These values are in the lower range
of what is reported from seagrass habitats globally, which can
reach up to 378 µg m−2 h−1 (see Table 3). It is further drastically
lower than reported emissions from other shallow-water habitats
in Nordic waters like estuarine wetlands (8,583 µg m−2 h−1)
or brackish-water reed (Phragmites) belts (15,200 µg m−2 h−1),
(Table 3). The relatively low CH4 emission levels measured in our
study agree well with those reported for coastal bare sediments
(1.2–2.3 µg CH4 m−2 h−1) of the Baltic proper (Bonaglia et al.,
2017). Those sediments had similar carbon content as on the
Swedish west coast (5.5%) and similar salinities as in the Finnish
areas (6.8), but were sampled deeper (50 m) and at much lower
temperature (8.0◦C) compared to our study (range: 20–23.5◦C,
Supplementary Table 1). The good agreement in rates may thus
be explained by the fact that most of the CH4 generated deep
inside the sediment is efficiently oxidized by the community of
methane-oxidizing archaea and sulfate-reducing bacteria before
it can reach the sediment water-interface (Orphan et al., 2001).
Up to 90% of the CH4 produced in marine sediments are
consumed already in the sediment phase (Reeburgh et al., 1993).

Most studies where high emissions from seagrass habitats have
been reported are from warmer (warm-temperate or tropical)
waters (Table 3). This could be due to a temperature dependence
of CH4 production as well as differences in organic matter quality
and quantity, and in the microbial community composition.
Temperature is known to significantly influence CH4 production
both in tropical (Burkholz et al., 2020; George et al., 2020)
and cold-temperate waters (Heyer and Berger, 2000). In the
present study, water temperatures were similar across regions;
nevertheless, differences in water temperature on local spatial (cm
to m) and temporal (day to seasonal) scales could still influence
the variation in emission rates, but this was not investigated here.

We found no significant influence of vegetation cover on
CH4 emission from the sediments in the seagrass meadows,
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TABLE 3 | Sediment methane (CH4) emission rates from seagrass meadows
worldwide and other shallow-water habitats in Nordic waters, using
sediment-to-air filled pocket chamber techniques, reported in the literature and in
the current study.

Region Habitat type Ranges (or
average*) of

emission rates,
(µg CH4 m−2 h−1)

References

Seagrass meadows
worldwide

Global estimation Seagrass in general 54* Rosentreter et al.,
2021

Portugal, Atlantic
coast

Zostera noltii 71(at night)
–111 (in day)

Bahlmann et al.,
2014

Florida bay Thalassia
testudinum

14–185 Barber and
Carlson, 1993

France, Atlantic
coast

Zostera spp 66 * Deborde et al.,
2010

Red Sea Halophila
stipulacea and
Halodule unervis

16–74 Garcias-Bonet and
Duarte, 2017

Thalassodendron
ciliatum

0.067–4.6

Thalassia
hemprichii

0.20–11

Halophila decipiens 0.47–11

Enhalus acoroides −8.0 to 181

Cymodocea
serrulata and
Halodule uniervis

91–378

Halodule unervis 17–40

Western Indian
Ocean

Thalassia
hemprichii

50 * (controls),
224–291

(disturbed)

Lyimo et al., 2018

Florida Keys Syringodium sp. 2–5 Oremland, 1975

Thalassia
testudinum

29–30

Nordic waters Zostera marina 0.3–3.0 Current study

Other shallow-water
habitats in Nordic
waters

North-Eastern
Germany

Brackish fen,
Phragmites
australis

538–15,200 Koch et al., 2014

Gulf of Bothnia Eustarine wetlands 8,583* Liikanen et al.,
2009

and unvegetated sediments had similar emissions as the
vegetated areas. There are, however, reports that submerged
vegetation, such as seagrasses and other rooted macrophytes,
significantly influences the microbial composition and actions in
the sediments (Jensen et al., 2007; Santos-Fonseca et al., 2015;
Cúcio et al., 2016), with potential effects on the GHG balance.
Seagrasses have been reported to reduce CH4 emissions by their
photosynthetic oxygen production (Oremland, 1975; George
et al., 2020) and also by symbiotic CH4 oxidizers associated
with the plants.

In some coastal habitats, such as in tidal saltmarshes, CH4
emission is strongly affected by salinity, with lower emissions at
higher salinities (Poffenbarger et al., 2011; Wang et al., 2017).

It has been suggested that the higher levels of sulfate found in
sediments of higher salinity will increase sulfate reduction, which
in turn could inhibit CH4 production in vegetated habitats (e.g.,
Koebsch et al., 2018). Methane emissions from marine areas
could hence be expected to be low. In contrast, we found the
highest emission levels within the region with highest salinities,
i.e., at the Swedish sites. When the organic carbon loading is
high, it can be that the inhibitory effect of sulfate reduction
plays a minor role and sulfate reduction and methanogenesis can
co-occur (Holmer and Kristensen, 1994; Santos-Fonseca et al.,
2015). Therefore, CH4 production can occur in marine areas
with high organic carbon content, which is also confirmed in
the current study.

Even though the emissions we measured from both vegetated
and adjacent unvegetated sediments were low, the CH4 emissions
partly counteract the seagrass meadows’ capacity to function as
carbon sinks. The only published data on carbon accumulation
rates for seagrasses in the Nordic area (Röhr et al., 2016) show
annual mean values of 0.05 t C ha−1 yr−1 for Finland, and
0.35 t C ha−1 yr−1 for Denmark, while no accumulation data
for Sweden has been published. Given in the same units and
calculated as e-CO2 at a GWP100 of 34 (Myhre et al., 2013),
the CH4 emissions in this study ranged from 0.0007 to 0.0040
in Finland, from 0.0045 to 0.0056 in Denmark, and from 0.0009
to 0.0067 t eCO2-C ha−1 yr−1 in Sweden. Thus, the carbon
accumulation rate in Finland was between 12 and 75 times higher,
and in Denmark between 63 and 78 times higher, than the
estimated C emissions from CH4. We therefore conclude that
the relatively weak emissions of CH4 from Nordic Z. marina
meadows will not outweigh their importance as carbon sinks
under present environmental conditions.

Climate simulations for the Baltic Sea ecosystems indicate a
2–4◦C warming and a significant increase in precipitation by
the year 2100 that may increase land runoff of allochthonous
organic matter and decrease salinity (Andersson et al., 2015).
This might have multifaceted effects on the seagrass systems.
While healthy seagrass meadows contribute to mitigate the
effects of runoff and capture part of the increased input of
nutrients and organic matter, an increased organic content
in the sediments might result in increased respiration and
lower oxidation state of the sediment. A lower oxidation will
in turn favor anaerobic respiration and might thus lead to
increased production and emissions of CH4 and other GHGs.
As temperatures are predicted to increase more drastically in
the Nordic region than on a global scale (Andersson et al.,
2015), this may accelerate CH4 emissions from blue carbon
habitats such as seagrass meadows (Yvon-Durocher et al., 2011).
It has previously been shown in tropical seagrass sediments that
CH4 emissions more than doubled during high temperature
stress (George et al., 2020). The Nordic seagrass systems, today
functioning as effective sinks for atmospheric CO2, might thus be
hampered by climate change effects so that their carbon capture
capacity is reduced while their emission of GHGs is increased.
This may eventually turn Nordic seagrass meadows from sinks to
sources of CO2.

In conclusion, the relative low net release of methane from
Nordic seagrass meadows presented in this study may reinforce
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their capacity as natural blue carbon sinks. To fully understand
the extent of emissions of methane and other GHGs from Nordic
coastal habitats, multiple spatial (from microhabitat to seascape
level) and temporal (diurnal and seasonal) aspects should be
considered in future studies.
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