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Riverine carbon flux to the ocean has been considered in estimating coastal carbon
budgets, but submarine groundwater discharge (SGD) has long been ignored. In
this paper, the effects of both SGD and river discharges on the carbon cycle were
investigated in the Guangdong-HongKong-Macao Greater Bay Area (GBA), a highly
urbanized and river-dominated coastal area in China. SGD-derived nitrate (NO3

−),
dissolved organic carbon (DOC), and dissolved inorganic carbon (DIC) fluxes were
estimated using a radium model to be (0.73–16.4) × 108 g/d, (0.60–9.94) × 109 g/d,
and (0.77–3.29) × 1010 g/d, respectively. SGD-derived DOC and DIC fluxes are ∼2
times as great as riverine inputs, but SGD-derived NO3

− flux is one-fourth of the riverine
input. The additional nitrate and carbon inputs can stimulate new primary production,
enhance biological pump efficiency, and affect the balance of the carbonate system in
marine water. We found that SGD in the studied system is a potential net source of
atmospheric CO2 with a flux of 1.46 × 109 g C/d, and river, however, is a potential net
sink of atmospheric CO2 with a flux of 3.75 × 109 g C/d during the dry winter season.
Two conceptual models were proposed illustrating the major potential processes of the
carbon cycle induced by SGD and river discharges. These findings from this study
suggested that SGD, as important as rivers, plays a significant role in the carbon
cycle and should be considered in carbon budget estimations at regional and global
scales future.

Keywords: submarine groundwater discharge (SGD), river, radium isotopes, dissolved carbon, Greater Bay Area

INTRODUCTION

Nutrient budgets in the ocean are subject to a variety of influences such as surface rivers,
submarine groundwater discharge (SGD), and the atmosphere. River is a visible pathway of
biogenic substances such as nitrogen, phosphorus, and carbon from the land to the ocean, and
plays a vital role in the global carbon and nitrogen cycles (Cole et al., 2007; Dai et al., 2012).
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The global riverine carbon flux was estimated to be (1.9–
2.7) × 1015 g/year, in which the organic component accounts for
approximately 45% (Cole et al., 2007; Cai, 2011). As the largest
river in the Guangdong-HongKong-Macao Greater Bay Area
(GBA), the Pearl River delivers about 1.27× 1013 g/year of carbon
to the estuary and coastal area, in which dissolved inorganic
carbon (DIC) and dissolved organic carbon (DOC) account for
more than 70% (Zhang et al., 2013). Many studies were conducted
to investigate the carbon cycle in the Pearl River Estuary (He
et al., 2010; Su et al., 2017; Liang et al., 2020). The Guangdong-
HongKong-Macao GBA, one of the significant bay development
areas alongside New York, San Francisco (United States), and
Tokyo (Japan), is a highly developed and urbanized region in
China. With the rapid economic development and urbanization
in the GBA, the regional water environment has been affected
seriously by human activities. For instance, Liu et al. (2020)
showed that the organic C/N ratio in the Pearl River decreased
from 11.8 to 5.0 after the river passed through several big
cities. Such variations in nutrient/carbon flux and composition
will change the carbon cycle (e.g., stimulating new primary
production and enhancing biological pump efficiency) in coastal
oceans, and have a significant implication for estimating coastal
carbon budgets (Liu et al., 2020; Ye et al., 2021).

Submarine groundwater discharge, an important part of the
hydrological cycle, is an invisible pathway of materials (i.e.,
nutrients, metals, and rare earth elements) into the ocean (Moore
et al., 2008; Johannesson et al., 2011; Kim et al., 2011; Luo and
Jiao, 2016; Rodellas et al., 2017; Wang et al., 2018; Zhang et al.,
2020). The latest study including more than 200 coastal sites
worldwide shows that SGD delivers more nutrients (nitrogen,
phosphorus, and silicon) than rivers in most (∼60%) of the
coastal areas studied (Santos et al., 2021). The study finds that
SGD-driven nutrients can enhance primary productivity, fish
production, or coral calcification, but on the other hand, can
lead to eutrophication of coastal waters, algal blooms or hypoxia
events. Therefore, SGD can be regarded as an important indicator
of the functioning and vulnerability of coastal ecosystems and is
of great significance to the survival and maintenance of coastal
societies at local and regional scales, even more at a global
scale (Sawyer et al., 2016; Michael et al., 2017; Cho et al., 2018;
Alorda-Kleinglass et al., 2021).

Similar to rivers, SGD also carries carbon into the oceans and
plays an important role in the marine carbonate system (Cole
et al., 2007; Liu et al., 2012; Stewart et al., 2015). A growing
number of scientists have devoted more intensive attention to
this aspect in recent years. Many studies investigated SGD-
derived carbon flux [e.g., total alkalinity (TA), DIC] in different
systems such as mangrove, estuary, salt marsh, and embayment
(Liu et al., 2014, 2017; Sadat-Noori et al., 2016; Chen et al.,
2018; Xiao et al., 2020; Dai et al., 2021; Wu et al., 2021). In
the northern South China Sea, Liu et al. (2012) and Dai et al.
(2021) estimated the SGD-derived DIC fluxes in different scales
and they found that SGD is an important contributor to DIC.
However, the effects of SGD on the marine carbon budgets are
usually ignored in most studies (Liu et al., 2018; Ye et al., 2021;
Yu et al., 2021) since it usually occurs below the seawater surface
and is almost invisible and highly variable. In addition, the study

on the SGD-derived carbon in the GBA is very limited. Thus,
understanding the contribution of both SGD and river to carbon
cycle is of great significance to environmental assessment and
management in the region.

The objectives of this study were to evaluate the carbon
flux supplied by SGD and river, and reveal their potential
impacts on the marine carbon cycles. Firstly, SGD-derived nitrate
(NO3

−) and carbon (DOC, DIC) fluxes were estimated using
radium isotopes (224Ra, 223Ra, and 228Ra) as tracers. Then the
importance of SGD and river discharges on the carbon budget
and their contributions to the new production and carbon cycling
were discussed. Finally, two conceptual models were proposed
illustrating the major potential processes of the carbon cycle
induced by SGD and river discharges.

MATERIALS AND METHODS

Study Area
The GBA, with a total land area of ∼56,000 km2 (including nine
cities in Guangdong province and two Special Administrative
regions: HongKong and Macao) and a coastal length of
∼1,480 km, is located in the northern South China Sea (Figure 1).
There are one important estuary in southern China (Pearl River
Estuary) and many important bays including Daya Bay, Dapeng
Bay as well as Tolo Harbor in HongKong. The Pearl River, with
an annual runoff of 3.26 × 1011 m3/yr and suspended particles
matter (SPM) load of 5.0 × 1010 g/d, is the largest river into the
South China Sea through eight outlets (Wang et al., 2021). During
the dry winter season, the coastal current flows from northeast to
southwest, and the Pearl River flow turns to the west. Rainfall in
this region is abundant and occurs mostly (80%) during the wet
summer season (from April to September).

Sample Collection and Measurements
Fieldwork was carried out during the dry winter season (January
6–13, 2020, Supplementary Table 1). The sampling sites within
30 seawater from three transects (A1, A2, and A3), 24 coastal
groundwater, and 7 rivers are shown in Figure 1. Water samples
for radium extraction were collected in a large volume (60 L for
seawater, 30 L for river water, ∼5 L for coastal groundwater)
and drained slowly (<1 L/min) through manganese-coated
acrylic fiber (Mn-fiber) that absorb dissolved radium from
water (Moore, 1976). Nitrate samples were filtered through
0.45 µm filters and collected with 45 ml Nalgene sampling
bottles. DIC and DOC samples were filtered through 0.22 µm
filter membranes, poisoned with HgCl and H3PO4 solution,
respectively, and stored in 45 mL sampling vials. These samples
were refrigerated at 4◦C before analysis. The values of pH,
oxidation-reduction potential (ORP), and salinity in water were
immediately measured in situ using a multi-parameter water
quality analyzer (HI9829T, HANA).

224Ra, 223Ra, and 228Ra were detected by radium delayed
coincidence counting system (RaDeCC; Moore, 2008). The
uncertainties for radium measurements were 7% for 224Ra
and 228Ra, and 12% for 223Ra. Analyses for nitrate were
carried out colorimetrically using a flow injection analyzer
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FIGURE 1 | (A) The location of the Greater Bay Area in China, and (B) the sampling sites of groundwater, river water, and seawater.

(FIA) with a detection limit of 5 µg/L (HACH QC8500,
American). DOC and DIC were determined by a Total
Organic Carbon/Nitrogen analyzer (Multi N/C 3100 Analyzer,
Germany). The uncertainties of DOC and DIC concentration
were better than 3%.

Submarine Groundwater
Discharge-Derived Solute Fluxes Based
on 228Ra Tracing Model
Radium isotopes (224Ra, 223Ra, 228Ra, and 226Ra), with the half-
life from 3.6 days to 1,600 years, are widely used to trace SGD
fluxes at different scales because of their enrichment in SGD
(Rodellas et al., 2015; Wang et al., 2015; Zhang et al., 2016).
Garcia-Orellana et al. (2021) summarized the application of
radium isotopes tracing SGD and associated solute fluxes. Three
models, radium mass balance model, radium endmember mixing
model, and eddy diffusive mixing model, are usually applied
to estimate SGD fluxes. The basic strategies of these models to
estimate SGD is to determine first the radium flux supplied by
SGD, and subsequently convert it into SGD flux by characterizing
the groundwater radium endmember. Radium mass balance
model which considers all the potential radium sources and sinks
is the most widely used (Moore et al., 2008; Wang et al., 2018).

The eddy diffusive mixing model used in this study is suitable for
open coastal systems.

The long-lived 228Ra was used to assess SGD flux into
the GBA. The total input of 228Ra in the system is mainly
controlled by SGD and river discharges; the input from
sediments is negligible due to the long half-life of 228Ra.
Thus SGD-derived 228Ra (FRa−228

SGD ) can be calculated by
subtracting riverine 228Ra (FRa−228

R ) from the total input
(FRa−228

Total ) (Eq. 1a). The 228Ra flux attributed to river was
calculated as the product of the activity of 228Ra (CRa−228

R−i ) in
the river and the corresponding river discharge (QR−i) (Eq. 1b).
The total 228Ra input to the system was balanced by the
offshore export of 228Ra, which was calculated as the product
of the eddy diffusion coefficient (Kh), the offshore gradient
of 228Ra (gRa−228

Sea ), and the cross-sectional area (A) of the
system (Eq. 1c).

FRa−228
SGD = FRa−228

Total − FRa−228
R (1a)

FRa−228
R =

n∑
i=1

QR−iCRa−228
R−i (1b)

FRa−228
Total = KhgRa−228

Sea A (1c)
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where Kh can be determined by an advection-diffusion model
of short-lived 224Ra and 223Ra; n is the number of rivers in
the region. The 224Ra and 223Ra distribution can be described
as follows if ignoring the advection (Hancock et al., 2006;
Wang et al., 2021):

−
∂

∂x

[
KhD

∂CRa
Sea

∂x

]
+ λDCRa

Sea = B (2a)

where CRa
Sea is 224Ra or 223Ra activity in seawater (dpm/100

L), x and D are offshore distance and seawater depth (m),
respectively; l is the decay constant of 224Ra or 223Ra (d−1), and
B is the sedimentary radium flux [dpm/(m2d)]. The boundary
conditions, the radium fluxes across the coastline (x = 0) to be
F0 and at the shelf edge (x = xe) to be limx→xe

∂CRa
Sea

∂x = 0, were
given to solve this equation. Integration of Eq. 2a with respect to
x yields:

−

[
KhD

∂CRa
Sea

∂x

]xe
x=0

=

∫ xe

x=0

(
B− λDCRa

Sea
)
dx (2b)

F0 =

∫ xe

x=0
(λDCRa

Sea − B) dx (2c)

The values of Kh can be determined when we obtained optimal
agreement between measured and modeled radium activities
(224Ra and 223Ra) for each transect. SGD-derived nitrate or
carbon flux (FN) is commonly calculated by multiplying the SGD
flux (QSGD) by the concentration of nitrate or carbon in coastal
groundwater (Wang et al., 2020). It can be represented by the
following equation:

FN = CNQSGD = CN
FRa−228
SGD

CRa−228
GW

=
CN

CRa−228
GW

(
KhgRa−228

Sea A−
n∑

i=1

QR−iCRa−228
R−i

)
(3)

where CN and CRa−228
GW are solute (nitrate, DOC, and DIC)

concentration and 228Ra activity in coastal groundwater,
respectively.

The common method to estimate SGD-derived solute (nitrate
and carbon) fluxes is to calculate first the SGD flux by dividing
SGD-associated radium flux by radium activity in groundwater
(i.e., radium endmember), and then multiply the SGD flux by
solute concentration in groundwater (i.e., solute endmember).
During this process, the determination of the two endmembers
is usually major source of uncertainty for the final SGD-derived
solute fluxes because of the spatial and temporal variability of
radium and solutes in groundwater (Michael et al., 2011; Waska
et al., 2019; Wang et al., 2020). To reduce the uncertainty of
SGD-derived nitrate/carbon flux estimations, in this study, the
term CN/CRa−228

GW in Eq. 3 was regarded as a unified parameter
to discuss later.

RESULTS

Radium Isotopes
The spatial distributions of radium (224Ra, 223Ra, and 228Ra)
and salinity in seawater and coastal groundwater are shown in
Figure 2. In general, the high radium activity and low salinity
occurred in the nearshore area, whereas the low radium activity
and high salinity occurred in the offshore area. Seawater salinity
ranged from 14.49 to 34.99 PSU (Practical Salinity Unit) and
it was very low in the western nearshore area resulting from
the Pearl River freshwater dilution (Figure 2D). The radium
activity of seawater ranged from 11.72 to 113.72 dpm/100 L
for 224Ra, from 0.15 to 4.76 dpm/100 L for 223Ra, and from
8.04 to 80.41 dpm/100 L for 228Ra (Supplementary Table 1).
Coastal groundwater, however, had very high radium activity
within 224Ra: 0.81–119.2 dpm/100 L, 223Ra: 0.05–4.10 dpm/100
L, and 228Ra: 0.17–34.46 dpm/100 L (Supplementary Table 2).
As shown in Figure 3, 224Ra had a strong linear relationship
with 223Ra and 228Ra in both coastal groundwater and
seawater. The coastal groundwater with high Ra activities and
ratios (224Ra/223Ra and 224Ra/228Ra) was the main source of
radium in the ocean.

Nitrate and Carbon
Solute concentrations of coastal groundwater ranged from 0.005
to 3.17 mg/L with a median of 0.19 mg/L for NO3

−, from 1.00
to 7.83 mg/L with a median of 1.34 mg/L for DOC, and from
4.58 to 31.49 mg/L with a median of 13.56 mg/L for DIC. For
the river water samples, solute concentrations ranged from 0.69
to 4.36 mg/L with a median of 1.22 mg/L for NO3

−, from 1.08 to
1.82 mg/L with a median of 1.23 mg/L for DOC, and 9.50 mg/L
for DIC (Figure 4 and Supplementary Table 3). The highest
concentration of NO3

− (4.36 mg/L) and DOC (1.82 mg/L)
occurred in the Dan’ao River (R7) which suffered serious
environmental pollution from high-intensity human activities
(Wang et al., 2021). Solute concentrations in both coastal
groundwater and river water are ranked as DIC>DOC>NO3

−.
Nitrate concentrations in coastal groundwater are less than that
in river water, while carbon contents in coastal groundwater are
slightly greater than that in river water (Figure 4).

Submarine Groundwater
Discharge-Derived Solute Fluxes
Eddy Diffusion Coefficient
In this study, the eddy diffusion coefficient was estimated by using
Eq. 2. All the values used in the Eq. 2 are shown in Table 1. Based
on the observed data, seawater depth (D) can be described by a
linear relationship with offshore distance (x): D = 5.84 × 10−4

x for A1, D = 3.58 × 10−4 x for A2, and D = 5.43 × 10−4

x for A3 (Table 1). The optimal agreement between measured
and modeled radium activities, as illustrated in Figure 5, was
obtained within the application of the short-lived 224Ra and 223Ra
diffusive model (Eq. 2). The eddy diffusion coefficientsKh derived
from 224Ra are 114.8 km2/d for A1, 365.4 km2/d for A2, and
110.2 km2/d for A3, and derived from 223Ra are 30.4 km2/d for
A1, 139.3 km2/d for A2, and 36.7 km2/d for A3 (Table 1). The
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FIGURE 2 | Distributions of panel (A) 223Ra, (B) 224Ra, (C) 228Ra, and (D) salinity in seawater (gray dots) and coastal groundwater (red dots) of the Greater Bay Area
(GBA).

FIGURE 3 | Plots of panel (A) 224Ra vs. 223Ra, and (B) 224Ra vs. 228Ra in seawater and coastal groundwater samples of the GBA.

values of Kh derived from 223Ra are less than that from 224Ra
which usually presents an accurate estimation for Kh (Li and Cai,
2011; Wang et al., 2021).

Submarine Groundwater Discharge-Derived Nitrate
and Carbon Fluxes Based on Radium Model
The total 228Ra flux to the system (Eq. 1c) was calculated to
be 6.13 × 1012 dpm/d based on the derived Kh (Table 1)
and the linear gradient of 228Ra (Figure 6A) at three
transects. The riverine 228Ra flux (Eq. 1b) was estimated to
be 1.68 × 1012 dpm/d, which includes dissolved in the water

and desorbed from SPM (Supplementary Table 4). Thus SGD-
derived solute fluxes (Eq. 3) were calculated to be (0.73–
16.4) × 108 g/d with a median of 2.06 × 108 g/d for NO3

−,
(0.60–9.94) × 109 g/d with a median of 2.25 × 109 g/d for DOC,
and (0.77–3.29) × 1010 g/d with a median of 1.66 × 1010 g/d
for DIC. Here the ranges of NO3

−/228Ra, DOC/228Ra, and
DIC/228Ra ratios between the first and third quartiles of the
coastal groundwater dataset (Figure 6B) were used in Eq. 3.
A previous study suggested that the sources of SGD-derived
nitrate in the GBA were natural soil and anthropogenic discharge
(Wang et al., 2021). SGD is a mixture of terrestrial freshwater
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FIGURE 4 | Concentrations of nitrate (NO3
−), dissolved organic carbon

(DOC), and dissolved inorganic carbon (DIC) in coastal groundwater and river
water samples.

and circulated seawater. The circulated seawater, accounting for
a large part of SGD, is important for the delivery of solutes from
land to the ocean.

Riverine Nitrate and Carbon Fluxes
The nitrate and carbon fluxes via rivers into the GBA were
calculated as the product of the concentrations of nitrate and
carbon in the river and the corresponding river discharge. In
the GBA, the Pearl River is the dominant river with a flux of
8.92 × 108 m3/d and a mean concentration of 1.01 mg/L for
NO3

−, 1.18 mg/L for DOC, and 9.50 mg/L for DIC. Thus, the
riverine NO3

−, DOC, and DIC inputs were estimated to be
8.82 × 108 g/d, 1.05 × 109 g/d, and 8.48 × 109 g/d, respectively.
Numerous studies have well-investigated cycles of nitrogen and
carbon and their seasonality within the Pearl River and adjacent
waters (Lu et al., 2009; He et al., 2010; Liu et al., 2020; Xuan et al.,
2020; Ye et al., 2021). Liu et al. (2020) investigated the spatial
distribution of organic carbon and nitrogen in the Pearl River.
They found that both DOC and total organic nitrogen (TON)
were increased from upstream to downstream, with an increase of
five times for TON and two times for DOC in the dry season. The
nitrogen and carbon fluxes from the current study are consistent
with previous findings.

DISCUSSION

Variability of Nitrate Fluxes and Kh
Wang et al. (2021) quantified nitrate fluxes from SGD and
rivers into the GBA in the wet summer season with values of
(5.28 ± 0.73) × 108 g/d and 1.32 × 109 g/d, respectively. It can

be found that nitrate fluxes from SGD and river to the GBA were
greater in the wet summer season than in the dry winter season.
This is the less discharge of river and groundwater during the
dry season, which can be supported by the seawater salinity and
pH distributions in the seawater. Figure 7 shows seawater salinity
and pH in the dry and wet seasons. Both salinity and pH were less
in the wet summer season than in the dry winter season, which
indicated directly the decrease of terrestrial freshwater including
river water and fresh groundwater.

The eddy diffusion coefficients for the GBA in the summer
season were estimated by Wang et al. (2021) using the same
method. The summer eddy coefficient was 21.04 km2/d for
A1 transect, 88.4 km2/d for A2 transect, and 11.76 km2/d for
A3 transect (Wang et al., 2021). The winter eddy coefficient
determined in this study is about 4–10 times greater than the
summer eddy coefficient. During the winter, the strong current
will enhance horizontal mixing and result in relatively higher
values for eddy mixing. Among three transects (A1–A3), A2
has the highest values of eddy diffusion coefficient during both
summer and winter seasons. Transect A2 is the longest one
and is more influenced by terrestrial freshwater (Pearl River).
The force of Pearl River discharge could enhance horizontal
mixing and thus create a relatively higher value of eddy diffusion
coefficient. In addition, differences in scale can produce some
of the variances in the eddy diffusion coefficient. The eddy
diffusion term usually becomes larger at greater length scales
(Moore, 2000).

Effects of Submarine Groundwater
Discharge and River on Coastal Carbon
System
Regarding carbon flux, it can be found that SGD-derived DOC
and DIC fluxes are ∼2 times as great as riverine input, but
SGD-derived NO3

− flux is one-fourth of the riverine input.
Anthropogenic input of nitrogen is the primary determinant of
NO3

− accumulation in the Pearl River (Xuan et al., 2020). DIC
is the dominant form of carbon in SGD, and DOC concentration
is below one-tenth of DIC in most groundwater samples (except
for two sites, Figure 8A). The relationship between DOC and
the residual NO3

− is shown that DOC concentrations decreased
while dissolved NO3

− concentrations increased (Figure 8B).
This observation revealed that DOC could be consumed by
biological production when they transport from land to sea.
Waska et al. (2021) also found that the subterranean estuary is
a net sink of terrestrial organic carbon. SGD-derived DIC and
DOC have been reported in some coastal systems worldwide

TABLE 1 | Values used in 224Ra and 223Ra advection-diffusion equation.

Parameters 224Ra diffusive model 223Ra diffusive model

A1 A2 A3 A1 A2 A3

λ (d−1) 0.189 0.0606

B[dpm/(m2d)] 156.5 2.12

D (m) 5.84 × 10−4 3.58 × 10−4 5.43 × 10−4 5.84 × 10−4 3.58 × 10−4 5.43 × 10−4

Kh (km2/d) 114.8 365.4 110.2 30.4 139.3 36.7
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FIGURE 5 | Plots of panel (A) 224Ra and (B) 223Ra activity vs. distance offshore at three transects A1–A3; the dots and lines are the measured and modeled radium
activities, respectively.

FIGURE 6 | Plots of panel (A) seawater 228Ra activity vs. distance offshore at three transect A1–A3, and (B) the ratio of NO3
−/228Ra, DOC/228Ra, and DIC/228Ra in

coastal groundwater.

FIGURE 7 | Plots of seawater (A) salinity, and (B) pH in the wet season vs. in the dry season.

such as Okatee Estuary, South Carolina, United States (Moore
et al., 2006), Southwest Florida Shelf, United States (Liu et al.,
2014), and Northern South China Sea (Tan et al., 2018). These
findings suggested that SGD is a dominant source of DIC
and DOC to coastal waters and may contribute significantly to
coastal carbon budgets.

Submarine groundwater discharge-derived and riverine
NO3

− into the GBA can stimulate new primary production
and enhance biological pump efficiency. Using the Redfield
ratio of C/N = 106:16 to derive primary production in terms
of carbon uptake, estimated potential primary production

by SGD and river were 1.17 × 109 g C/d and 5.01 × 109 g
C/d, which were 7.1 and 59.1% of SGD-derived and riverine
DIC, respectively. The new primary production rates supplied
by SGD showed a similar range to the study in the Daya
Bay [i.e., 54–73 mg C/(m2d)], an important bay in the GBA
(Wang et al., 2018).

Submarine groundwater discharge-derived and riverine DOC,
once entering the coastal sea within the environment of sufficient
inorganic nitrogen, could be easily consumed by biological
production and thus cannot be stored as inert organic carbon. If
assuming that 80% of the flux of SGD-derived and riverine DOC
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FIGURE 8 | Plots of concentrations (A) DOC vs. DIC, and (B) DOC vs. NO3
− in coastal groundwater samples.

FIGURE 9 | Schematic of the processes of submarine groundwater discharge (SGD) and riverine nitrate and carbon to the ocean on (A) near shore scale with
shallow water, and (B) shelf scale with deep water.

will be remineralized, the remineralization process can produce
CO2 of 1.80 × 109 g C/d and 0.84 × 109 g C/d, respectively.
The remineralization of SGD-derived DOC usually occurs at the

bottom of the ocean which will potentially result in hypoxia
and acidification at the bottom water body. Combined with the
processes of nitrate and DOC, SGD is a potential net source
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of atmospheric CO2 with a flux of 0.63 × 109 g C/d, while
river is a potential net sink of atmospheric CO2 with a flux of
4.17 × 109 g C/d. Previous studies in the Pearl River Estuary
(Wu et al., 2017) and other river-dominated systems (Bauer et al.,
2013; Guo et al., 2015) have often observed the net production of
DOC in the river plume.

The input of land DIC mainly affects the balance of the
carbonate system in marine water. Compared with seawater,
SGD and river water have lower pH values, which suggests that
much more CO2 could be dissolved in SGD and river water.
Charbonnier et al. (2022) also found that terrestrial groundwater
contains a lot of CO2 and is an important contributor to the
DIC flux to the coastal ocean. When SGD and river discharge to
the ocean, the balance of the carbonate system may be changed
resulting in enhancement of calcium carbonate or CO2 exchange
with the atmosphere. If assuming that the free CO2 in SGD-
derived and riverine DIC can escape to the atmosphere from
water body. Based on pH values (Supplementary Table 2), the
free CO2 was estimated to be 5% of DIC. Thus, SGD-derived
and riverine DIC would potentially supply atmospheric CO2 of
0.83× 109 g C/d and 0.42× 109 g C/d, respectively.

Indeed, marine carbon cycles are influenced by the
combination of terrigenous NO3

−, DOC, and DIC. Based
on the above discussion, we conclude that SGD in the studied
system is a potential net source of atmospheric CO2 with a
flux of 1.46 × 109 g C/d and river is a potential net sink of
atmospheric CO2 with a flux of 3.75 × 109 g C/d. Their coupled
effect on ocean suggests that SGD and river would potentially
enhance CO2 exchange flux from atmospheric to ocean in
the dry winter season and they play a significant role in the
carbon cycles of GBA.

Conceptual Model for Carbon Process
Submarine groundwater discharge and river water usually
have different physical and chemical characteristics, such as
the long water residence times, strong water-rock interaction,
and complex biogeochemical processes in groundwater flow.
Therefore, the composition and structure of chemical materials
in river water and groundwater discharged into the ocean are
quite different. Generally, the discharged river water has high
oxygen and nutrient concentrations and forms freshwater plumes
on the ocean surface. Groundwater discharged into the sea from
the seabed with a low flow rate, on the other hand, has a low
oxygen content and high nutrient concentrations (Slomp and
Van Cappellen, 2004; Kim et al., 2017; Waska et al., 2021). Thus
they present different processes in marine carbon cycles. Here
two conceptual models, as shown in Figure 9, were proposed
to illustrate the major potential processes of the carbon cycle
induced by SGD and river discharges.

Figure 9A shows the contributions of SGD and river
discharges to the carbon system on the nearshore scale with
shallow oceans. In this case, the bottom water can easily
exchange with upper water and air. Thus CO2 produced from
SGD processes (e.g., remineralization of SGD-derived DOC) can
escape to the atmosphere. On the other hand, the consumption
of CO2 in SGD processes (e.g., new primary production by

SGD-derived nitrate) can achieve from the atmosphere. Other
products from SGD can participate in other processes of the
carbon cycle in shallow seawater. Overall, a significant amount
of nitrate, DOC, and DIC stimulate phytoplankton blooms in the
upper water and consume oxygen in the bottom water, resulting
in coastal hypoxia (Su et al., 2017).

Figure 9B shows the contributions of SGD and river
discharges to the carbon system on the shelf scale with deep
oceans. In this case, the bottom water is in a reducing
environment and hardly exchange with upper water and air.
Thus the high-carbon water masses usually occur in the bottom
resulting from the input of SGD-derived nitrate and carbon.
The carbon in these high-carbon water masses deposited or
moved into deeper waters and finally deposited and sealed. This
demonstrated that SGD can be regarded as a sink of carbon
in a sense. In the upper water, only a fraction of the organic
carbon produced by the river was transported to the deep ocean
and stored there.

CONCLUSION

In this study, both SGD and river-derived nitrate and carbon
fluxes and their impacts on the carbon cycle were investigated
in the GBA, China. SGD-derived NO3

−, DOC, and DIC fluxes
were estimated to be (0.73–16.4)× 108 g/d, (0.60–9.94)× 109 g/d,
and (0.77–3.29) × 1010 g/d, respectively. The riverine NO3

−,
DOC, and DIC inputs were estimated to be 8.82 × 108 g/d,
1.05× 109 g/d, and 8.48× 109 g/d, respectively. These additional
fluxes are of significance to stimulate new primary production
and affect the balance of the carbonate system in marine water.
We found that SGD is a potential net source of atmospheric CO2
with a flux of 1.46 × 109 g C/d in the dry winter season of the
study area. However, river is a potential net sink of atmospheric
CO2 with a flux of 3.75 × 109 g C/d. The findings of this study
suggest that SGD, as important as rivers, plays a significant role
in the carbon cycles but has long been ignored in the coastal
carbon budgets because of its invisible and highly variable. In
this study, we just considered the dissolved form of nitrogen
and carbon and ignored the particulate form. A few studies have
shown that particulate form is an important portion of total
carbon flux (Huang et al., 2017). Overall, both SGD and river
should be considered in assessing carbon budgets at regional and
global scales future.
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