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High-resolution wave data for
improving marine habitat
suitability models

Chiara M. Bertelli*, William G. Bennett,
Harshinie Karunarathna, Dominic E. Reeve,
Richard K. F. Unsworth and James C. Bull

Faculty of Science and Engineering, Swansea University, Swansea, Wales, United Kingdom
Habitat suitability modelling (HSM) is a tool that is increasingly being used to

help guide decision making for conservation management. It can also be used

to focus efforts of restoration in our oceans. To improve on model

performance, the best available environmental data along with species

distribution data are needed. Marine habitats tend to have ecological niches

defined by physical environmental conditions and of particular importance for

shallow water species is wave energy. In this study we examined the relative

improvements to HSM outputs that could be achieved by producing high-

resolution Delft-3D modelled wave height data to see if model predictions at a

fine-scale can be improved. Seagrasses were used as an exemplar and

comparisons at fine-scale showed considerable differences in the area

predicted suitable for seagrass growth and greatly increased the importance

of waves as a predictor variable when compared with open-source low

resolution wave energy data.

KEYWORDS

seagrass, restoration, habitat suitability modelling, Delft-3D wave modelling,
Zostera marina
1 Introduction

There is growing interest in the use of nature-based solutions to help mitigate the

worst impacts of climate change. The greatest emphasis around this interest is on the

restoration of habitats. With 2021 to 2030 defined as the UN decade of ecosystem

restoration the ambition for re-building biodiversity has never been greater. This includes

increasing focus on restoration in the ocean (Danovaro et al., 2021) with projects

concentrating on restoration of oysters, coral reefs, mangroves, seagrasses and

saltmarshes (Waltham et al., 2020).

Conservation research requires long term surveying campaigns over large areas,

which needs commitment to a well-funded, strategic programme of measurement. Due to
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the practical difficulties this poses, there are limited datasets on

habitat quality and extent. A consequence to this is that it is very

difficult to direct restoration efforts to places where they will

have the best chance of success.

Habitat suitability modelling (HSM) is a tool increasingly

used to help guide that decision making. Also known as species

distribution models (SDM) and ecological niche models (ENM),

they all follow the same premise of capturing the realised niche

of a species which can be used for different aims (Naimi and

Araújo, 2016; Guisan et al., 2017). HSM can be used to predict

distributions of rare and/or vulnerable species for the purposes

of conservation management (Thompson et al., 2014; Rowden

et al., 2017), assessing changes in distributions of key or invasive

species from climate change (Valle et al., 2014) and for

informing the most suitable area for habitat conservation and

restoration (Adams et al., 2016; Hu et al., 2021).

This type of modelling uses environmental parameters that

are known to determine or affect the distribution and presence of

the species in question and then projects this to predict where that

species should be able to exist if these parameters are met (Guisan

et al., 2017). To be able to do this successfully, the availability of

good species presence or distribution and environmental

parameters is needed to be able to provide models with enough

data for testing and training (Guisan et al., 2017; Araújo et al.,

2019). Environmental parameters will be made up of the

conditions that not only limit, but also influence the

distribution and range of the species being studied. Accurate

habitat presence data is one of the most important factors for

successful HSM as inaccuracies in distribution data will lead to

constrained models (Araújo et al., 2019). Presence data need to

consist of geographical locations of species and therefore point

data (coordinates) are often the most useful and easiest to use.

Seagrass meadows provide an excellent case study for

understanding the use of HSMs in the marine environment as

they are geographically abundant, have a well-defined

environmental range within shallow coastal waters, have a

growing interest with regard to restoration initiatives, yet

remain poorly mapped (McKenzie et al., 2020; Green et al.,

2021). In Europe, the field of seagrass restoration, has grown

significantly over the last decade as a result of the increased

understanding of the extent of degradation to this marine habitat

(Gamble et al., 2021). Zostera marina is a meadow forming

seagrass species with a wide geographical range across the

northern hemisphere, between 27 and 70°N. For Z. marina, as

a submerged aquatic vegetation, the parameters that affect its

distribution include light availability (Dennison and Alberte,

1985; Bertelli and Unsworth, 2018), water depth (affecting light

attenuation) (Nielsen et al., 2002), sea water temperature (Marsh

et al., 1986; Moore and Jarvis, 2008), salinity (Salo et al., 2014),

and physical factors such as exposure to waves and currents

(Fonseca and Bell, 1998; van Katwijk and Hermus, 2000; Koch

et al., 2001). Seagrasses are generally known to exist in shallow,

sheltered coastal areas, in soft sediments (Koch et al., 2006).
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Around the UK and Ireland, these locations are predominantly

east or north-east facing bays where they are sheltered from

prevailing wind directions and wave fetch, or within lagoons and

estuaries (D’Avack et al., 2019).

A review of previous seagrass HSM studies (Bertelli et al., 2022)

found the most commonly used environmental parameters to be

seawater temperature, bathymetry, light availability, salinity, wave

action, substrate and seabed slope. However, the variables ultimately

used will also be somewhat dependent uponwhat environmental data

is readily available and its temporal and spatial resolution. Light

availability, specifically Photosynthetically Active Radiation (PAR)

which is the spectral range of light that is used for photosynthesis, is

arguably one of the most important variables to consider as this will

determine where plants can survive within coastal waters (Lee et al.,

2007; Short et al., 2007; Kuusemäe et al., 2016). Bathymetry is also key

in determining where seagrass can exist, as light decreases with depth

as it is attenuated (Duarte, 1991). Within its geographical range, Z.

marina is usually found within a narrow depth range, typically up to

5-10 m deep depending on water clarity (Davison and Hughes, 1998;

Nielsen et al., 2002; Krause-Jensen et al., 2003; Lee et al., 2007; Jackson

et al., 2013).Z.marina can tolerate a wide temperature range from -1°

C in Arctic regions to 30°C in the subtropics. However, temperature

will affect respiration rates within plants and will have significant

influence on life stages, such as flowering and germination. Z. marina

is also tolerant to a range of salinities and can be found within

estuaries as well as fully oceanic conditions, from 18 PSU to 40 PSU

(D’Avack et al., 2019).

Where light limitation is not an issue, such as in uniformly

shallow areas unaffected by other water quality issues, other

physical parameters will be more important in influencing

seagrass presence. Seagrasses are exposed to localised

hydrodynamics in the form of waves, tides, wind driven

currents and wave driven currents (Koch et al., 2006) and

these physical factors have been recognised as important

factors in affecting spatial distribution and the minimum

depth of colonisation (Stevens and Lacy, 2012). Water

movement is important for seagrass growth, but where

hydrodynamic energy is too high it can become a limiting

factor for seagrass growth (Fonseca and Bell, 1998; Peralta

et al., 2006). Morphological changes have been found to be

associated with increases in local hydrodynamics. Wave energy

(a function of wave height and wave period), also has

implications for seed burial and seedling development and is

therefore one of the most important environmental variables to

consider when choosing restoration sites (Van Katwijk et al.,

2009; Infantes et al., 2016; Marion et al., 2021). Restoration

needs to break negative feedbacks in the system, and many of

these relate to the lower physical limits of seedlings (Temmink

et al., 2020). Successful seedling establishment has been found to

correspond with lower maximum wave heights and lower orbital

velocities (Infantes et al., 2011; Marion et al., 2020) and early

patch formation vulnerable to hydrodynamic forces (Furman

and Peterson, 2015).
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The aims of this study were to investigate the use of habitat

suitability modelling for predicting the best locations for potential

seagrass restoration in four key locations around Wales, UK, and

the benefits of using high-resolution wave data for fine-scale

predictions. We defined two key challenges in meeting this aim:

1) identifying up-to-date, high resolution seagrass distribution

data and appropriate environmental covariate data; 2) Comparing

the benefits of using high resolution wave modelled data to low

resolution, freely available hydrodynamic data.
2 Methods

2.1 Site descriptions

The initial consideration was to look at HSM for the entire

coasts of UK, Ireland and Channel Isles where Zostera marina

seagrass is found in many locations and presence data was readily

available (Supplementary Data Table S1) and secondly, to focus

the HSM at the local potential restoration site scale (Figure 1).

These areas were chosen anecdotally as they were perceived by our

team of experienced seagrass scientists to contain conditions

potentially suitable for seagrass such as shallow waters, easterly

facing (away from prevailing winds), calm waters from away from

any major swell and soft sediments. The finer focus of the areas

was also the result of chosen due to consideration that these sites

were of potential for restoration due to existing or historical

records of seagrass presence. The south coast of the Llyn

Peninsula (Area 1) has small Z. marina meadows currently

present but largely fragmented into small patches but many

anecdotal observations of former distributions. West Anglesey

(Area 2) has some small patches, and like the Llyn Peninsula also

has anecdotal observations of former distributions. The East of

Anglesey (Area 3) has no existing known seagrass but some

previous records and descriptions, however, historic mining

pollution provides good reasons to assume historic loss. Finally,

the area in Pembrokeshire (Area 4) has some old records and

anecdotal observations but also has no current known seagrass.

Our study also sought to improve upon the freely available

hydrodynamic data by using wave models to create high

resolution wave information over the areas of interest and to

compare differences in outputs. Finally, our study used these

data sources to produce decision tools for informing seagrass

restoration sites from model outputs.
2.2 Zostera marina presence data

To fulfil the aims of this study we sought to obtain presence

data for Z. marina around the UK and Ireland from all available

sources. This involved checking and refining data points to

remove outliers and duplicates. Z. marina presence data were

obtained from sources in Table S1, uploaded into QGIS (QGIS
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Development Team, 2019) and georeferenced. This allows

visualisation of data layers and identification of erroneous

points such as coordinates that placed records on land or in

deep (>20-30m) offshore waters where occurrence of Z. marina

is highly unlikely. These points were removed along with

duplicate records from the final dataset. Once data were

refined, over 2500 presence points remained around the UK,

Ireland and the Channel Islands. These point data (Figure 2)

were used for testing suitable HSM methods at a broad scale

which would then be refined at a smaller spatial scale for

potential restoration sites. Polygon data can also be used, but

this would limit the number of data sources and require further

analysis to get point coordinates needed for the ‘sdm’ package

and analysis method used for this study.
2.3 Environmental predictor variables for
Zostera marina

We obtained the highest resolution freely available

environmental data of importance to Z. marina presence for

the purpose of refining restoration site choice at a local scale. A

review conducted by the authors (Bertelli et al., 2022) identified

the most commonly used environmental variables used for

predicting seagrass presence using habitat suitability or species

distribution modelling. Highest resolution, freely available

sources of environmental data were identified. All data were

downloaded between September 2020 and February 2021 and

covered temporal ranges from 2001 to the time of download

(Table S2) and uploaded into QGIS for visualisation.

Environmental data are available in a range of different

resolutions, formats and is created using a variety of methods.

Photosynthetically available radiation (PAR) at the seabed (From

European Marine Observation and Data Network, EMODNet via

EUSeaMap) is determined from field and satellite data for light in

the water column and then by calculating light attenuation from

depth and proximity to coast (EUSeaMap, 2012) at a resolution of

~0.3 km. Wave energy (kinetic energy) at the seabed and kinetic

energy from currents at the seabed from EMODNet is based upon

modelled outputs from the National Oceanographic Centre

(NOC) wave and current models (see EUSeaMap, 2012) to a

resolution of ~0.3 km. Data from the Copernicus Marine

Environment Monitoring Service (CMEMS, https://www.

copernicus.eu/en/services/marine) was used as a source of

salinity and temperature as daily averages which are calculated

from forecast data which can therefore provide temporal ranges at

a resolution of ~1.7 km. Bathymetry was available from

EMODNet down to ~70 x 116 m resolution for small high-res

downloads, or alternatively from British Oceanographic Data

Centre BODC (2020) GEBCO (General Bathymetric Chart of

the Oceans) at ~0.2 km. All environmental data layers found to be

suitable for habitat suitability modelling are compiled in

Supplementary Data (Table S2).
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2.4 Data modelling

2.4.1 Broad-scale habitat suitability models

Initial habitat suitability models were developed using

openly available environmental data layers and Z. marina

presence data for the whole of the British Isles and Ireland.

This was to test the effectiveness of model methods using the
Frontiers in Marine Science 04
available environmental data. Environmental data layers were

uploaded into R version 4.0.2 (R Core Team, 2020) as raster files

along with Z. marina presence point coordinate data as spatial

data frames. Five openly available variable datasets were chosen

based on suggested predictor variables for seagrass presence

identified in Bertelli et al. (2022) - light availability (PAR at

seabed), bathymetry, temperature, salinity, wave energy at the

seabed and energy from currents at the seabed.
FIGURE 1

Sites for potential Zostera marina restoration around Wales (UK) used for high resolution habitat suitability modelling using high resolution wave
model data. Areas start at Llyn Peninsula, north Wales (area 1), followed by west Anglesey coast (area 2), east Anglesey (area 3) and finally south
Wales, Pembrokeshire (area 4).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1004829
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bertelli et al. 10.3389/fmars.2022.1004829
Marine environmental datasets often lack coverage in

shallow coastline and pixels covering both land and sea are

often excluded (Yesson et al., 2015). To overcome this, a

buffering tool was used in QGIS (raster ‘fill nodata’ tool) to

interpolate data from neighbouring pixels to cover coastal areas

to a distance of 3 pixels. All environmental data layers were

resampled using the ‘resample’ function and the nearest

neighbour method (‘ngb’) in the ‘raster’ package in R, so they

were all the same resolution as the bathymetry layer (15 arc, sec,

~ 0.4 km), extent and format. All the environmental predictor

layers were tested for colinearity and colinear variables below a
Frontiers in Marine Science 05
threshold of 0.9 were removed using VIF (Variance Inflation

Factor) tests (vifstep and vifcor) in R, recommended for variable

selection (Naimi et al., 2014; Guisan et al., 2017). Remaining

predictor variables were plotted using pairwise correlation plots

to visualise and check no collinearity issues remained.

A suite of methods was used for habitat suitability modelling

using the ‘sdm’ package (Naimi and Araújo, 2016) in R. This

package allows the use of a wide range of the most common

modelling algorithms covering parametric, non-parametric,

regression and machine-learning methods to be used all at once.

A range of algorithms were chosen to cover the different types of
FIGURE 2

Zostera marina presence around the UK, Ireland and the Channel Islands taken from sources listed in Supplementary Data (Table S1) after
outliers were removed.
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modelling approaches. These included Generalised Linear Models

(GLM), Generalised Additive Models (GAM), Multivariate

Adaptive Regression Splines (MARS), Random Forest (RF),

Boosted Regression Trees (BRT) and Maximum Entropy

(MaxEnt), to include some of the most popular methods in

other HSM studies (Valle et al., 2013; Guisan et al., 2017;

Bertelli et al., 2022). The models follow a formula of seagrass

presence as a function of the predictor variables (a stack of the

environmental variable layers) using the different approaches.

Working only with presence data, the ‘sdm’ software takes a

range of randomly sampled ‘background’ points from the study

area which are treated as pseudoabsences (Naimi and Araújo,

2016). For the UK and Ireland area, 1050 seagrass presence points

were collated with an equal number of pseudoabsences for the

HSM. A sample of the presence point data is used to test the

model using the bootstrapping method (Naimi and Araújo, 2016).

Performance of the models was assessed using area under curve

(AUC) of the receiver operating characteristic (ROC) which is

produced for each model run (Beca-Carretero et al., 2020). The

model-independent variable importance values were also

calculated, which are a sensitivity analysis of a model to

different predictors (Harisena et al., 2021). This is accomplished

by using measures of variable importance that compute a ranking

of all the possible species–environment relationships which is one

of the most popular measures used (Harisena et al., 2021).

Predictions of the probability of presence were then created for

each modelling approach. Finally, an ensemble of all the methods

(using weighted averages of AUC scores) was used to create

prediction outputs in the form of a raster layer indicating

probability of suitability for seagrass presence from 0-1 (Naimi

and Araujo, 2021).
2.4.2 High resolution wave modelling
To obtain high resolution wave data at each of the four

restoration study sites, the openly available computational

coastal modelling suite Delft3D was used (Lesser et al., 2004).

The Delft3D-WAVE module utilises the third generation

spectral SWAN wave model (Booij et al., 1999) to simulate

waves in time and space. A Delft3D computational model

domain encompassing the Irish Sea with a rectangular 1160 m

x 1850 m grid was created to transform offshore waves to the

nearshore. High resolution near-shore domains with 50 m x

50 m grid resolution were created for each of the four sites, and

nested to the Irish Sea model (Figure 3) to obtain high-resolution

wave data required for HSM. Bathymetry for each of the high-

resolution domains was created using EMODnet data at 71 m x

116 m resolution. The General Bathymetric Chart of the Oceans

(GEBCO) (https://www.gebco.net/data_and_products/gridded_

bathymetry_data/) 570 m x 925 m resolution dataset was used to

provide additional bathymetry alongside the EMODnet data for

the Irish Sea domain. The Irish Sea model was forced by time

(hourly) and space-varying (5°) European Centre for Medium-
Frontiers in Marine Science 06
Range Weather Forecasts (ECMWF) ERA5 offshore waves

(Hersbach et al., 2018) provided at its offshore boundary.

Hourly, 0.5° resolution ERA5 wind data was implemented

across the entire model domain to provide atmospheric

forcing to the model. Before simulating wave conditions

needed for HSM, the Deft3D wave model was validated

through a comparison of simulated waves with wave buoy

observations at three locations within the larger domain.

A series of wave simulations were carried out using the

validated wave model to provide high resolution data at the four

sites. The months January, March, August, and October were

run for the years 2015 to 2019 providing a total of 20 model runs.

Model outputs including significant wave height, mean and peak

wave period, and wave direction are provided at one-hour

intervals. The time mean significant wave height was

calculated for each simulation period, which will be used in

HSM. Figure 4 shows an example of this for January.

2.4.3 Fine-scale habitat suitability models
Wave height data from the near-shore wave models,

including mean significant wave height, provided higher

resolution data for use in the fine-scale HSM. However, the

open-source wave energy (EMODNet) data were also clipped to

the restoration areas (Figure 1) so that it could also be used

within the final models for comparison between the two. As the

high-resolution wave data are calculated based on temporal data,

four months were chosen based upon seasons that are significant

for the life cycle of Z. marina. These months were: January as a

potential for highest impacts due to wave action and wind

speeds, March when seed germination and seedling emergence

takes place, August for peak biomass and seed production, and

October for seed establishment and as such the suitable planting

season for restoration work (Sand-Jensen, 1975; Orth and

Moore, 1986; Blok et al., 2018). Salinity and temperature data

from Copernicus were obtained for each of these months as an

average of the daily means. Other data were not temporally

resolved so remained as a single data layer (bathymetry, PAR,

slope and currents). All environmental data layers were clipped

to the areas of interest (HSM areas 1-4, Figure 2) and resampled

to the same resolution as the wave height and bathymetry data

using the ‘resample’ function and the nearest neighbour method

(‘ngb’) in the ‘raster’ package in R. Seagrass presence records

were clipped from the original UK dataset for the areas of

interest, which resulted in 32 presence points and a higher

number of background ‘pseudo-absence’ points (n=90) to

improve model performance.

Using VIF (Variance Inflation Factor), all the environmental

predictor layers were tested for multicolinearity and variables

above a standard threshold of 0.9 were removed, used in many

studies (Naimi et al., 2014; Perger et al., 2021; Khan et al., 2022).

Remaining predictor variables were also plotted using pairwise

correlation plots to screen for collinearity (Supplementary

Figure S1).
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The nine remaining variable data layers (wave height January,

mean temp. March, mean temp. August, mean temp. October,

mean salinity August, PAR at seabed, bathymetry, currents and

slope) were stacked and used as predictor variables for the HSM.

The GAM was found to no longer converge, caused by the

increase in the number of variables and low number of

observations, so another algorithm was used –flexible

discriminate analysis (FDA), which is another regression-based

model. This process was repeated by replacing the high-resolution

wave height data (Delft3D) with the original open source, low-

resolution wave energy data (EMODNet) for comparison between

models and variable importance.

Areas of suitable habitat were formatted in QGIS to produce

a continuous scale of the model output as a ‘heat-map’ showing

probability of suitability (0-1). The layer was then clipped and

smoothed to show only the areas with a high probability for both

the model results using the low-resolution wave energy data and

the high-resolution wave height data. The threshold of 0.6 was

chosen as a value that was over 0.5 probability of suitability

which returned a reasonable and practical area to work with for

future applied restoration. A threshold above 0.6 (0.7 or 0.8) left

a considerably reduced area, leaving little scope for practical

restoration. A key challenge in the application of HSM is turning

the continuous output into a binary output for decision making.

We chose 0.6 as an example of this process that practitioners

could use but another value could be chosen. Areas of suitable

habitat over a threshold of 0.6 were calculated in km2 using the

vector calculator function in QGIS.
3 Results

3.1 Results of broad-scale habitat
suitability models

For the seagrass presence points around the UK, Ireland and

Channel Islands, the mean values for the predictor variables were

calculated to provide an estimated niche for seagrass existence. The

mean depth for seagrass presence, calculated from bathymetry, was

6.7m (± 5.4 StandardDeviation), withmean PAR 12.1Mol.phot.m-

2.d-1 (± 8.1 S.D.), wave energy 1671 N.m2.s-1 (± 24577.4 S.D.),

energy from currents 119.5 N.m2.s-1 (± 218.5 S.D.), a salinity of 33.8

ppt ( ± 1.7 S.D.) and temperature of 8.4°C (± 1.1 S.D.).

The predictor variables used for the broad-scale HSM were

not found to have any collinearity issues. Variable importance

was calculated within the ‘sdm’ package in R, using methods

outlined in Elith et al. (2005) (Naimi and Araújo, 2016).

Bathymetry was the most influential variable (63% based on a

correlation matrix - COR, and 32.3% based on Area Under

Curve - AUC) followed by PAR at the seabed (Table 1). Results

from the ensemble models shown in Supplementary Material,

Table S4, show that all model algorithms ran successfully with
Frontiers in Marine Science 07
AUC scores ≥ 0.9, Correlation coefficient ≥ 0.76, and True

Summary Statistic (TSS) ≥ 0.73.

As bathymetry was found to be the variable of highest

importance, large regions of shallow seabed around the UK,

Ireland and the Channel Islands were predicted as suitable

habitat for seagrass (Figure 5). However, this also included

areas of coastline exposed to high wave energy (for example,

south-west facing coastlines, see Supplementary Material,

Figures S3, S4). Wave energy was only found to have 0.8 to

0.9% importance as a predictor variable, which explains why

high energy sites were retained as suitable for seagrass growth

(Table 1). This highlights the need for better resolution predictor

variables, particularly where wave energy or exposure which is

known to have a direct effect on seagrass presence.
3.2 Results of high-resolution wave data

Liverpool Bay, West Pembrokeshire, and Scarweather

Centre for Environment, Fisheries and Aquaculture Science

(CEFAS) wave buoys provided hourly observations around the

Welsh coast. The observations during the period 1st March – 31st

March 2016 were utilised for model validation, due to the

availability of consistent observations at each of the three

buoys. Time series of simulated significant wave heights

during this period were directly compared with that of the

observed wave heights. The comparisons yielded R2 values of

0.87 for the West Pembrokeshire and Scarweather buoys, and

0.93 for the Liverpool Bay buoy, indicating that the

computational model is able to accurately simulate waves in

the Irish Sea.

In Figure 4, the mean January wave height from across

the five January model runs (2015-2019) at each of the four

study sites is shown, providing insight into the wave

characteristics at each location. At all four sites wave

heights were greatest offshore, with the greatest for the

more exposed Pembrokeshire site (2-2.5 m), and least for

the more sheltered East Anglesey site (1.25-1.35 m). The

waves quickly reduce in magnitude as the water depth reduces

(Figure 3), and where headlands provide natural shelter from

the predominant wave approach. This provides large areas

nearshore at each site with mean wave heights between 0.5-

1 m depending on the site.
3.3 Results of fine-scale habitat suitability
models

Many of the mean values for the predictor variables

restricted to the seagrass presence in the local restoration areas

varied substantially from the broad-scale data. The mean depth

for seagrass presence was considerably lower at 0.4 m (± 3.5
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S.D), wave energy at 160 N.m2.s-1 (± 403.3 S.D.) and energy from

currents 51.2 N.m2.s-1 (± 68.8 S.D). Optimal PAR was only

slightly higher at 14.1 Mol.phot.m-2.d-1 (± 7.3 S.D.) than for the

broad-scale seagrass presence. Salinity, temperature, and

modelled wave height varied depending on monthly average

(see Supplementary Data, Table S3). Mean temperature ranged

from 7.7°C in January to 18.7°C in August. Salinity ranged from

30.4 ppt in January to 31.7 ppt in March. Average slope that was
Frontiers in Marine Science 08
calculated from the higher resolution bathymetry data was found

to be 89.9°.

Removal of colinear variables left mean wave height for

January; mean temperature for March; mean temperature for

August; mean temperature for October; mean salinity for

August; PAR at seabed; Bathymetry; Energy at seabed due to

currents and Slope of seabed. All remaining predictor variables

showed a pairwise correlation below 0.7 (Supplementary

Material, Figure S1). Variable importance changed significantly

in the fine-scale models in comparison to the broadscale models,

with wave height becoming much more influential in predicting

seagrass presence (Table 1, Supplementary Material, Figure S2).

The resulting predictions for suitable habitat for Z. marina are

shown in Figure 6 for each of the restoration site areas around

Wales, with model results shown Supplementary Material, Table

S4. All model algorithms resulted in AUC scores of equal to or

greater than 0.9 which can be interpreted as good or even

excellent predictions based on scales defined in other studies

(Araujo et al., 2005). The TSS (True Summary Statistic) is also a

useful model validation measure which is independent of

prevalence or size of dataset, a limitation for the smaller

restoration areas where presence data is low (Allouche et al.,

2006). TSS values closer to 1 show higher prediction accuracy,

and all models scored above 0.8. Random forest (RF) was found

to perform the best (AUC 0.98 ± 0.03 S.D., COR 0.83 ± 0.06 S.D.

and TSS 0.95 ± 0.09 S.D.) and flexible discriminate analysis

(FDA) the lowest scoring (AUC 0.9 ± 0.03 S.D., COR 0.54 ± 0.17

SD and TSS 0.82 ± 0.1 S.D.). Mean wave height (January) was

the most important variable based on the average correlation

metric (30.1% ± 24.9 S.D.) and the AUC metric (20.3% ± 20.8

S.D.) for all model runs, followed by PAR at seabed (COR 27.2%,

AUC 16.2%, see Table 1).

When the model was repeated with the low-resolution wave

energy data in place of the high-resolution wave height data, PAR at

the seabed (COR 31% ± 0.3 S.D., AUC 23% ± 0.2 SD), bathymetry

(COR 29.6% ± 0.2 SD, AUC 23% ± 0.2 S.D.) and mean temperature

in March (COR 29.3% ± 0.3 SD, AUC 16.8% ± 0.3 S.D.) were the

most important variables influencing habitat suitability (Table 1).

AUC, COR and TSS scores were lower in the model runs when the

lower resolution wave energy data was substituted suggesting the

model fits were not as successful as when high resolution wave height

data was included. Only two methods had an AUC mean score over

0.9 (FDA 0.96 ± 0.05 S.D. and MaxENT 0.92 ± 0.06 S.D.) and none

scored a TSS value ≥ 0.8 (Supplementary Material, Table S4).

Figures 6, 7 shows areas with probability ≥ 0.6 of being

suitable for Z. marina presence for the ensemble model using

low-resolution wave energy data and the high-resolution wave

height data for the different areas. The total suitable area ≥ 0.6

predicted from the HSM using the high-resolution wave data was

more than twice (13.69 km2) the predicted area from the HSM

using the low-resolution wave energy data (6.17C, Figures 6, 7).

Within the same areas, the area predicted to be ≥ 0.6 suitable for

seagrass from the broad-scale model was 92.3 km2.
TABLE 1 Summary of the variable importance based on Correlation
metric and AUC for each of the final models, for the broadscale UK
and Ireland model, the fine-scale model using lower resolution wave
energy data (open source EMODNet) and fine-scale model using high
resolution modelled wave height data (Delft3D).

Summary of relative
variable importance

Based on Corre-
lation metric (%)

Based on
AUC metric

(%)

UK & Ireland model

Currents 1 0.7

Waves 0.8 0.9

Temperature 4.7 3.6

Salinity 4.1 2

Bathymetry 63 32.3

PAR at seabed 19.3 12.5

Fine-scale model – Low-resolution Wave energy data

Waves (EMODNet) 8.8 7.9

Mean temp.mar 29.3 16.8

Mean temp.aug 13.6 3.7

Mean temp.oct 19.3 8.3

Mean sal.aug 10.9 4.1

PAR at seabed 31 23.3

Bathymetry 29.6 23

Currents 3 1.9

Slope 14.7 12.9

Fine-scale model – High-resolution modelled wave height data

Mean wave height.jan 30.1 20.3

Mean temp.mar 5.6 2.3

Mean temp.aug 17.3 11.3

Mean temp.oct 8.1 5.1

Mean sal.aug 3.8 2

PAR at seabed 27.2 16.2

Bathymetry 10.1 7

Currents 2.2 1.2

Slope 15.7 14.2
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FIGURE 3

(A) Delft3D Large computational domain and bathymetry, encompassing the Irish Sea and extending towards the Atlantic Ocean. Pink markers
indicate the positions of the Scarweather, West Pembrokeshire, and Liverpool Bay wave buoys. Grid cells are 1160 m x1850 m resolution.
Nested model domains at (B) West Anglesey (area 2); (C) East Anglesey (area 3); (D) Llyn Peninsula (area 1); and (E) Pembrokeshire (area 4).
Bathymetry data were taken from GEBCO and EMODnet datasets. Some topographical areas were also covered in this data layer which explains
the high positive values in depth range, but would not have affected outputs as these areas would not be covered by water so were avoided
in modelling.
FIGURE 4

Mean significant wave height from across the five January model runs (2015-2019) at the four selected sites. Top left – West Anglesey (area 2),
top right – East Anglesey (area 3), bottom left – Llyn Peninsula (area 1), bottom right – Pembrokeshire (area 4).
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4 Discussion

Determining where to invest limited financial resources for

restoration or environmental enhancement of species or

habitats requires appropriate decision support tools. Habitat

suitability models are a useful tool for assisting with this

process by identifying areas where species and habitats

should be able to exist based upon the environmental data

that are available. Here we provide a novel case study that

illustrates how the creation of high-resolution environmental

datasets, and the use of ensemble modelling techniques can

lead to more refined HSMs that better predict these windows of

opportunity for restoration, ultimately leading to a reduction

in environmental and financial risk attached to major

ecological improvement projects.
Frontiers in Marine Science 10
Our study finds that potential seagrass restoration areas can be

defined to a much finer scale and more ecologically representative

level by incorporating targeted fine resolution Delft3D wave data in

marine habitat suitability models. Model validation results were

good for the initial broad-scale models using open access

environmental datasets, however the map outputs overpredicted

suitability in areas that would not be appropriate for seagrass

growth, such as very large swathes of exposed coastlines around

Anglesey Island (Natural ResourcesWales, 2009) and deep (>15 m)

regions such as offshore from themidWales coast with wave energy

the second to least important variable. The lower resolution of the

environmental data available at a broader scale will still identify

suitable regions for seagrass growth but the spatial overlap at this

scale makes it more difficult for differentiating where conditions are

most suitable within smaller areas.
FIGURE 5

Predicted habitat suitability for Zostera marina, based on ensemble model results for UK, Ireland and Channel Isles. The legend shows colour
scale for the probability of habitat suitability from yellow (low) to red (high).
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FIGURE 6

Areas of suitable seagrass habitat in green for the four chosen areas around Wales. Top left – West Anglesey (area 2), top right – East Anglesey
(area 3), bottom left – Llyn Peninsula (area 1), bottom right – Pembrokeshire (area 4). Maps shows results from ensemble model of 6 methods,
using presence only data and all the non-colinear variables including high-resolution wave height data. Overlayed is the vector layer outputs
when a threshold of >0.6 probability was applied to the model with low resolution wave data model (pink) and high-resolution wave data model
(blue) for comparison.
FIGURE 7

Difference in area (km2) predicted as suitable using ≥0.6 probability threshold for ensemble models using lower resolution wave energy data and
high-resolution wave height data.
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The results of the ensemble model using Delft3D wave data

appear to show appropriate predictions for seagrass growth at a

fine scale due to the higher resolution environmental predictors

of wave height and bathymetry. Mean wave height for January

obtained from the wave model was found to be the most

important variable for predicting seagrass suitability which is

the month predicted to have the highest wave heights and with

suitability increasing as wave height decreases. PAR at the seabed

was the second most important variable for predicting seagrass

presence in the four areas around Wales.

The open-source wave energy data used in the same ensemble

model was less important as a predictor variable, with slope and

bathymetry the most important factors. The resulting areas

predicted to be highly suitable for seagrass growth was found to

bemore than 50% lower when using the low-resolution wave data.

The use of ensemble modelling allowed a combination of

several model methods to provide predictions which will be more

robust to uncertainties that may arise from using a single method

(Araújo and New, 2007; Latif et al., 2013). This removes the need

for selecting a single ‘best’model which limits model selection bias

and reduces the need for removing predictor variables which is

often the case for step-wise model selection. This method is useful

for predictions in new areas where conditions may be different or

where data are lacking (Guisan et al., 2017).

The interpretation of HSM outputs can be relatively subjective

based upon prior knowledge of sites and the species in question.

The AUC, COR and TSS scores allowmodel comparisons and will

indicate those which best fit, however when the outputs are very

similar, visual interpretation is needed to assess if the results are

realistic. The model results show higher AUC, COR and TSS

scores when the high-resolution wave height data were included

for the smaller potential restoration areas. More areas were

suitable in areas 1 and 4, on the Llyn Peninsula and southwest

Wales coast, than the Anglesey and north coast areas (2 and 3).

This could be due to areas 2 and 3 having higher areas of intertidal

shoreline. Due to large resource requirements, the wave model

within Delft3D was not coupled to the tidal processes, and as such

wave modelling was carried out for the mean water level. The

wave modelling therefore does not provide data in the upper

intertidal, limiting prediction of wave heights in shallow extents,

especially where land is also obstructing potential wave energy,

and therefore this restricts the model areas to subtidal zones.

However, this issue was consistent with other open-source

environmental data such as PAR at the seabed, which highlights

the difficulties in extending marine HSMs into intertidal areas.

The wave height data were extrapolated to provide overlap in the

shallows, but only by 3 pixels to maintain data integrity as was

carried out for other environmental data layers. It can also be

argued that the use of high-resolution wave data is only really of

use in areas that are more affected by wave action, such as an open

bay where there is some gradient of wave exposure such as areas 1

and 4. It is possibly not so effective in areas that are heavily

sheltered from prevailing waves e.g. within an archipelago, or in a
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north-east facing enclosed bay where other hydrodynamics may

be having more impact (e.g. tides and currents), which could be

the case for the shallow areas around Anglesey - areas 2 and 3. The

best way of testing this is to trial restoration in the sites and

compare results from the different outputs such as outlined by

Thom et al. (2018) which is the next step. Nonetheless, the results

do show where restoration should be more successful due to the

environmental conditions in all the areas and will provide a good

baseline for selecting sites for restoration in the future. This study

method provides evidence that the use of high-resolution wave

data such as the Delft3D used in this study, can improve model

outputs and highlights the importance of wave exposure as a

factor in determining seagrass presence.
5 Conclusions

Habitat suitability modelling is a valuable tool for the purposes

of conservation management and realising the risks of climate

change on key species but also for aiding in decision making for the

restoration of our marine systems. This study shows the benefits to

obtaining high resolution predictor variable data for HSM at small

regional scales. For predicting suitable conditions for seagrass, wave

height data at a higher resolution was found to be the most

important variable and model outputs were improved and

differed considerably in comparison to the use of low-resolution

wave energy data in its place. However, it should also be recognised

that there is a lack of availability of many environmental variable

data for the shallow coastal, including intertidal, areas. This has

implications for improving HSM for restoration enabling efforts to

be focused on areas where the chance of success will be highest.
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et al. (2018). ERA5 hourly data on single levels from 1979 to present (Copernicus
Climate Change Service (C3S) Climate Data Store (CDS). doi: 10.24381/
cds.adbb2d47

Hu, W., Zhang, D., Chen, B., Liu, X., Ye, X., Jiang, Q., et al. (2021). Mapping the
seagrass conservation and restoration priorities: Coupling habitat suitability and
anthropogenic pressures. Ecol. Indic. 129, 107960. doi: 10.1016/j.ecolind.2021.107960

Infantes, E., Eriander, L., and Moksnes, P. (2016). Eelgrass (Zostera marina)
restoration on the west coast of Sweden using seeds. Mar. Ecol. Prog. Ser. 546, 31–
45. doi: 10.3354/meps11615

Infantes, E., Orfila, A., Bouma, T. J., Simarro, G., and Terrados, J. (2011).
Posidonia oceanica and cymodocea nodosa seedling tolerance to wave exposure.
Limnol. Oceanogr. 56, 2223–2232. doi: 10.4319/lo.2011.56.6.2223

Jackson, E. L., Griffiths, C. A., and Durkin, O. (2013). A guide to assessing and
managing anthropogenic impact on marine angiosperm habitat - part 1: Literature
review. Natural Engl. Commissioned Rep.

Khan, Z., Ali, S. A., Parvin, F., Mohsin, M., Shamim, S. K., and Ahmad, A.
(2022). Predicting the effects of climate change on prospective banj oak (Quercus
frontiersin.org

https://doi.org/10.48670/moi-00054
https://doi.org/10.48670/moi-00054
http://www.emodnet-seabedhabitats.eu
http://www.emodnet-seabedhabitats.eu
https://www.frontiersin.org/articles/10.3389/fmars.2022.1004829/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.1004829/full#supplementary-material
https://doi.org/10.1002/aqc.2573
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1111/j.1365-2486.2005.001000.x
https://doi.org/10.1002/aqc.3312
https://doi.org/10.3389/fmars.2022.997831
https://doi.org/10.3389/fmars.2022.997831
https://doi.org/10.3389/fenvs.2018.00039
https://doi.org/10.3354/meps12479
https://doi.org/10.1029/98JC02622
https://doi.org/10.1111/rec.13432
https://www.marlin.ac.uk/habitats/detail/257
https://doi.org/10.3354/meps025051
https://doi.org/10.1016/0304-3770(91)90081-F
https://doi.org/10.3354/meps171109
https://doi.org/10.1371/journal.pone.0138206
https://doi.org/10.1371/journal.pone.0138206
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.3389/fpls.2021.629962
https://doi.org/10.1017/9781139028271
https://doi.org/10.1111/ecog.05534
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1016/j.ecolind.2021.107960
https://doi.org/10.3354/meps11615
https://doi.org/10.4319/lo.2011.56.6.2223
https://doi.org/10.3389/fmars.2022.1004829
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bertelli et al. 10.3389/fmars.2022.1004829
leucotrichophora) dispersal in kumaun region of uttarakhand using machine
learning algorithms. Model. Earth Syst. Environ. doi: 10.1007/s40808-022-01485-5

Koch, E. W., Sanford, L. P., Chen, S.-N., Shafer, D. J., and Smith, J. M. (2006).
System-wide water resources research program and submerged aquatic vegetation
restoration research program (Waves in seagrass Systems : Review and technical
recommendations). Eng. Res. Dev. Cent.

Koch, E. W., Verduin, J. J., and Katwijk, V. (2001). Measurements of physical
parameters in seagrass habitats. Glob. Seagrass Res. Methods, 325–344. doi:
10.1016/B978-044450891-1/50018-9

Krause-Jensen, D., Pedersen, M. F., and Jensen, C. (2003). Regulation of eelgrass
(Zostera marina) cover along depth gradients in Danish coastal waters. Estuaries
26, 866–877. doi: 10.1007/BF02803345

Kuusemäe, K., Rasmussen, E. K., Canal-Vergés, P., and Flindt, M. R. (2016).
Modelling stressors on the eelgrass recovery process in two Danish estuaries. Ecol.
Modell. 333, 11–42. doi: 10.1016/j.ecolmodel.2016.04.008

Latif, Q. S., Saab, V. A., Dudley, J. G., and Hollenbeck, J. P. (2013). Ensemble
modeling to predict habitat suitability for a large-scale disturbance specialist. Ecol.
Evol. 3, 4348–4364. doi: 10.1002/ece3.790

Lee, K.-S., Park, S. R., and Kim, Y. K. (2007). Effects of irradiance, temperature,
and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Bio. Ecol.
350, 144–175. doi: 10.1016/j.jembe.2007.06.016

Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G. S. (2004).
Development and validation of a three-dimensional morphological model. Coast.
Eng. 51, 883–915. doi: 10.1016/j.coastaleng.2004.07.014

Marion, S. R., Orth, R. J., Fonseca, M., and Malhotra, A. (2021). Seed burial
alleviates wave energy constraints on zostera marina (Eelgrass) seedling
establishment at restoration-relevant scales. Estuaries Coasts 44 (2), 352-366.
doi: 10.1007/s12237-020-00832-y

Marsh, J., Dennison, W. C., and Alberte, R. S. (1986). Effects of temperature on
photosynthesis and respiration in eelgrass (Zostera marina l.). J. Exp. Mar. Bio.
Ecol. 101, 257–267. doi: 10.1016/0022-0981(86)90267-4

McKenzie, L. J., Nordlund, L. M., Jones, B. L., Cullen-Unsworth, L. C.,
Roelfsema, C., and Unsworth, R. K. F. (2020). The global distribution of seagrass
meadows. Environ. Res. Lett. 15, 074041. doi: 10.1088/1748-9326/ab7d06

Moore, K. A., and Jarvis, J. C. (2008). Environmental factors affecting recent
summertime eelgrass diebacks in the lower Chesapeake bay: implications for
long-term persistence. J. Coastal Res. 2008 (10055), 135–147. doi: 10.2112/
SI55-014
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