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Climate change is expected to alter the intensity and frequency of upwelling in high

productive coastal regions, thus impacting nutrient fluxes, primary productivity and

consequently carbon cycling. However, it is unknown how these changes will impact

the planktonic (phytoplankton and bacteria) community structure, which affects

community respiration (CR) and hence the carbon available for sequestration or

transfer to upper trophic levels. Here we present results from a 37-day mesocosm

experimentwhereweexamined the responseofCR tonutrient additionsby simulating

upwelling events at different intensities (low, medium, high and extreme) and modes

(singular and recurring additions). We also analysed the potential contribution of

different plankton size classes and functional groups to CR. The trend in accumulated

CR with respect to nutrient fertilisation (total nitrogen added during the experiment)

was linear in the twomodes. Microplankton (mostly diatoms) and nanoplankton (small

flagellates) dominated under extreme upwelling intensities and high CR in both

singular and recurring upwelling modes, explaining >65% of the observed variability

in CR. In contrast, prokaryotic picoplankton (heterotrophic bacteria and autotrophic

cyanobacteria) explained <43% of the variance in CR under the rest of the upwelling

intensities and modes tested. Changes in planktonic community structure, while

modulating CR variability, would regulate the metabolic balance of the ecosystem,

shifting it towards net-heterotrophy when the community is dominated by small

heterotrophs and to net-autotrophy when large autotrophs prevail; although

depending on the mode in which nutrients are supplied to the system. This shift in

the dominance of planktonic organism will hence affect not only CR but also carbon

sequestration in upwelling regions

KEYWORDS

nutrient availability, artificial upwelling, carbon export, EBUS, mesocosm,
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1 Introduction

Coastal upwelling regions are among the most productive

ecosystems in the ocean (Ryther, 1969). Biological productivity

in upwelling systems responds to nutrient inputs from deep

layers, which can be highly variable among different regions,

depending on wind intensity and frequency, as well as other

physical drivers such as wind curl or coastal bathymetry (Kämpf

and Chapman, 2016). Overall, nutrient inputs are the main

drivers of phytoplankton blooms and organic matter

accumulation (Hutchings et al., 1995), which in turn trigger

changes in community respiration (CR) rates influencing the

amount of carbon available for deep ocean sequestration or

transfer to upper trophic levels (Williams and Del Giorgio, 2005;

Azam and Malfatti, 2007; Capone and Hutchins, 2013). Climate

change is expected to alter coastal wind regimes, impacting

upwelling intensity and frequency, and the associated pumping

of nutrients to the surface layers (Bakun, 1990; Garcıá-Reyes

et al., 2015; Basu and Mackey, 2018). These alterations can

profoundly impact planktonic community structure and

productivity, modifying carbon fluxes at a regional level

(Legrende and Michaud, 1998; Tamigneaux et al., 1999;

Montero et al., 2007). The balance between the production

and the respiratory loss of photosynthetically produced

organic matter sets CR as an effective index of the movements

of organic matter through ecosystems (Williams and Del

Giorgio, 2005). Therefore, CR represents a critical parameter

for assessing the metabolic balance of aquatic ecosystems (Basu

and Mackey, 2018). However, how perturbations in upwelling

intensity and frequency will impact CR in upwelling regions is

still unclear.

Mesocosm approaches have been widely used over the last

decade to simulate climate change scenarios and assess the

effects of multiple stressors such as warming or acidification

on marine planktonic communities (e.g., Sommer et al., 2007;

Riebesell et al., 2008; Schulz et al., 2017; Taucher et al., 2018). To

the best of our knowledge, only one study has previously

addressed the effect of different intensities of a simulated

upwelling on CR (McAndrew et al., 2007). However, this

study lasted only four days, being a very short period to assess

stressor responses in planktonic community structure and

metabolism (e.g., Filella et al., 2018). Moreover, the study

focuses exclusively on the response of the autotrophic

component of the community to nutrient fertilisation. Here we

use a mesocosm approach to simulate changes in upwelling at

different intensities and modes and assess their impact on CR

over 37-days. The goal of the study was first to look at the short

term variability of CR under nutrient pulses of different intensity

and duration, and second to see how the autotrophic vs

heterotrophic planktonic community structure contributed to
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this variability. Our results may therefore help predicting present

and future changes in the metabolic balance of upwelling regions

due to natural or anthropogenic-induced variability.
2 Materials and methods

2.1 Experimental setup and sampling

Between November and December 2018 (37 days in total) a

mesocosms experiment was conducted in Gando Bay (Canary

Islands, 27°55.673´ N, 15°21.870´ W) as part of the Ocean artUp

project. Nine ~44 m3 mesocosms (Kiel Off-Shore Mesocosms for

future Ocean Simulations or KOSMOS; Riebesell et al., 2013) were

moored and filled with in situ oligotrophic water. Unfortunately, the

planned deep water collection to a depth of ~600m could not be

achieved due to technical limitations. Instead, deep water was

collected between 28°00′N, 15°18′E and 27°57′N, 15°10′E from

330m depth (day -10) and from 280m depth (day 23), respectively,

using a custom-built collector with a carrying capacity of 100 m3

(for technical details see Taucher et al., 2017). Subsequently, deep

water was enriched with nitrate (NO3
-), phosphate (PO4

3-), and

silicate [(Si(OH)4] to a final concentration of 25, 1.4, and 12.1 µmol

L-1, respectively, necessary to achieve the planned simulated

upwelling. Deep water was then added to the mesocosms to

simulate different upwelling modes (singular and recurring

additions) and intensities (low, medium, high and extreme

additions), the latter defined according to the total amount of

water volume replaced by deep water (Figure 1). In the recurring

mode, four mesocosms (M2, M4, M6, M8) received an addition of

deep water every four days starting on day 4, and until the end of

the experiment. In the singular mode, another four mesocosms

(M1, M3, M7, M9) received a singular deep-water pulse on day 4

and were not further fertilised throughout the experiment. The

amount of nutrients added in each of the four intensity levels (low,

medium, high and extreme) was similar for both upwelling modes

(Figure 1B). No deep water addition was carried out for M5

(Control). 152 samples (19 samplings from each of the 8

mesocosms) were obtained from the entire water column (0-

13m) using a depth-integrated water sampler (IWS, Hydro-Bios,

Kiel). In the present study, M9 was not sampled due to logistical

issues in the supply of the glass bottles. For more details on the

experimental setup and sampling procedures see Baumann

et al. (2021).
2.2 Community respiration

Mesocosm water samples for community respiration

measurements were pre-filtered through a 250 µm mesh and
frontiersin.org
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carefully siphoned using a silicone tube into four replicate “time-

zero” and four replicate “dark” 125 mL borosilicate bottles. Dark

bottles were incubated in an outdoor pool at seawater

temperature (~20.7-21.5°C) for ~24 h. CR was determined by

oxygen consumption measured by the Winkler technique,

following the recommendations of Carritt and Carpenter

(1966); Bryan et al. (1976) and Grasshoff (1983). The entire

content of the bottles was titrated during ~3 min by means of an

automated, precise titration system with colorimetric end-point

detection (Williams and Jenkinson, 1982). The precision

achieved in replicates was %CV < 0.07. CR was estimated

from the difference in oxygen concentration between the mean

of the four time-zero and the mean of the four dark bottles.
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2.3 Phytoplankton community
composition and biomass

Samples for phytoplankton community composition were

filtered onto 0.7 mm pore size glass fiber filters under low

pressure (200 mbar, Whatman GF/F, Maidstone, UK). Filters

were immediately frozen in liquid nitrogen and subsequently

stored at -80°C until analysis. Prior to analysis, samples were

mixed with 0.5 mm glass beads and 1.3 mL of 100% high-

performance liquid chromatography (HPLC) grade acetone and

extracted in a homogenizer. Then, they were centrifuged

(10 min, 4°C, 10000 rpm) and the supernatant removed with a

syringe and filtered through a PTFE filter (0.2 mm pore size).
A

B

C

FIGURE 1

(A) Nitrate + nitrite evolution during the experiment. The solid black line indicates the first deep-water addition (except in the control). The
dotted black lines indicate the addition made only to the recurring treatment. (B) Types of treatment, symbol encoded, mesocosms, volume
exchange per addition (%) and total new N added (mmol L-1). (C) Mesocosms sampling timeline adapted from Baumann et al. (2021).
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Photosynthetic pigments were analyzed through reverse-phase

HPLC (Thermo Scientific). The relative contribution to Chla of

different phytoplankton classes was calculated using the

CHEMTAX algorithm developed by Mackey et al. (1996),

applying pigment ratios typically found in the waters off Gran

Canaria (Taucher et al., 2018).

The biomass of different phytoplankton groups was

estimated by transforming their estimated individual

chlorophyll a (Chl-a) concentration to carbon using

conversion ratios (g/g) from Sathyendranath et al. (2009): 141

(Prasinophytes and Chlorophytes), 53 (Dinoflagellates), 64

(Dia toms) , 88 (Cryp tophy t e s , Chrysophy te s and

Prymnesiophytes), 140 (Cyanobacteria).
2.4 Heterotrophic bacteria biomass

Seawater samples were fixed with 50 mL of 20%

paraformaldehyde (2% final concentration), kept in darkness

at 4°C for 30 min and subsequently preserved at -80°C.

Heterotrophic bacterial abundance was determined using a

FACSCalibur flow cytometer (Becton Dickinson) equipped

with an air cooled blue (488nm) argon laser. Briefly, frozen

samples were thawed and a 400 mL subsample stained with SYBR

Green I (Invitrogen) at room temperature for 15 min.

Heterotrophic bacteria were identified in a plot of side scatter

(SSC) versus green fluorescence (FL1). Samples were run at low

flow rate (22 mL min-1). A suspension of yellow-green 1 mm latex

beads (~105 - 106 beads mL-1) was added as an internal standard

(Polysciences, Inc., Warrington, PA, Unites States).

Heterotrophic bacterial biomass was estimated by multiplying

their abundance by a conversion factor (18 fgC cell-1) obtained

empirically in coastal waters off Gran Canaria (Montero

et al. unpublished).
2.5 Statistics

To assess the effect of upwelling intensity and mode on CR

rates a linear mixed-effects (LME) model was applied using

“treatment” and “day of experiment” as categorical variables,

and “treatment” as a random factor. CR rates were compared by

the Dunnet´s test after inspection of normality and homogeneity

of the variance. LME models were applied using the nlme

package in R (v. 3.1-153; Pinheiro et al., 2007). In order to

evaluate the variables (biomass of plankton groups) influencing

CR during the experiment, multivariate regression models were

fitted via Stepwise Multiple Linear regressions (SMLR). The

contribution of every statistically significant predictor variable to

the explained variance was quantified calculating the Relative

Importance (%) using the relaimpo package in R (v 2.2-6;
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Grömping, 2006). All statistical analyses were performed in R

Statistical Environment (v. 4.1.2; R Core Team, 2021).
3 Results

3.1 Temporal variability in plankton
community respiration

CR rates ranged between 19.6 (on average for all mesocosms

at the beginning of the experiment) to 292.2 mg O2 m
-3 d-1 in the

singular addition extreme treatment (day 13) and 229.5 mg O2

m-3 d-1 in the recurring addition extreme treatment (day 35)

(Figure 2). These rates were slightly lower than those previously

reported from the Canary Current and NW Africa upwelling

(Arıśtegui and Montero, 1995; Robinson et al., 2002) and

Benguela upwelling (Robinson et al., 2002), but higher than

those observed in other coastal upwelling systems like the NW

Iberian (Moncoiffé et al., 2000) or the Chilean upwelling systems

(Daneri et al., 2000).

CR rates differed significantly among upwelling modes and

intensities (LMEmodel, p<0.005), reaching the highest values in the

extreme intensity treatments. In the singular upwelling mode, CR

rates increased after day 4 and peaked on day 7, 9 and 13 for low,

medium and extreme intensities, respectively. The magnitude of

this response increased with upwelling intensity. Following the

peak, CR rates decreased and remained relatively constant until

the end of the experiment. In contrast, the recurringmode showed a

gradual rise in CR rates according to the intensity of the simulated

upwelling with some fluctuations until the end of the experiment. In

the extreme treatment of the recurring mode, CR rates dropped on

day 19 and remained fairly constant until day 31 and increased

again from day 33 to day 35, due to the development of a

Prymnesiophyceae bloom (see section 3.2). Overall, maximum

CR rates were observed on day 35 in all recurring intensities,

diminishing at the end of the experiment (day 37), except in the low

recurring mode treatment where it remained rather constant.

Cumulative community respiration (CRcum) evolved

different ly in the var ious treatments f rom day 7

onwards (Figure 3A). The CRcum of the singular extreme

treatment increased faster than in the rest of the treatments,

although it reached similar values to the recurring extreme

treatment at the end of the experiment. From day 9 to day 25,

CRcum in the low and medium singular mode treatments were

higher than those reported in the recurring mode treatments.

However, this pattern shifted from day 25 onwards, when CRcum

became higher in the low and medium recurring mode

treatments than in the singular mode counterparts. CRcum

displayed a positive relationship with upwelling intensity

(Figure 3B), with a similar effect for both upwelling modes

after the last deep water addition to the recurring treatment.
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3.2 Contribution of different planktonic
groups to total community
biomass and respiration

The different upwelling modes and intensities impacted the

contribution of different planktonic groups to total community

biomass (Figure 4). Microplankton was favoured under extreme

upwelling intensities (Figures 4F, G), contributing up to 75% and

50% of the biomass in the singular and recurring modes,

respectively. The contribution of nanoplankton to total

community biomass was relatively high throughout the

experiment in the low treatments of both upwelling modes

(Figures 4A, B), as well as in the control (Figure 4H), ranging

from 24 to 54%. In the high and extreme recurring mode

treatments (Figures 4E–G) the contribution of nanoplankton

increased at the end of the experiment (from day 31 onwards),

due in large part to the development of a Prymnesiophyceae

bloom, representing up to 55% and 60% respectively, but only

after the last nutrient addition made on day 32.

The contribution of picoplankton to total community biomass

was higher in the control and in the low and medium recurring

treatments (Figures 4A, C, H) than in the rest of the treatments. In

the low recurring treatment, cyanobacteria represented between

10 and 20% of the biomass, whereas heterotrophic bacteria

represented from 25 to 50% of the biomass (Figure 4A). In the
Frontiers in Marine Science 05
low singular treatment, cyanobacteria ranged between 4 and 18%,

and heterotrophic bacteria between 25 and 40% (Figure 4B). From

day 21 to 31, the contribution of heterotrophic bacteria increased

in the extreme singular mode treatment, exceeding the

contribution of microplankton to total biomass with values up

to 75% (Figure 4F).

Different plankton groups contributed to explaining the

variance observed in CR, as revealed by the stepwise multiple

regression analysis performed with the biomass of plankton

groups and CR during the experiment (Table 1). Particularly,

large phytoplankton cells (i.e., microplankton and nanoplankton)

were the most important variables explaining the variance in CR

during extreme recurring and singular treatments, respectively,

but also a notable proportion of the variance in the rest of the

treatments, ranging from 57% in the medium recurrent treatment

to 87% in the low recurrent treatment. In the case of picoplankton,

their contributions to CR turned out to be relevant depending on

the upwelling mode intensities. For example, in the recurring

mode cyanobacteria explained 22 and 26% of the variance in the

high and medium simulated-upwelling treatments, whereas

heterotrophic bacteria explained 12 and 16% respectively.

However, in the singular mode, heterotrophic bacteria explained

24% and 32% of the CR variance in the medium and low

treatments respectively, whereas cyanobacteria did not appear as

an explanatory variable.
FIGURE 2

Temporal development of plankton community respiration (CR). The solid black line indicates the first deep-water addition (except in the
control). The dotted black lines indicate the addition made only to the recurring treatment.
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4 Discussion

4.1 Variability in community respiration in
the different simulated-upwelling
intensity and modes

Here, we tested the effects of different simulated-upwelling

modes and intensities in a longer (37-day) experiment and

found that CR varied significantly among upwelling modes

and intensities (LME model, p<0.005, Figure 2), driven by

changes in the planktonic community structure.
Frontiers in Marine Science 06
Following the initial nutrient fertilization on day 4, the

temporal variability in CR displayed two distinguishable

patterns according to the upwelling modes. Singular treatments

induced an abrupt increase in CR rates, reaching their maximum

values between days 7 and 13, a few days after the deep-water

addition. In contrast, recurring treatments provoked a gradual

boost in CR, which reached its maximum rates towards the end of

the experiment (day 35). The mode in which upwelling events

release nutrients into oligotrophic waters, either through singular

or recurring pulses, can consequently modulate CR in the short-

or long-term, respectively.
A

B

FIGURE 3

(A) Temporal development of plankton community respiration as accumulated rates (CRcum) over the course of the experiment in the control
and in the two treatments: singular and recurring. The solid black line indicates the first deepwater addition (except the control). The dotted
black lines indicate the additions made only during the recurring treatment. (B) Accumulated community respiration (CRcum) at the end of the
experiment (day 37) per µmol of nutrients added.
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Interestingly, a different timing in the response of CR to

nutrient fertilisation was observed under the singular

treatments, showing a lag of between 5 and 9 days

depending on the simulated-upwelling intensity. These

results were also observed in another mesocosm experiment

conducted at the same location (Filella et al., 2018). In that

study, it took around 5 days for CR to be significantly

stimulated after the singular deep-water fertilisation. This

could explain the discrepancy between our study and the

short-term (4 days) study carried out by McAndrew et al.

(2007), as 4 days may not be sufficient to fully detect the CR

response. Consequently, we stress that longer experiments (at

least > 5 days) are needed to adequately assess the impact of

variable upwelling events on CR and thus, to better

understand their role within coastal upwelling systems.

The effect of upwelling modes and intensities on CR are also

evident from the trend of CRcum along the experiment

(Figure 3A). A closer look at the slope of CRcum plotted for

each treatment revealed changes throughout the experiment,

which could be mainly explained by shifts in the planktonic

community structure. For instance, the phytoplankton

community under the extreme singular treatment shifted from

a microplankton-dominated (between day 7 and day 15) to a

pico- (heterotrophic bacteria) and nanoplankton-dominated

community (between day 17 and day 29) and finally, was

dominated by nano- and microplankton (from day 31 until

the end of the experiment). Similarly, the observed changes in

CRcum slope under the extreme recurring treatment

corresponded to a shift from a microplankton-dominated (from

day 13 to day 31) to a nano- and microplankton-dominated

community (from day 33 onwards). In contrast, the slope of

CRcum in the low and medium singular treatments was only

higher than that in the recurring ones coinciding with the

incipient microplankton bloom triggered by the nutrient

fertilization on day 4 until its vanishing on day 25 (Ortiz et al.,

2022), before falling below the slope of the recurring treatments as

picoplankton dominated the community. A similar size-related

pattern has been described in other coastal upwelling systems

(Sherr et al., 2005; Lassiter et al., 2006; Wilkerson et al., 2006;

Smayda and Trainer, 2010; Anabalón et al., 2014). Looking into

the trend of CRcum relative to nutrient fertilisation (as total

nitrogen added until the end of the experiment) (Figure 3B),

increases in the intensity of both upwelling modes resulted in a

linear rise in CRcum, consequently affecting the amount of

carbon cycling.

Our results reveal that changes in CRcum during different

simulated upwelling events could therefore be attributed to the

ways different plankton community structures responded to

changes of upwelling modes and intensities. In the following

sections, we describe the plankton functional groups that

potentially accounted for the observed variance in CR and

how these can affect the metabolic balance and therefore,

carbon sequestration of upwelling regions.
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4.2 Contribution of plankton functional
groups to community respiration and
metabolic balance

Diatoms bloomed in the extreme treatments, accounting

for up to 75% of the total biomass (Figures 4F ,G). Similar

increases in diatom biomass have been previously reported in

oceanic regions after inorganic nutrient pulses via mixing,

eddies, fronts and upwelling events (e.g., Hutchings et al.,

1995; Arıśtegui et al., 2004; Edwards and Richardson, 2004;

Arıśtegui and Montero, 2005; Clayton et al., 2014; Tréguer

et al., 2018) as well as in experimental manipulations (Mahaffey

et al., 2012; Anil et al., 2021). Temporal variations in CR

matched shifts in community structure. Thus, the early rise

in diatom biomass (75% on day 13 in the extreme singular

treatment and 62% on day 17 in the recurring treatment)

coincided with high CR rates (293 and 183 mg O2 m-3 d-1,

respectively), meaning that a meaningful fraction of the

intracellular carbon pool newly fixed through photosynthesis

was potentially lost by autotrophic respiration. Multiple

stepwise linear regressions further revealed that diatoms

explained between 37% and 47% of the variance in CR, in

the extreme singular and recurring treatments, respectively

(Table 1). Following nutrient depletion (day 9 and beyond day

32 onwards in the singular and extreme recurring treatment,

respectively, Figure 1A), diatoms were outcompeted by

nanoplankton (Böttjer et al., 2007). Our results revealed that

diatoms and nanoplankton were the main contributors to

explaining the variance in CR under extreme upwelling intensities.

Contrary to expectations (e.g., Edwards and Richardson,

2004; Du and Peterson, 2014; Bode et al., 2015), dinoflagellates

did not thrive under low upwelling intensities (Figures 4A,B).

On the other hand, picoplanktonic organisms (heterotrophic

bacteria and cyanobacteria) are usually recognized as extremely

efficient in nutrient acquisition at low concentrations due to their

small size (i.e., higher surface/volume ratio). Hence, they are

deemed to contribute more importantly to carbon fluxes in

nutrient deplete rather than in nutrient replete regions (Del

Giorgio et al., 1997; Gasol and Duarte, 2000; Zubkov 2014). In

our study, heterotrophic bacteria displayed contrasting patterns

between upwelling modes, decreasing in relative biomass as the

upwelling intensities increased in the recurring mode (from ~40%

in the low to 25% in the extreme treatment; Figures 4A-G) and

increasing in the singular ones (from ~40% in the low to >80% in

the extreme treatment; Figures 4B-F) with a posterior drop

(between 25 – 10%) when nutrients were exhausted. Given that

large blooms were induced in the extreme treatments (Ortiz et al.,

2022) we expected that heterotrophic bacteria would be stimulated

by the DOC released and would actively contribute to CR (Blight

et al., 1995). Nonetheless, DOC remarkably accumulated in the

extreme treatments (Gómez-Letona et al., 2022) suggesting that a

major part of this DOC was not utilized by heterotrophic bacteria,

which would explain the low contribution to CR in these
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treatments. A variable contribution of heterotrophic bacteria to

the variance in CR was found in the other upwelling intensities

(16% and 12% under medium and high recurring treatments and

33% and 25% under low and medium singular treatments). The
Frontiers in Marine Science 08
fact that heterotrophic bacteria explained less than 33% of the CR

variance in these singular treatments was surprising, given their

high relative biomass. This points to a variable metabolic activity of

bacteria, that does not depend only on the accumulated biomass.
FIGURE 4

Relative contribution of plankton community composition (represented as size fractions: Pico-, Nano- and Microplankton) over the course of
the experiment. Picoplankton: heterotrophic bacteria and cyanobacteria; Nanoplankton: prasynophyceae, chlorophyceae, cryptophyceae,
chrysophyceae and prymnesiophyceae; Microplankton: dinophyceae and diatomea. The solid black line indicates the first deep-water addition
(except in the control). The dotted black lines indicate the addition made only to the recurring treatment. Panels (A, C, E, G) refer to recurring
mode, and panels (B, D, F) to singular mode from low to extreme upwelling intensities (respectively). Panel (H) is the control.
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A previous study carried out along two latitudinal transects

from 50°N to 44°S in the Atlantic Ocean showed that the

contribution of bacteria to CR is highly variable (4-77%),

suggesting that Chl-a and other factors rather than those assessed

in that study (such as nutrient availability and temperature) must be

driving such variability (Garcıá-Martıń et al., 2017). Flagellate

grazing is recognized as one of the main factors controlling

marine bacterial communities (Böttjer and Morales, 2007; Bunse

and Pinhassi, 2017). Accordingly, we observed declines in the

relative biomass of heterotrophic bacteria coinciding with the

enhancement of nanoplankton biomass, suggesting a strong

predation pressure and, therefore, a potential top-down control

over heterotrophic bacteria. Such drops in biomass contribution can

be observed through the experiment in the different upwelling

intensities and modes. Grazing could also affect cyanobacterial

populations, which were only identified as predictors of the

variance in CR in the singular mode. Nevertheless, we do not

discard that other factors external to our observations may be

acting. For example, there might be heterogeneity in the respiration

rates dynamics of different bacterioplankton groups, derived from

the strongmetabolic heterogeneity among the different components

of bacterial communities (Cottrell and Kirchman, 2000; Alonso-

Sáez et al., 2012). Furthermore, viral lysis (not taken into account in

this study) may play a significant role in controlling the abundance

of different bacterioplankton groups (Breitbart et al., 2008), causing

bacterial mortality and thus could affect the patterns observed here.

The planktonic community structure, while modulating CR

variability, would display a key role in regulating the metabolic

balance of the ecosystem, shifting it towards net-heterotrophy

when the planktonic community is dominated by small

heterotrophs and to net-autotrophy when large autotrophs

prevail (Ortiz et al., 2022). Altogether, our results suggest that

upwelling regions subject to low upwelling intensities will tend to

display a heterotrophic metabolism dominance during relaxation

or low-intensity upwelling episodes, thus decreasing the carbon

sequestration capacity. On the contrary, the metabolic balance in

upwelling regions subjected to extreme upwelling intensities will

depend on the mode in which nutrients are supplied to the system.

Thus, in natural systems where upwelling pulses are markedly

separated in time or under sudden dust deposition events (similar

to our extreme singular treatment), upwelling regions could

support a high CR, but decoupled in time from primary

production. This would be followed by an increase in net

heterotrophy as primary production decreases after the initial

bloom. On the other hand, periods of recurring upwelling

intensities would lead to a net-autotrophic system, potentially

increasing the carbon sequestration of the system.
5 Conclusions

We studied the link between the variability in community

respiration rates and shifts in the planktonic community structure
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under different modes and intensities of simulated upwelling over

a long term (37 days) mesocosm experiment. Our results suggest

that CR is particularly sensitive to changes in the upwelling

intensities but more significantly to the mode in which nutrients

are supplied to the oligotrophic waters. The simulated upwelling

events in this study were responsible for profound modifications

in planktonic community structure, which in turn acted as a

strong driver of CR variability, modulating the carbon respired

through the different microbial functional groups. Thus, as

upwelling intensity became extreme, planktonic communities

were entirely dominated by microplankton (mainly diatoms)

and nanoplankton. Particularly in the singular mode, the

extreme simulated-upwelling intensity reported the highest CR

rates coinciding with a bloom of diatoms, giving evidence of the

strong link between the autotrophic component and the observed

variance in CR.

On the contrary, less pronounced intensities favoured smaller

cells (heterotrophic bacteria and cyanobacteria) identified as

better predictors of the variance in CR, potentially channelling a

more significant fraction of carbon through the microbial food

web. Nonetheless, the contribution to biomass of picoplankton

was variable, presumably due to grazing or viral pressure, affecting

their contribution to CR.

Our results offer insights into how future alterations in the

modes and intensities of upwelling systems can potentially shift

the planktonic community structure, affecting CR and therefore,

the metabolic balance of the system. Thus, when the type of

planktonic community is dominated by small heterotrophs the

system shifts toward net-heterotrophy while net-autotrophy is

observed when autotrophic-based communities prevailed. This

highlights the importance of such changes in the carbon

sequestration of upwelling regions. Understanding the link

between respiratory losses and planktonic communities is a

fundamental requisite to improving our predictive capacity of

how these ecosystems will respond to future global

change scenarios.
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Anabalón, V., Arıśtegui, J., Morales, C. E., Andrade, I., Benavides, M., Correa-
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et al. (2007). Productivity cycles in the coastal upwelling area off concepción: The
importance of diatoms and bacterioplankton in the organic carbon flux. Prog.
Oceanography 75 (3), 518–530. doi: 10.1016/j.pocean.2007.08.013
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