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The goal of this study is to provide a universally applicable procedure for a

systematic evaluation of in situ measured data from single sensors regarding

quantifying the uncertainty of the measurement results. As determining

uncertainty for an environmental parameter also depends on the parameter

itself, the focus here will be set on the variable water temperature in the first

place. A separate analysis for salinity and other data will follow in later

publications. With this first of a series of planned manuscripts on different

parameters, we aim at providing a common understanding of how

measurement uncertainty on single sensor measurements can be derived.

Using an experimental in situ set-up with 6 different standard CTD sensors of

two different brands, we created a four month-long, high-quality data set to be

used to develop a reliable method for quantifying measurement uncertainties.

Although the CTDs were deployed in a mooring in a coastal environment the

described method can be extended to other deployment configurations as

well. The described procedures have evolved as a stepwise process that takes

the different perspectives of the involved authors into account, as well as the

special conditions for environmental measurements, which are collected while

the observed volume/area is undergoing a constant change. By sharing the

ideas with other stakeholders, the basic concept can be extended to other

observing programs and to other essential ocean variables.

KEYWORDS

uncertainty quantification, essential ocean variables, CTD, coastal observatory,
calibration, metrology, quality control, flagging
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Introduction

Considering the importance of judging the significance of

observations to detect long term trends in earth systems, the

current study appears to be timely and relevant for different

kinds of observational activities e.g., as part of the UN Decade of

Ocean Science for Sustainable Development (UN DECADE, U

2021). Measuring variables in the field is fundamentally different

from lab measurements as in-situ measurements are unique in

space and time and are of transient character. In the ocean

sciences, where access to environmental data is often limited due

to required ship time or due to weather constraints, single sensor

data without the chance of replication and limited information

on data quality are the only available source of information. The

challenge is to define the concept of “data quality” which is

connected to “measurement uncertainty”.

Although in other disciplines like atmospheric observations

as conducted by the World Meteorological Organization

(WMO) the concept of uncertainty has already found entry

(WMO, 2008), while ocean sciences have only dealt with

uncertainties for specific parameters and often with a

limited scope.

Over the past years, various aspects on data quality have

been considered (Wong et al., 2022), (Bushnell, 2019) including

the “FAIR” data concept (Wilkinson, 2016). The FAIR concept

means that scientific data must be “findable”, “accessible”,

“interoperable” and “reusable” including a minimum of

associated metadata information which make data transparent

with respect to their origin and their processing workflow.

However, even FAIR data do not contain an adequate

description of data quality, as is classically requested as a

minimum standard in natural sciences. Referring to

international conventions (UNESCO, 2013) here, data quality

refers to the availability of “accuracy” and “precision”

information [see Supplementary Material, Appendix 4 on

terminology which is based on (BIPM, 2008)]. This will allow

the calculation of a statistically robust uncertainty resp.

confidence interval for each measured data point spanning the

range within which the best estimate value lies with a specified

(e.g., 95%) probability. Only when this statistical information for

each individual data point is available can the “quality” of this

data point be quantitatively assessed in a close context to the

respective scientific question. While, for example, in behavioral

ecology, temperature measurements used to determine whether

an area is habitable for a particular species usually do not need to

be more accurate than one degree Celsius, studies of the effects of

climate change-induced heat content changes in the deep sea

require uncertainties that do not exceed one hundredth of a

degree or even less. Thus, while for the behavioral ecologist, the

above-mentioned dataset is of sufficient and thus of “high”

quality, for the oceanographer the same data set is of

insufficient and therefore of “poor” quality. This implies that a

data point without information about its uncertainty is neither
Frontiers in Marine Science 02
good nor bad, but in a kind of premature raw data state that is

not yet suitable for scientific use and publication without

further refinement.

The study that has been carried out strives to perform an

analysis of the relevant factors required to calculate a measured

data points uncertainty. In a series of follow-up papers, we will

address other related topics such as uncertainty of salinity

measurements or uncertainty due to sensor drift.

In a first step, a basic concept of uncertainty calculation for

time-series data measured by standard oceanographic probes

(CTD, Conductivity, Temperature, and Depth) is presented. To

keep the analysis as comprehensive as needed, while being as

simple as possible, we here concentrate on analyzing the variable

temperature as an example. Nevertheless, it should be relatively

straightforward to extend this analysis to other, more complex,

Essential Ocean Variables [EOVs, (GOOS, 2020)].

Along a data processing chain from the raw sensor output

(e.g., T=14.345°C), we evaluate different procedures for a simple

but statistically robust numerical uncertainty calculation of the

measurement to finally come to an output in the form of

T = 14:345  ±  0:003 ° C

or verbalized,

Measured Value = Best estimate  ±  Uncertainty

(Taylor, 1997)

The procedures presented here are not meant to replace

existing procedures and frameworks for data quality assurance

developed and established in ocean sciences over the last

decades. The intention of the manuscript, however, is to

complement the information that is provided for

environmental data.

A core element of “quality control” procedures are quality

flags that assign collected data into different quality categories.

The processing and quality control results are stored and

published alongside with the data to allow scientists to decide

whether data are plausible within a set of mathematical and logic

criteria. Flags assigned to data are independent from the later

scientific question and provide information if data fulfill simple

criteria which make them theoretically valid or invalid. The idea

is to exclude obviously or probably wrong data from a dataset.

Quality flags usually consist of a very basic defined code of

numbers. A flag categorizes a data point as e.g., “good” or “bad”.

It can describe if data have been changed, replaced or added to

the original raw data set during processing (e.g., “interpolated

value”) or it can reveal certain events within a data set (e.g., offset

detected, spike detected). Usually, a single data point is marked

with a unique flag corresponding to a specific interpretation of

the “quality”. Unfortunately, this marker is a combination of the

results from different performed tests highly influenced by

specified thresholds defined within each test. So far, there is no

international agreement upon standards for flagging, as well as

the choice of performed data quality tests and accompanied

thresholds. Recommendations for necessary and optional useful
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tests vary depending on the scientific party providing the data.

Additionally, definitions for the used codes vary, although there

are a number of similarities between the used conventions. For

example, flagging schemes based on OceanSITES (OceanSITES,

2020), ARGO (Wong et al., 2022), Copernicus (Copernicus,

2020), and SeaDataNet (2010) follow the convention that “no

quality test performed” is defined as flag=“0”, while schemes

based on GO-SHIP (Swift, 2010) use flag=1 and (UNESCO,

2013) and IOOS (Bushnell, 2020) use flag=2 for the same. This

causes major efforts regarding the mapping of flag information

between the data providers. Interpretation of quality flags

coming along with data from different data providers can thus

be very time consuming for the user. Another issue can occur in

the case of a lack of information about the results of individual

quality tests when data meant for a specific purpose do not meet

these predefined quality criteria and are excluded although they

may be useful for other scientific questions under consideration.

Data flagging is therefore highly useful as a plausibility filter

to exclude wrong data from datasets without a detailed

knowledge of the specific sensor characteristics and

functionality as well as without a specific knowledge on the

later scientific question. Data flagging however cannot replace a

quality assurance procedure providing statistically robust

quantitative information on the data’s uncertainty at a

specified confidence range.

Another contribution to the overall uncertainty budget can

be extracted from the sensor specifications determined in the

manufacturer laboratory at the time of production and

calibration that also should find entry into the metadata

description of measured data. Most sensor manufacturers

provide initial accuracy and precision values for their sensors

and sometimes also information about the stability or drift over

time. Even though this information is exactly the type of

metadata required to calculate a sensor’s uncertainty or

confidence, one has to keep in mind that these manufacturer

metadata are laboratory values referring to a brand-new or re-

calibrated sensor and therefore do not take the sensor lifetime

and environmental conditions during storage, transportation

and/or deployment into account. Furthermore, it must be

considered that manufacturers sometimes provide only

information for their sensors describing a typical accuracy

and/or precision for a sensor but not for a specific sensor

instance. Better qualified sensor specific metadata are only

available if the manufacturer provides a sensor specific

calibration sheet with detailed information on the serial

number of the respective sensor or if a recalibration will be

carried out by another calibration laboratory. Therefore, we have

to consider different levels of availability and reliability of given

sensor accuracies indicating the demand for proper

documentation of sensor metadata.

As mentioned before, flags are markers for data plausibility

and provide workflow transparency. They do not include

detailed information about the significance or robustness of a
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single data point/measurement. The manufacturers quality

parameters of a sensor’s data provide this information but

cannot be easily applied to the operational phase of a

measurement program. From the scientific point of view the

knowledge of both information, realistic uncertainty in the

operational phase of an experiment as well as flags determined

from plausibility tests, would be helpful to prevent scientists

from misinterpretation of data. However, while flags can be

assigned to data points independent from the operational phase

and status of a measurement, a way to assign uncertainty

information on sensor measurements in the operational phase

seem to be largely unknown and not yet widespread in

ocean sciences.
Experimental set-up

The experimental setup was designed to be as close as

possible to a normal monitoring program that would be

conducted in a coastal area with a duration of several months.

A balanced experimental approach with six different multi-

parameter probes [CTD: three Sea & Sun Technology

(Sea&Sun, 2022) and three Sea-Bird Scientific (Seabird, 2022)]

(see also Supplementary Materials, Appendix 1, Table A1 for

more details) from four different marine institutes in Germany

were chosen. These six probes were deployed in the MarGate

underwater test site (Wehkamp et al., 2013) off Helgoland in the

southern North Sea from July 20th to November 25th, 2020. This

underwater experimental field is jointly operated by the two

Helmholtz institutes, Alfred-Wegener-Institute Helmholtz

Centre for Polar- and Marine Research (AWI) and the

Helmholtz Institute HEREON (formerly HZG) as an

international monitoring and test facility for marine observing

components. It has been part of the EU project Jerico-Next

(Jerico-Next, 2019) where international cooperating partners

could apply for the financial cover of time slots to evaluate

marine sensors for scientific purposes.

The experimental area has a cable connected underwater

node with ten submersed ports for continuous power and high-

speed data connection for the remote-controlled operation of

underwater sensor systems (Fischer, 2019).

The underwater field is continuously monitored for the main

essential ocean variables such as temperature, conductivity,

oxygen saturation, chlorophyll-a, turbidity, photosynthetic

active radiation (PAR), current and wave height, as well as

additional variables as pCO2 and methane concentration.

Experiments in the so called MarGate field are supported year-

round by specifically trained scientific divers who are responsible

for sensor maintenance, repairing and replacing of sensors and

new experimental set up. The area provides a highly demanding

environment with average wind speed peaks of more than 6 bft

(10.8-13.8 m/s) on more than 200 days a year and tidal currents

up to 1 m/s.
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The six CTD sensors used in this experiment were mounted

in 9 m (+/- 1.5m tide) water depth in a metal lander frame

(Figure 1). The sensors were mounted such that the sensor heads

with the measuring cells were in the same height of 92 cm (+/-

5 cm) above the seafloor, perpendicular to the main current

direction and offset at a horizontal distance of 15 cm to each

other. This setup ensured that, except for micro turbulences

below decimeter scale, all sensors were exposed to the same

water body without disturbing each other.

The experimental procedure was designed as follows. Prior

to the deployment, all sensors were registered in the AWI Sensor

Registry (Registry, 2019) and calibrated in the calibration

laboratory at Leibniz Institute for Baltic Sea Research,

Warnemuende (IOW) (see Supplementary Material under

Appendix 2) to ensure a consistency in the calibration process.

On June 19, 2020, all six CTD were returned to Helgoland

Centre for Scientific Diving. Five out of the six CTD’s were

deployed on July 22, 2020 11:00 hours in the experimental field,

connected to the node system and the internal data logging

mode was started. From this day on, the data from all sensors

were downloaded every workday between 10:00 and 13:00 hours,
Frontiers in Marine Science 04
if necessary, converted to ASCII data and transferred to the

AWI-O2A Near-Realtime Database (NRT) (Koppe et al., 2015)

to ensure open-access within the group. All measured data and

additional auxiliary sensor data from the MarGate test field were

automatically displayed in a real-time dashboard at AWI O2A

(Dashboard, 2020) so that the sensor and the environmental

situation could be monitored in near real time throughout the

experiment. Using the O2A REST API data has been transferred

into the PANGAEA ingest format and prepared for long-term

archiving and publication at PANGAEA from which the data

can be accessed (PANGAEA, Database 2020). To gain as much

information as possible on sensor behavior due to different

handling like in situ cleaning and the calibration and cleaning

procedure, the different sensors were individually treated (details

in Supplementary Material Table A2). This information will be

also used in a further publication on the evaluation of salinity

measurements. Sensor 3 and sensor 4 were deployed over the

entire experiment without any in situ cleaning or maintenance,

sensor 1 was regularly cleaned under water with a soft tissue,

sensor 2 was recovered for lab calibration in the very beginning

of the experiment, sensor 5 was recovered for lab calibration
B

C

A

FIGURE 1

In situ images (upper panels A and B) and CAD drawing (lower panel C) with dimensions of the experimental setup of the deployed sensors.
Upper left panel: Sensors immediately after deployment, Upper right panel: Sensors three month after deployment with one sensor (second
from the right side) freshly lab-calibrated and maintained. For details see text.
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after about 1 month and sensor 6 was recovered for laboratory

calibration in the middle of the experiment.

As it was the objective of this experiment to develop a

common procedure to calculate the uncertainty of sensor

measurements, specifics of the design and age of the probes

were not considered. For each sensor the maximal sample

frequency for data collection has been configured.
Calibration procedure

The calibrations were performed in the calibration

laboratory of the Leibniz Institute for Baltic Sea Research (the

used instruments are described in appendix 2). This laboratory

has been in operation for more than 50 years and it received an

accreditation according to the ISO/IEC 17025 (ISO, 2022) by the

DAkkS (Accreditation, 2022), the national accreditation body of

Germany. The laboratory is accredited for the measurands

temperature, pressure, and electrical conductivity.

The calibration of all devices was done for the measurands

temperature and electrical conductivity. The temperature

calibration is a comparison measurement with Standard

Platinum Thermometers (SPRT) in a water bath. It is based on

the International Temperature Scale (ITS-90) (Preston-Thomas,

1990) and traceable to the International System of Units

(SI)-system.

The temperature probes are calibrated in a bath containing a

volume of 80 l of seawater. The bath consists of two

compartments: a main volume inside, where the calibration

device is mounted and a second volume outside, where a hose

that is connected to an external thermostat is installed. The

water of the outer volume is pumped through a heating unit for

the stabilization of the temperature into the inner volume by

means of a vaporizing unit for a uniform distribution. In the

inner volume a thermistor sensor is mounted and connected to

an external control unit . Three Standard Platinum

Thermometers (SPRT) are mounted in the vicinity of the

sensors of the device to be calibrated.

The basic calibration schemes that are applied in the ocean

science community are very similar. For temperature calibration

Negative Temperature Coefficient (NTC) thermistor sensors are

often used as the temperature reference. They are very stable and

not as sensitive against mechanical stress as SPRTs. The

advantage of the SPRTs is that the temperature between the

fixed points is defined by the temperature resistance relation

according to ITS-90 (Preston-Thomas, 1990). The NTC-sensors

must be calibrated in a comparison measurement with SPRTs.

This is an additional source of uncertainty which contradicts the

asserted lower uncertainties of calibrations with NTC-sensors vs.

SPRTs a claim that is hard to explain.
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A big difference from most other calibration laboratories is

the accreditation correspondent to the ISO/IEC 17025 (ISO,

2022) standard. That means that the process of calibrations and

the traceability of the results and the declared uncertainties are

ensured. Due to stricter criteria the ascertained uncertainties are

typical ly bigger than in many other unaccredited

calibration laboratories.
Uncertainty analysis

Today’s ocean sensors typically provide an electrical signal

(usually an AC or DC voltage, a frequency or a digital value)

representing an ocean parameter measured at a specified time

and location. Depending on the type of sensor, this signal is

converted into the numerical value of the parameter (e.g., a

temperature value) within the sensor with calibration coefficients

stored within the instrument or it is necessary to calculate the

numerical value subsequently using a calibration file.

The values of the acquired signal are not only a result of the

ocean parameter being measured, but it is also influenced by

additional, external effects. It is affected by inevitable instabilities

and inhomogeneities of the water body near the sensor during the

acquisition of the signal. Furthermore, it is affected by the technical

properties of the sensor, for instance, by the signal noise of the

instrument or by sensor drift or bias. The latter are meant to be

determined by a calibration measurement. However, the calibration

measurement is likewise affected by the effects mentioned above.

Consequently, even under excellent measurement conditions, using

calibrated sensors and excluding any instrument or other failures, it

is impossible to know to what degree the signal value deviates from

the value that truly represent the ocean parameter being measured.

Hence, the true value of the sensor signal is uncertain and a method

to quantify the uncertainty must be defined to estimate a range

around the signal value in which the true is lying with a specified

probability. Figure 2 illustrates the complex input of information

affecting measured raw data points.

In the following sections, we will propose and evaluate a

method to quantify the uncertainty of a measured ocean

parameter in a relatively simple and practical manner. To this

end, we will use seawater temperature measurements measured

with the sensors and measurement setup described in the section

2. Firstly, we will show and discuss the measured data. Then, we

will demonstrate how to quantify the uncertainties of the results

of an individual sensor and discuss the meaning of the

uncertainties. Afterwards, we will compare the results of

several sensors. Based on an evaluation of the uncertainties, we

will finally discuss to what extent the result of a single sensor is a

good representative for the parameter of interest, compared to a

multi-sensor measurement.
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4.1 Temperature data analysis

Every environmental measurement shows a certain degree of

variability that cannot be assigned to any known process and

therefore can be seen as a purely statistical phenomena that

reflects the continuous transition of the water body into a new

state. To estimate this type of variability and derive from that a

contribution to the uncertainty of the temperature

measurements, data sets from six sensors were evaluated

within specific measurement periods. Figure 3 shows the

measured temperature data over the entire period. Total data

availability of the individual sensors varies between 69.7% and

100% (see Supplementary Materials, Appendix 1, Table A3) The

different data availability is due to the temporal removal (for
Frontiers in Marine Science 06
calibration and functional testing) of individual sensors and

short telemetry interruptions. However, the data availability is

acceptable and sufficient for an evaluation.

The study uses data collected using the O2A NRT data

infrastructure which has been published at PANGAEA as

described above. The data sets are available in the form of

measured values with a maximum sampling frequency

depending on the individual sensor configuration (see

Appendix 1, Table A1). Sampling intervals vary between 1 s

for sensors 1-3 and 10 s for sensors 4-6.

From the entire data set (covering almost four months),

selected periods were chosen for further evaluation. The

selection of time periods includes the beginning and end of

fieldwork as well as periods of high and low variability during
FIGURE 3

Measured temperature data of the six sensors for the whole measurement period (June 22 – Nov 10). Grey shaded areas indicate selected
analysis periods. Unlabeled data gaps are due to different download speeds or caused by telemetry interruption.
FIGURE 2

Schematic of information (blue) flow and their corresponding uncertainty (yellow) defining a single field measurement. The top part shows the
environmental signal which is intended to be measured. The data acquisition box shows the different information and their uncertainty a
measurement is facing: natural fluctuations of the environmental signal between the selected sampling interval, the sensor response capabilities,
related measurement of time facing clock drift or data storage delays, uncertainty of location because of movement within the water column or
if bottom mounted, change of water depth due to tidal effects. The quality assurance box is representing the information an uncertainty from
the sensor calibration as detected in the laboratory under stable and well-known conditions.
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measurement. Figure 3 shows the full data set and the selected

time periods (numbered grey shaded areas P1-P4).

Further information on data availability and number of

measurements of the periods are summarized in Table A2 in

the Supplementary Material.

The area where the measurements were conducted is located

in the south-eastern part of the North Sea. The prevailing ocean

condition in this region is mainly influenced by tidal and wind-

driven circulation systems as well as the atmospheric boundary.

In general, a tidally well-mixed water mass can be expected,

characterised by a typical atmospheric annual cycle. Maximum

and minimum water temperatures range from 2-20°C over

the year.

For this study, temperature measurements were collected

over a period of four months. In all individual time series, the

characteristic seasonal variation in temperature for the region

can be observed (see Figure 3). Since measurements were only

taken in summer and autumn, the minimum and maximum

temperatures are in the typical range of 12 -20°C. During the

summer months, the variability of the results are typically

slightly increased, as stronger spatial and temporal

temperature fluctuations (heat exchange with atmosphere

(diurnal cycle, induced by solar irradiation, variations in the

surface layer processes) can appear. In addition, the

measurements will be affected by the increased marine fouling

(biofouling) during the summer and autumn months. During

the autumn months the variability decreased but was more

strongly influenced by other environmental factors such as

wind and the resulting waves.

Four representative periods from the complete time series

were chosen for the determination of the statistical parameters.

The rationale behind this is to consider different scenarios to

obtain a complete picture of different phases (during a long-term

measurement) of the data collection.
Fron
• The first selected period P1 is at the beginning of the

measurement campaign. The sensors are freshly

calibrated and clean (no marine fouling). In addition,

the temperature curve shows relatively stable conditions

with only minor seasonal fluctuations.

• The second period P2 is in the summer months (August)

with relatively strong temperature fluctuations (diurnal

cycle). The seasonal effect is also clearly visible (constant

temperature increase in the summer months). In

addition, the sensors have been in operation for a

month, so alterations of the sensors (e.g., sensor

drifting) and biofouling effects can have an impact on

the data recording.

• The third period P3 had, with very low variability and

high data availability, low external influences and stable

temperature conditions over the entire measurement

period. This provides the possibility to assess
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calibration uncertainties (in situ) as the data are

(nearly) not dominated/influenced by external

conditions.

• The fourth period P4 close to the end of the

measurements in the autumn months has fairly steady

temperature conditions, but high biofouling activity

(autumn bloom). Moreover, individual sensors have

already been replaced, cleaned or recalibrated.
Statistics of the selected study periods are calculated for an

averaging interval of 5 min, with interval size of 300 seconds

always starting at the full minute of the interval. The chosen

averaging interval correspond to often found measurement

intervals in common coastal observing programs and

campaigns, but can also be easily adapted to other intervals as

needed. Figure 4 shows an example of the results for the 5 min

time average (Tmean) of one of the sensors.

As already mentioned, the choice of the averaging interval

used is individually selectable, but should be adapted to the

measurement environment or the measurement objectives.

Especially for measurements at sea, there are some limitations

in the area of energy and data storage possibilities as well as

accessibility and maintenance options. Thus, the scientific focus

(highest possible temporal resolution) cannot always be fully

addressed, as the mentioned constraints must also be taken into

account. An interval of 5 min was chosen for the calculations of

variability and measurement uncertainty in this study. This

selection based on the intention to resolve prevailing

environmental conditions (e.g., tidal influences) of the

measuring region in the data. Furthermore, there were no

restrictions on the energy supply as the cabled infrastructure

of the Helgoland Underwater Observatory (MarGate) was used,

so there was relative flexibility in the choice of measurement

acquisition settings.

To get a more definite estimate of the variability and

uncertainty of the different temperature measurements,

statistical parameters (standard deviation and standard error

of the sample mean) of each single sensor are determined. The

standard deviation (STD) is derived from the temporal

variations of the temperature signal and indicates the

dispersion of the individual data samples relative to the sample

mean over that selected time period. In contrast, the standard

error of the mean (SEM) is a measure of the dispersion of the

sample mean (further details in the following section). The SEM

depends on both the STD and the sample size (N) through the

relatively simple relationship

SEM =
STDffiffiffiffi
N

p (eq: 1)

and is therefore always smaller than the STD. The SEM is

therefore an indicator of the variability of the temperature

samples within the period and commonly used to indicate the
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uncertainty (Lee et al., 2015) (Altmann, 2005).

Results for Tmean, STD and SEM of all sensors and periods

are summarised in Table A4 in the appendix. For all individual

sensors and periods, the results are comparable and in the same

range, there are no clear or obvious deviations. The variations

are also rather small and in the normal measuring range. As

expected, the highest variabilities are observed in the second

period and the lowest during the last period. The mean STD for

the 5 min mean values of the second period is about five times

larger than in the last period, which confirmed the increased

variation in the measurement of this second period. In contrast,

the variability in the first period is only half that in the second

period. Accordingly, the calculated uncertainties (SEM) are also

highest in the second period, while in the other periods the

uncertainties are lower with lowest values in the third period. In

summary, the SEM values are all within a tolerable range and are

comparable across all sensors and periods. The values in the

tables (see the Supplementary Materials, Appendix 1, Tables A3

and A4) are only the average values for the selected (in this case

five minutes) time interval. As shown in Figure 4, the values in

the selected interval can vary greatly in variability and

uncertainty. This should always be taken into account when

particularly temporal fine-scale measurements are necessary

or required.

The results also show the influence of the applied size of the

sampling interval. Three (of the six) sensors have a longer

sampling interval, which results in a larger uncertainty because

of the factor 1/√N for the calculation of SEM. The difference is
Frontiers in Marine Science 08
low but can be clearly seen. As mentioned before, the selected

sampling interval depends also on various boundary conditions

(sometimes it is not possible to run a shorter sampling interval

due to limitations of the measurement set-up or insufficient

energy supply) and measurement targets. The influence on the

results of the average values (Tmean) is rather insignificant. The

results show a good correlation in this case. Again, the choice is

up to the user and the specific measurement task.

To look more closely at quantifying measurement

uncertainty, in the next subsection we will focus on

contribution to the calibration uncertainty, and the

uncertainty related to the fluctuations of the individual sensor

outputs. Other systematic contributions are the instrument

resolution/quantization error that amounts to 0.14 mK for

sensors 1-3 while for sensors 4-6 that amounts to 0.03 mK

which is negligibly small. The long-term stability that is below

5% of the systematic uncertainty budget is not considered

significant for this study.
4.2 Quantification of the uncertainty
of single sensor measurements for
two 3 h intervals

Four out of the six sensors have been evaluated, since only

these have measured temperatures in both selected periods.

Figure 5 shows the results of temperature measurements of the

four sensors in two three-hour periods. The results shown in the
FIGURE 4

Example of measured temperature data from a single sensor (Sensor 1) for period P1. The upper panel shows the temperature data (grey
markers indicate the raw data and the blue line indicates the averaged 5 min data sets. The lower panels show the STD (black line) and the SEM
(orange line) for the corresponding 5 min averaging intervals). Numbers in the colours of the respective lines indicate the values of the averaged
statistical parameters for the complete 5 min intervals.
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figure on the left-hand side, collected on 23/24 September 2020

between 22:40 and 01:40 (corresponding to time period P3),

have been measured during rather stable environmental

conditions. The overall change in temperature within that time

interval amounts to about 60 mK. The figure shows the

arithmetic means of 5 min intervals, indicated by the dots.

The inset magnifies a representative 20 min period. There, the

original raw data are shown without any separate averaging to

illustrate the scattering of the original sensor signals. Two of the

sensors had a sampling rate of 60/min or more (green and yellow

lines), while the other two had a sampling rate of 6/min (blue

and orange).

The results shown in the figure on the right, measured in the

time between 11 August 2020 at 19:18 to 22:18 (corresponds to

measurements in period P2), have been measured under highly

variable environmental conditions. The variations in

temperature amounts to almost one degree Celsius within

period P2. Again, the inset shows the fluctuations of the

unaveraged raw signals. The spread of the temperature signal

is in the range of up to 100 mK, compared to a few mK during

the calm period. Numerical values for the sensors are shown in

the Supplementary Materials, Appendix 1, Table A4.

Based on the “Guide to the expression of uncertainty in

measurement” (GUM, 2008) the combined uncertainty uc(T) of a

temperature measurement result T can be calculated by combining

the standard uncertainties of individual contributions, here:

uc Tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2cal + u2f luc

q
(eq: 2)

ucal is the standard uncertainty assigned to the calibration

and uflucis the standard uncertainty attributed to the variability

during the measurement. The standard uncertainty indicates a

range ± around the best estimate of the measured parameter

value, in which the true value is assumed with a probability
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around 68%. The expanded uncertainty indicates a respective

95% range, which is usually calculated by multiplying the

standard uncertainty with a factor of 2 (see section 6 of

(GUM, 2008) Hence,

Measured value  =  best estimate ± uncertainty  68%ð Þ

Measured value  =  best estimate ± 2  · uncertainty  95%ð Þ

The numerical value of ucal is provided in the calibration

certificate of a sensor. As mentioned, ufluc is the standard

uncertainty assigned to the variability of the parameter, which

corresponds to the fluctuation of the measured values. The

numerical value of ufluc depends on the chosen representation

of the parameter, meaning on how the best estimate is

determined. Here, we will consider two kinds of representation:

(i) Temperature, at a specific time, is estimated by a single

measurement (“raw data”)

(ii) Temperature, at a specific time, is estimated by the

arithmetic mean of values measured in a 5 min interval

around this point in time (“5 min means”)

It must be noted that equation 2 is a rather simple, but

practical approach, than can be expected to cover the major

uncertainty contributions. However, depending on the scientific

task, other contributions might become relevant. More details

are given in (Bushnell, 2019).

(i) Temperature estimated by a single measurement

(“raw data”)

If, for whatever reason, the scientific evaluation of a

measurement series requires use of the raw data rather than

averaged values, the fluctuation uncertainty of a single raw data

value must be estimated. Usually, it is determined by quantifying

the spread of fluctuating data measured under stable

measurement conditions. However, only data measured under
BA

FIGURE 5

Time series of 5 min temperature means for P3 (dots, left panel A), while temperature variability was small and (a part of) P2 (right panel B with
high variability). The insets magnify 20 min time windows and show the spreads of the raw data.
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unstable conditions are usually available from environmental

measurement series. Therefore, a time interval must be defined,

in which the measurement conditions can roughly be considered

as being approximately stable. This means, the standard

deviation should not exceed the change of the parameter in

that interval. An estimate for the change could be the difference

of the moving average at the beginning and the end of the

interval1. Then, assuming a normal distribution, fluctuation

uncertainty can be estimated by the standard deviation of the

data within this interval (equation 3). The interval should

however be large enough to have a minimum number of

values included (at least 10) to be statistically meaningful.

Otherwise, a factor, a, has to be applied that is given by the

student-t distribution (GUM, 2008). Thus, the fluctuation

uncertainty of the ith temperature value Ti is estimated by all n

values Tij in the chosen interval around the value Ti:

ufluc   Tið Þ = a  ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j=1

Tij − Ti

� �2
n − 1

s
= a  · STDi (eq: 3)

For instance, a 2 min interval in our measurement series

would include 12 data points for sensors 4, 5, and 6 (having a

sample rate of 6/min), which involves a student-t factor of

a=1.05 (≈1) for a 68% probability range (see Table G2 in

(GUM, 2008)).

Obviously, the sampling rate of a measurement series must

be sufficiently large so that a suitable interval can be defined. If

the sampling rate is too small to catch the fluctuation of the

measurement signal other ways must be found to estimate

fluctuation uncertainty. In this case it may be quantified by

independent experiments in the lab or simply based on the

experience of the scientist evaluating the data [so called type B

uncertainty (GUM, 2008)].

It must be emphasized that the time interval mentioned in

this subsection is used to calculate an estimate for the fluctuation

uncertainty of a single (raw) data point, which reflects the

temperature variability seen in the insets of Figure 5. Likewise,

the panel in the middle of Figure 4 shows the fluctuation

uncertainty of single temperature points in the measurement

period P1 (based on a 5 min interval). However, fluctuation

uncertainty of single points must be distinguished from that of

mean values. Fluctuation uncertainty of mean values, using a

5 min time interval as an example, will be discussed in the

next subsection.

(ii) Temperature estimated by the arithmetic mean of values

measured in a 5 min interval (“5 min means”)
1 A more sophisticated criteria would include a trend analysis. To this

end, a linear regression would be applied in the defined interval. If the

slope of the regression line is smaller than the expanded uncertainty of

the slope, the parameter can be considered stable.
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An estimate for fluctuation uncertainty can be calculated

with the standard deviation of the mean of n values Tij within the

ith 5-minute period:

ufluc   Tið Þ5min= a ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j =1

Tij − Ti

� �2
n ·  n − 1ð Þ

s
= a · SEM (eq: 4)

Here Ti is the arithmetic mean over 5 min in the ith time

interval, with n = 30 for the sensors having a sample rate of 10 s,

and n = 300 for sensors having a 1 s sample rate. a ≈ 1 as n ≥ 10.

The fluctuation uncertainty of the mean is obviously smaller

than that of a single result (see i) due to the additional factor

1=
ffiffiffi
n

p
. The fluctuation uncertainty of the mean is reflected by the

smoother behavior seen in the main parts of Figure 5 and the

smaller values illustrated in the lower panel of Figure 4.

Figure 6 on the left-hand side shows the combined,

expanded uncertainties of four sensors during a period with

low variability (P3). Their values are a few mK, they are largely

constant over the complete measurement time and are

dominated by calibration uncertainty as the temperature has

low variability. The sensor corresponding to the orange results

has a slightly larger calibration uncertainty. The dashed line

indicates the expanded combined uncertainties of individual

results, meaning representation (i) for comparison. Note that it

corresponds only to those sensors with smaller calibration

uncertainties. The uncertainty of the raw data is somewhat

larger, so that averaging is also advantageous under low

variability conditions.

The figure on right shows expanded uncertainties of the

5 min means during the period with high variability (P2). There,

the dashed line indicates the calibration uncertainty of the

sensors. The fluctuation uncertainty increases the expanded

uncertainty by about a few hundred’s Kelvin. It can also be

seen that those sensors measuring with higher time resolution

(sensor 1 & 3), have smaller fluctuation uncertainties compared

to those with lower sample rates (sensor 4 & 5) because of the

averaging, despite smaller fluctuations of the raw data of the

latter (see inset of Figure 5). Hence, it seems that larger numbers

of samples lead to less uncertainty in comparison to longer

integration times of the other two sensors. The uncertainty of the

individual results is not shown, since it is too large to be shown

on that scale.
4.3 Data analysis based on multiple
sensor measurements

Figure 7 shows exemplary spreads of the results of four

sensors. Each result is the mean of a 5 min interval and is shown

as a colored dot. The uncertainty bar of each result indicates its

combined uncertainty as described in the previous section. The

three groups seen in Figure 7 belong to 3 different, but

subsequent 5 min intervals. Note that the results of each
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individual group have been measured in the same time interval,

however, the values of a group have been slightly shifted along

the x-axis to improve visibility of the individual results and their

uncertainty bars. The red dot in the middle of each group

indicates the average of the four sensor results in that group,

simply calculated by the arithmetic mean of the four results. The
Frontiers in Marine Science 11
corresponding uncertainty bar indicates +/- twice the standard

deviation of the four results (95% confidence). It is an estimate of

the uncertainty of the average in the respective interval. It should

be noted that other estimators could be used for the average and

its uncertainty (Maronna et al., 2006). The uncertainty weighted

mean would for instance consider the uncertainties of the
BA

FIGURE 6

Combined uncertainties corresponding to the 5 min means shown in Figure 5. The dashed line in the figure on the left-hand side (panel A, low
variability period P3), show the approximate combined uncertainties of the individual values (raw data) of sensors 1,4,5 (that of sensor 3 is
slightly larger because of its larger calibration uncertainty). The dashed line in the figure on the right-hand side (B) approximates the calibration
uncertainty of the sensors (high variability P2).
FIGURE 7

Magnified 5 min means corresponding to the Figure 6 (right hand side) with growing variable conditions, illustrating the spread of the best
estimate derived from the four different sensors and their expanded uncertainties. The associated times have been slightly shifted to improve
the presentation. The red dots indicate the arithmetic mean of all four sensors and the uncertainty bars their expanded uncertainties.
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individual results. The median would be less sensitive to

potential outliers.

A crucial element of this study is to assess the significance of

the measurement result of an individual sensor and its

uncertainty in comparison to a multi sensor approach.

The uncertainty will be quantified from all parallel

measuring probes and then compared with the measurement

uncertainties derived from a single probe. To make both results

comparable 5 min averages were calculated and then the

standard deviation over the 4 sensors were derived. With the

same approach described above a factor based on the student t

distribution has to be used to take the low sample number into

account (a=1.20, assuming 3 degrees of freedom and a

significance of 68%).

ufluc   T
5min
i

� �
= a ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j =1

Tij − Ti

� �2
n · n − 1ð Þ

s
(eq: 5)

Where i is a specified moment in time and ufluc is the value

taken as the contribution to the uncertainty based on the

variability of the measured parameter across all parallel

measuring probes. As above, the combined (equation 2) and

expanded uncertainty (equation 3) can be derived from the

calibration uncertainty, often confused as the overall measuring

uncertainty, and other influencing effects into account.

Small scale mixing process with a scale below the distance of the

individual sensors between each other will cause a decorrelation

between spatial and temporal variabilities. Those major differences

between the sensors typically occur in region of strong temporal/

spatial gradients as for instance the thermocline.

As one can see from the comparison between Figures 8 and 6

there appears to be a rather good match between both. The
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differences can be traced down to the processes that cause strong

fluctuations and their related spatio-temporal correlation
Discussion

The focus of this study has been to what extent the

measurement result of a single sensor together with

the assigned uncertainty as calculated is representative for the

observed parameter under consideration. For that purpose,

parallel measuring probes had been used to be able to

intercompare and judge on temperature measurement results

of individual sensors, using the mean of the results of all

available sensors as a reference. Only if a single sensor output

is consistent with the mean of all sensor output and within the

range of the calculated uncertainties can it be considered a

reliable representative of the measured parameter. In that case

the measurement uncertainty of the individual sensor is also

quantifying the uncertainty range within which the consistency

is valid. Mathematically, consistency can be expressed by

comparing the deviation of the temperature result Tk of an

individual senor k from the mean TM of the results of all sensors

with the uncertainty of the deviation (see Figures 7 and 8).

Tk _ i − TM _ i

�� �� ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 Tk _ i

� �
+ u2 TM _ i

� �q
(eq: 6)

The index i refers to the respective values of the ith

measurement interval. According to eq. 6, a temperature

measured with sensor k is considered consistent with the

mean temperature calculated from results from all sensors, if

the deviation from the mean is smaller than its uncertainty. It

should be noted that, strictly speaking, a statistically consistent
FIGURE 8

The standard uncertainty derived from the standard deviation between the 5 sensors within the same time interval as in Figure 6 on the right-
hand side (Period 2, high variability). In violet is the graph for the multiple sensor uncertainty.
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approach must consider the correlation between Tk_i and TM_i

and correlations between the results of the individual sensors,

i.e., that all sensors have been calibrated by the same institute in

the same way. Using other estimators, e.g., the weighted mean, as

a representative for the average of several sensors, also effects the

form of eq. 6. However, eq. 6 can be considered as an acceptable

approximation for practical use. Intuitively, the uncertainty bars

of an individual sensor result must overlap with that of the mean

to some reasonable extent. For the sake of simplicity, we will

discuss the representative character of a sensor result rather in

terms of the overlap of uncertainties considering Figures 6–8.

Basically, three cases should be distinguished which have

different implications on the representativeness of an

individual result.

a) The combined uncertainty value of a result is in the order

of the calibration uncertainty. Hence, fluctuation uncertainty is

small compared to calibration uncertainty, as can be seen in the

left-hand side of Figure 6. Temperature can be assumed stable

and homogenous in the vicinity of the sensors. In this case, the

uncertainties of all sensors will overlap quite well, as can be seen

in the cloud on the left-hand side of Figure 7 (around 80 min).

Each sensor measures a good estimate for the mean temperature

and the combined uncertainty of the sensor result is a good

estimate for the uncertainty of the temperature in the considered

time window and measurement volume. The deviation of an

individual sensor (e.g., that of sensor 5) from the mean cannot

necessarily be considered as systematic measurement bias that

should be compensated. In fact, the deviation lies in the range of

the calibration uncertainty. Correcting results for deviations that

are smaller than calibration uncertainty, cannot be justified.

b) Both calibration and fluctuation contribute to the

combined uncertainty of a sensor result in roughly the same

order of magnitude. Temperature variation with respect to

measurement time and special distribution must be assumed

to some extent. The combined uncertainties of the individual

sensors do still overlap fairly well with the uncertainty of the

mean, as illustrated by the cloud on the right-hand side of

Figure 7 (90 min). However, the overlap of some individual

sensors with each other is marginal (see sensors 3, 4 and 5).

Hence, the uncertainty uc of an individual sensor does not well

represent the actual mean temperature and its uncertainty. An

uncertainty factor as reflecting the spread of several sensor

results should therefore be included in the uncertainty of an

individual sensor if only one sensor had been deployed (and

temperature variability cannot be neglected):

ucs = as ·   uc (eq: 7)

uc is calculated according to eq. 2 from the available

measurement data. as is an estimated value reflecting the

spread of the results of several sensors and ucs denotes the
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enlarged uncertainty of an individual sensor. Obviously,

assigning a number to as is somewhat arbitrary if only results

of a single sensor are available, as is typical for oceanographic

practice. However, GUM (section 4.3 of GUM, 2008) suggests

evaluation of a so-called type B standard uncertainty that is

based on the available information if repeated observations (here

in the sense of several sensors) are not possible. Thus, looking at

the results shown in Figure 7, the uncertainty bars of all sensors

would reasonably overlap if they were about 50% larger.

Therefore, setting as=1.5 is an arbitrary, but reasonable choice.

If ufluc is smaller than 0.5 ucal its contribution to uc becomes less

relevant. The relative difference between ucal and uc is then less

than 11%. Hence, it is also reasonable to set u ufluc< 0.5 ucal as a

limit, below which it is reasonable to assume stable temporal and

spatial conditions and, consequently, to set as=1 in that case.

c) Figure 8 compares the uncertainties assigned to the means

of the sensor results with those of the individual sensors. There

are measurement intervals in which the combined uncertainties

of the individual sensors are in the order of several tens of mK.

Hence, the corresponding fluctuation uncertainties are

significantly larger than calibration uncertainties. Due to

ongoing mixing processes significant instability in temporal

and spatial temperature distribution must be assumed. While

temporal averaging still provides a reasonable estimate of

temperature and its uncertainty due to temporal variability at

the exact position of a sensor, it cannot readily be assumed that

the values are also adequate representatives for the entire time

range of the measurement. Additional information is needed for

instance by averaging the results of several sensors, potentially

by weighing the individual results with their uncertainties

(Maronna et al., 2006) and assigning uncertainties to the

averages as mentioned above.

Cases a) and b) apply to measurement results where the

uncertainties indicate no or moderate temperature variability.

We propose, as a rule of thumb, that the combined uncertainty

of a single sensor measurement can be considered as an adequate

representative of the mean temperature in the specified

measurement time (here, 5 min) and for the ambient water

body next to the sensor within reasonable limits, if the

fluctuation uncertainty of an individual sensor is not larger

than two times the calibration uncertainty. If fluctuation

uncertainty is larger, the uncertainty must be estimated using

additional means. For instance, a multi sensor approach could

provide reasonable uncertainties, also accounting for spatial

inhomogeneity. If no further experimental data is available,

the factor as can only be quantified based on the experience of

the scientist evaluating the data.

A proposed flowchart for processing uncertainty

information is presented in the Supplementary Materials,

Appendix 3.
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Uncertainty quantifications in the
QA/QC framework

The sources of uncertainty for in-situ collected data are

interwoven with instrument effects and the limited knowledge on

processes that are influencing the variation of the observations that

renders those effects as statistical. Mixing through the action of

tides, insolation of surface waters and the related heat transfer,

strong weather events, advection of water masses, biofouling, and

instrument drift are the processes that determine the bias and

fluctuation of the signal. Some of them can be quantified as

uncertainties, other factors like biofouling are, practically

speaking, impossible to quantify in a reliable manner. Another

aspect has to be taken into account regarding the oceanographic

assessment of the data before data are quality checked.

Oceanographic assessment can thereby mean any influence on

the handling/processing of the data due to the usage of other data

for validation purposes and the accompanying uncertainty. These

can typically be corrections of offsets, instrument drift,

interpolations of missing values or reduction of prominent

outliers as an additional step to the data processing procedure. By

specifying the uncertainty, a statement can be made to what degree

the observation had been influenced by systematic and transient,

stochastic processes.

Specifying the uncertainty is complementary to data flagging so

that uncertainties have to be added to the metadata description.

Details on where the uncertainty quantification enters the picture of

the standard QA/QC process is indicated in Figure 9.
Frontiers in Marine Science 14
Independently from the route of data processing, sensor

signals are often collected under harsh environmental conditions

producing erroneous data sometimes. Likewise, unexpected

technical defects or other events might affect data integrity.

Quality assurance (QA) measures are applied in the preparation

stage of the measurement to improve the quality of the

measurement system and therefore data quality. Quality

control (QC) measures assess the usability of the measured

data whether to use, discard or correct them. To this end, QC

in terms of flagging criteria, and oceanographic assessment in

terms low-level test of reasonableness and high-level process

view are applied. It must be emphasized that QA/QC measures

serve to avoid and identify unusable data and to minimize their

uncertainty. However, the overall measurement uncertainty as

the quantification of the doubt that remains of eventually

accepted ‘good’ data is indispensable.

Typically, measurements at a specific location are used as

representatives for much wider areas and results are averaged

over time to reduce fluctuations in a time series or simply to

reduce the amount of data to be handled. Thus, such results are

used as representative for the ocean parameter under

investigation over a defined space and over a defined time.

Since, the ocean parameter can significantly vary over the

defined area and over the averaging time, there is an

uncertainty associated with these representative results, so

called representation uncertainty, that depends obviously on

the definition of the representative. Significant errors and

apparent contradictions between representative results coming
FIGURE 9

Schematic of information (blue) flow and their corresponding uncertainty (yellow) defining a single field measurement. The top part shows the
environmental signal which is intended to be measured. The data acquisition box shows the different information and their uncertainty a
measurement is facing: natural fluctuations of the environmental signal between the selected sampling interval, the sensor response capabilities,
related measurement of time facing clock drift or data storage delays, uncertainty of location because of movement within the water column or
if bottom mounted, change of water depth due to tidal effects. The quality assurance box is representing the information an uncertainty from
the sensor calibration as detected in the laboratory under stable and well-known conditions.
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from different sources can occur because of improper definition

and inadequate uncertainty assignment.
Outlook

The presented approach to quantify uncertainties of

measured EOVs in a practical manner has been presented on

the basis of temperature measurements. The parameter can be

directly measured using a single datum that can immediately be

calibrated with a temperature standard. Moreover, temperature

sensors show good long-term stability. The collected time series

have shown that measurement results of all sensors are matching

well even after some months. Other EOVs are however more

challenging. Their numerical value has to be calculated from

different parameters, all having their own uncertainties. Salinity,

for instance, is derived from temperature, conductivity and

pressure measurements. The respective calibration procedure

is relatively elaborate and due to the fact that correlations

between involved parameters exist, the uncertainty calculations

are not straightforward. Moreover, the stability of the sensors is

strongly affected by environmental effects, i.e., biofouling. In a

subsequent paper the collected salinity data of the measurement

series will discuss the effect of stability issues and multi-

parameter measurements on the uncertainty quantification of

measured ocean variables.

Other contributions to uncertainty quantifications have to

be considered as well. One example would be the pressure

sensitivity of temperature in profiling observations, such as

shipboard CTD and Deep ARGO observations (Uchida et al.,

2015)). Checking the time drift of temperature sensors in

profiling float observations (Oka, 2005), would be another

important topic, as profiling floats are not usually recovered

and therefore post-observation calibrations for the temperature

sensors are not possible.

Similar initiatives to enable the quantification of

uncertainties had been started like the US CLIVAR Working

group on Ocean Uncertainty Quantification (US-CLIVAR,

2020) and the International Quality-Controlled Ocean

Database (Cowley, 2021). In the publication of Cowley et al.

an additional aspect is mentioned that is described as the

“Representativeness Errors”. This aspect is putting the

uncertainty assessment in the framework of what processes

shall be observed and what type of fluctuations can be

expected. Because here assumptions have to be made that are
Frontiers in Marine Science 15
related to the used models this contribution to the uncertainty

will probably change over time.

With this study a contribution to the UN Decade for Ocean

Sciences shall be made. It will be a unique opportunity to use

established platforms like the IODE Ocean Best Practice System

(IODE, 2022) to disseminate the ideas and methods developed

here. A close interaction with expert groups within WMO is

already ongoing and will provide an additional impulse bridging

the existing gap between ocean and meteorological practices.
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