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Predicting non-native seaweeds
global distributions: The
importance of tuning individual
algorithms in ensembles
to obtain biologically
meaningful results

Samuel Sainz-Villegas*, Camino Fernández de la Hoz,
José A. Juanes and Araceli Puente

IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
Modelling non-native marine species distributions is still a challenging activity.

This study aims to predict the global distribution of five widespread introduced

seaweed species by focusing on two mains aspects of the ensemble modeling

process: (1) Does the enforcement of less complex models (in terms of number

of predictors) help in obtaining better predictions? (2) What are the implications

of tuning the configuration of individual algorithms in terms of ecological

realism? Regarding the first aspect, two datasets with different number of

predictors were created. Regarding the second aspect, four algorithms and

three configurations were tested. Models were evaluated using common

evaluation metrics (AUC, TSS, Boyce index and TSS-derived sensitivity) and

ecological realism. Finally, a stepwise procedure for model selection was

applied to build the ensembles. Models trained with the large predictor

dataset generally performed better than models trained with the reduced

dataset, but with some exceptions. Regarding algorithms and configurations,

Random Forest (RF) and Generalized Boosting Models (GBM) scored the

highest metric values in average, even though, RF response curves were the

most unrealistic and non-smooth and GBM showed overfitting for some

species. Generalized Linear Models (GLM) and MAXENT, despite their lower

scores, fitted smoother curves (especially at intermediate complexity levels).

Reliable and biologically meaningful predictions were achieved. Inspecting the

number of predictors to include in final ensembles and the selection of

algorithms and its complexity have been demonstrated to be crucial for this

purpose. Additionally, we highlight the importance of combining quantitative

(based on multiple evaluation metrics) and qualitative (based on ecological

realism) methods for selecting optimal configurations.
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1 Introduction

The number of marine seaweeds outside their natural

boundaries has increased in the last decades generating

impacts on biodiversity and economy (Schaffelke et al., 2006).

This makes the development of management tools necessary,

where species distribution models (SDMs) play a crucial role.

SDMs can help in the early detection of invasions and predict the

extent of the potential spread (Marcelino and Verbruggen, 2015;

Martıńez et al., 2015). However, modelling non-native marine

species distributions is still challenging in terms of model

building, evaluation and selection.

Characterization of marine species distributions is often

dependent on the quality of the data. In general, logistical and

economic constraints in the sampling process result in records of

low spatial resolution that are biased towards the most

important economic or conservation areas (Robinson et al.,

2011). Furthermore, many of these species are undergoing

range shifts during the colonization process. These shifts

generate two important issues in the correlative methods used

to model species distributions: (1) the model assumption that

species records reflect stable relationships with the environment

is violated, and (2) environmental combinations outside the

range of variables included in the model-building process may

lead to inaccurate results (Elith et al., 2010; Lake et al., 2020). In

recent years, different approaches have been developed in order

to deal with these issues. Most of them focused their efforts on a

few topics such as the reduction of sampling bias, the choice of

environmental predictors or the analysis of algorithm settings.

Previous research suggests that one of the most effective

techniques to mitigate sampling bias (the bias generated due to

unequal sampling efforts) is the downsampling of occurrence

records by thinning or reducing the number of records in areas

with higher densities (Fourcade et al., 2014; Lake et al., 2020).

While reducing sampling bias has been demonstrated to

improve the quality of the predictions, no consensus among

researchers can be found for the other issues (Sequeira et al.,

2018). For example, the question about the number and the kind

of predictors that should be included in species distribution

models remains still unclear. It seems that large predictor

datasets lead to more complex models which may overfit the

data while simpler models often improve transferability

(Petitpierre et al., 2017; Sequeira et al., 2018). However, there

is not a single best method for identifying and choosing the

optimal subset of biologically-relevant predictors, which makes

necessary the exploration of different configurations.

Another important issue is the selection of the statistical

algorithm among the increasing number of modelling

techniques. MAXENT (Phillips et al., 2006) is the most widely

used as its good performance has been proven in a wide variety of

species. Other modelling techniques such as Boosted Regression
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Trees (BRT: Friedman, 2001), Generalized Linear Models (GLM:

McCullagh and Nelder, 1983) or Random Forest (RF: Breiman,

2001) are also frequently used for predicting marine species

distributions (Melo-Merino et al., 2020). However, modelling

outputs for a single species tend to be heterogeneous among

algorithms. This suggests that there is not a best single algorithm

as each of them has its own weaknesses and strengths [for review

see Franklin (2010); Peterson et al. (2011); Guisan et al. (2017)].

One of the methodological approaches proposed to address this

issue consists in aggregating the outputs from different algorithms

into a single ensemble model (Thuiller, 2004; Araújo and New,

2007). While there is a large body of information concerning

ensemble modelling for terrestrial plants (Hao et al., 2019), less

information can be found relative to marine seaweeds, where most

of the research is focused on individual algorithms (Marcelino and

Verbruggen, 2015). In general terms, these ensemble approaches

have been suggested to reduce uncertainty in predictions and

increase model’s accuracy (Marmion et al., 2009; Thuiller et al.,

2019), although some exceptions exist (Zhu and Peterson, 2017;

Hao et al., 2020).

Ensemble models should be carefully constructed and

evaluated to avoid unrealistic distributions. The analysis of

different configuration settings (also known as model tuning or

model parameterization) for each algorithm is a key aspect for this

purpose (Elith et al., 2010). Several authors have explored this part

of the model building process suggesting that there is not a best

single criterion for selecting the best configuration. In fact, it

seems to be species-specific (Anderson and Gonzalez, 2011;

Hallgren et al., 2019). Again, according to literature, MAXENT

configuration is the most explored (e.g. Merow et al., 2013;

Phillips et al., 2017). It has been demonstrated that the

algorithm is very sensitive to different combinations of model

features, regularization multiplier and maximum number of

iterations (Morales et al., 2017; Valavi et al., 2022). The other

algorithms mentioned before have received less attention, but

some examples of model tuning recommendations can be found

in the literature. For example, Elith et al. (2008) developed a

working guide for BRTs and Hallgren et al., (2017); Hallgren et al.

(2019) tested the sensitivity of GLMs, RFs, BRTs and seven more

algorithms to different configurations. Despite the evidence on

how important is the process of model tuning, to our knowledge,

no examples exploring individual algorithm configurations in

ensemble models for non-indigenous seaweeds can be found in

the literature.

This study aims to predict the global distribution of five

widespread introduced seaweed species using an ensemble model

approach and focusing on two issues of themodel building process:

(1) Does the enforcement of less complex models (in terms of

number of predictors) help in obtaining better predictions? (2)

What are the implications of tuning the configuration of individual

algorithms in terms of ecological realism?
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2 Materials and methods

2.1 Data

2.1.1 Species data
This study was focused on five introduced seaweeds:

Asparagopsis armata, Bonnemaisonia hamifera, Rugulopteryx

okamurae, Sargassum muticum and Undaria pinnatifida. For

detailed information on species’ ecology, introduction history

and native or invasive ranges see (Supplementary Material S1

Table S.1.1). Biological records were collected from the Global

Biodiversity Information Facility (GBIF, 2021), the Macroalgal

Herbarium Portal (MHE, 2021) and the Ocean Biodiversity

Information System (OBIS, 2021). Only records with geographic

information were considered, including records updated until

January 2020. For R. okamurae, as few non-duplicated presence

points were detected in the non-native region, a literature review

was done in order to complement this lack of points (a total of 6

points were added in Europe and 39 points were removed from

Australia and New Zealand due to misidentifications). Every

record was carefully inspected to remove possible geographical

errors. Finally, datasets were downsampled in order to reduce

sampling bias and to avoid duplicated records using the R package

“spThin” (Aiello-Lammens et al., 2015) with a thinning distance

of 10km. This approach also guaranteed only one record per grid

cell. Figure 1 shows the geographical distribution of records from

the global and native ranges. True absences were unavailable, so
Frontiers in Marine Science 03
10,000 pseudo-absences were generated randomly in the

geographic space. Presence and pseudo-absences were weighted

equally (prevalence = 0.5) (Barbet-Massin et al., 2012). All models

were fitted using both native and non-native presence records.

2.1.2 Environmental data
Environmental predictor variables were obtained from the

BIO-ORACLE 2.0 database (Assis et al., 2018) with a spatial

resolution of 5 arc-min (approximately 9.2 km grid cells at the

equator) and global extent. Among the predictors available, a

first selection was made collecting those variables most

frequently incorporated in seaweeds SDMs studies (Martıńez

et al., 2012; Marcelino and Verbruggen, 2015). This resulted in a

preliminary dataset of 13 environmental predictors: Sea Surface

Temperature Range (SSTR), Mean Sea Surface Temperature

(SSTM), Maximum Sea Surface Temperature (SSTMax),

Minimum Sea Surface Temperature (SSTMin), Salinity (Sal),

Phosphate (Ps), Nitrates (Nit), Mean Cloud Cover fraction (Cl),

Mean Photosynthetic Active Radiation (PARM), Max

Photosynthetic Active Radiation (PARMax), Mean chlorophyll

A concentration (Chl-A), Dissolved oxygen (OD), Diffuse

attenuation coefficient at 490 nm (DAC) (see Table S1.2 in

Supplementary Material 1 for descriptions). Grid cells deeper

than 70m were excluded for each environmental layer using the

GEBCO bathymetry (GEBCO Bathymetric Compilation Group,

2020), as they were considered to be outside the potential habitat

for these macroalgae species.
FIGURE 1

Geographical distribution and final number of presence records (after filtering and downsampling) both for the native and invaded regions. A.
armata: Asparagopsis armata, B. hamifera: Bonnemaisonia hamifera, R. okamurae: Rugulopteryx okamurae, S. muticum: Sargassum muticum
and U. pinnatifida: Undaria pinnatifida.
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2.2 Experimental design

The experimental approach proposed in this study had the

primary goal of finding the best configuration for ensemble

modeling of the five introduced seaweeds distributions. To do so,

two aspects that affect the quality of the predictions were

explored following the structure shown in Figure 2.

- Predictors Selection

o Number of predictors (2 Levels): (1) Statistical Approach,

(2) Expert Criteria

- Algorithm Selection and Parameterization

o Algorithms (4 Levels): (1) RF, (2) MAXENT, (3) GLM,

(4) GBM

o Parameterization Complexity (3 Levels): (1) Simple, (2)

Intermediate, (3) Complex

2.2.1 Predictor selection
Predictor preliminary data were combined in two datasets

containing different number of predictors. Two different criteria

were applied: (1) Large dataset: Predictors selected using a

statistical approach based on a Pearson’s correlation coefficient

≤0.70 and variable inflation factor ≤10. From each correlated

pair of variables, only one was kept for further analysis (that

showing the lower VIF). From non-correlated variables, only

those with a VIF ≤10 were kept in a stepwise process. In each

step, the variable with the highest VIF was removed and then,

the index was recalculated. The process is repeated until every

variable scored a VIF index lower than 10 (de la Hoz et al.,

2019b); (2) Reduced dataset: Predictors selected using an expert-

criteria approach supported on general knowledge on the

physiology and ecology of seaweeds (according to Lüning

et al., 1990). Dataset 1 use eight (SSTR, SSTM, Sal, Ps, Nit, Cl,

PARM, Chl-A) and dataset 2 use four (SSTR, SSTM, Sal, PARM)

environmental layers respectively.

2.2.2 Algorithm selection and parameterization
Four SDM algorithms were fitted for each of the previously

defined datasets with a simple, intermediate and complex

parametrization by tuning default configurations. A regression

technique (generalized linear model (GLM)) and three machine

learning approaches (two tree‐based techniques: random forest

(RF) and Boosted Regression Trees (BRT); and MAXENT) were

selected for analysis. All the algorithms were implemented in the

R software (version 3.6.2; R Core Team, 2020) using the package

“BIOMOD2” (version 3.4.6; Thuiller et al., 2009).

Different settings of the parameters mainly involved in

model complexity (see Merow et al., 2014) were explored. For

GLMs, model complexity levels were achieved by adjusting the

flexibility of the response curves. Simple GLMs were fitted

considering only linear terms, intermediate GLMs also

considered second order polynomials and for complex GLMs,

polynomials greater than second order were added. Interactions
Frontiers in Marine Science 04
between predictors were not considered for any level of

complexity. For tree-based algorithms, different configurations

of the maximum number of trees were considered. Simple,

intermediate, and complex RF models were built by setting the

maximum number of trees in 100, 250 and 500 respectively. For

BRTs, the number of trees was set in 1000, 2500 and 5000.

Finally, complexity levels in MAXENT were defined by allowing

different combinations of model features: only linear for the

simplest model, linear and quadratic for the intermediate model

and linear, quadratic and hinge for the complex model. Rest of

parameters were set to default in order to simplify the

experimental design.
2.2.3 Model assessment
Individual models’ performance was assessed using an internal

validation approach which consisted in randomly splitting the

species dataset (75% of occurrence records used for training and

25% for evaluation) five times. Eachmodel was evaluated using the

area under the receiver operating characteristic curve (AUC)

(Hanley and McNeil, 1982), the true skill statistic (TSS)

(Allouche et al., 2006) and TSS-derived sensitivity calculated with

the threshold that optimizedTSS scores (Thuiller et al., 2009).AUC

values vary from 0.5 to 1. Model predictions are considered “very

good” for AUC values over 0.9, “reasonable predictions” for values

between 0.7 and 0.9, and “poorly accurate” for values below 0.7

(Araújo and Pearson, 2005). TSS values oscillate from 0 to 1. The

predictive power of models (in terms of TSS) is classified as “poor”

for values<0.4, “good” in the range 0.4–0.8 and “excellent” from0.8

to 1 (Zhang et al., 2015). Additionally, the Boyce index was

calculated in order to compare probabilistic predictions to

presence-only observations (Boyce et al., 2002). This metric gets

values between -1 and +1, with positive values indicating

predictions consistent with the presences’ distributions, negative

values indicating low quality predictions and values near zero

indicating predictions not different from random models (Hirzel

et al., 2006). All metrics were calculated using “BIOMOD2” and

“ecospat” (version 3.1; Di Cola et al., 2017) packages in R software.

Model performance differences between models trained with each

predictor dataset were tested using a Wilcoxon signed-rank test

(WSRT), as previously implemented in Verbruggen et al. (2013).

Additionally, the algorithm-complexity effects on model

performance were tested using non-parametric, rank-based

multivariate methods implemented in the “nparMD” package

(version 0.1.0; Kiefel and Bathke, 2020) using the R software.

Statistical details of the underlying methodology can be found in

BathkeandHarrar (2016) and inMunzel andBrunner (2000).Post-

hoc analysis was conducted using a paired two-tailed Wilcoxon

signed-rank test for pairwise comparisons when significant effects

were detected. Overfitting was assessed quantitatively and

qualitatively. The former was assessed by comparing threshold-

dependent omission rates with theoretically levels of omission. To

do so, the 10th percentile presence threshold rulewas applied to the
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FIGURE 2

Experimental design and work flow for predicting the global distribution of the five introduced seaweed in an ensemble modeling approach.
AUC, area under the receiver–operating curve; Pred. contrib., Predictor contribution; pred., Predictors; Resp. curves, Response curves; TSS
Sens., TSS-derived sensitivity; TSS, true skill statistic.
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training data to convert the continuous prediction to a binary

prediction. Then, the omission rates were estimated using the test

data. Overfitting was detected if calculated rates exceeded

approximately the 10 percent of omission (Radosavljevic and

Anderson, 2014). This analysis was carried out using the same

training-testing data subsets previously created for evaluation.

Qualitatively, overfitting was assessed by visually inspecting the

response curves and the distribution maps.
2.3 Model selection process for final
ensemble predictions

Final ensemble structure was selected using a stepwise

approach. First, the effect of predictors selection on the predictive

power of models was evaluated. For this purpose, the values of

the three metrics (AUC, TSS and Boyce) for each combination

of algorithm/parameterization-complexity were averaged

across species datasets. The combination of predictors

receiving the lowest score on average was discarded for

further analysis. Finally, the selection of the algorithms

included in the final ensemble model and its parametrization

was decided by checking the values of the metrics, and by

inspecting the response curves generated and the contribution

of each environmental variable. Models with AUC<0.9 or

TSS<0.8 were automatically discarded for further analysis.

For the remaining, models with non-smooth curves, over-

fitted or unrealistic curves were also discarded, retaining only

one configuration (the most realistic) for the final ensemble. If

response curves were consistently unrealistic across every

configuration for one algorithm, the entire algorithm was

discarded for the final ensemble. On the other hand, when
Frontiers in Marine Science 06
two or more configurations led to similar realistic curves, the

model with the highest performance [in terms of Boyce Index

as it is the most appropriate when working with presence-only

information (Di Cola et al., 2017)] was selected. Final

ensembles of individual models were constructed for each

species using the “Weighted Average” technique already

implemented in “BIOMOD2” package.
3 Results

3.1 Model configuration implications for
model performance

3.1.1 Predictor dataset
In general terms, model performance could be considered

very good according to AUC and TSS averaged cross-validation

evaluation scores (AUC>0.9 and TSS>0.8) for all species and

predictor dataset, except for R. okamurae models trained with

the larger predictor dataset. These models scored an average

value below 0.8 for TSS (Table 1). Presence-only metric Boyce-

Index showed predictions with average values over 0.7 in all

cases. Sensitivity could also be considered good for all species

and datasets, with more than 90% of presences well predicted,

although thresholds were set considerably low (<0.35).

For four out of five species, models performed significantly

better [according to WSRT test, p-values<0.05; Table S1.3 in

(Supplementary Material 1)] when trained with the large

predictor dataset for at least two of the three metrics

considered. R. okamurae was the only species performing

better on the Reduced dataset (across the three metrics
TABLE 1 Summary of model assessment metrics (Boyce Index, AUC, TSS and TSS Sensitivity + Threshold (in brackets)) for the Large Dataset (8
predictors) and the Reduced Dataset (4 predictors).

Boyce Index AUC TSS TSS Sensitivity (Threshold)

Large
Dataset

Reduced
Dataset

Large
Dataset

Reduced
Dataset

Large
Dataset

Reduced
Dataset

Large
Dataset

Reduced
Dataset

A. armata 0.894
± 0.078

0.860
± 0.113

0.969
± 0.020

0.967
± 0.024

0.874
± 0.054

0.879
± 0.058

0.961
± 0.031 (0.273)

0.976
± 0.016
(0.284)

B. hamifera 0.888
± 0.084

0.890
± 0.100

0.957
± 0.038

0.947
± 0.044

0.843
± 0.062

0.821
± 0.073

0.936
± 0.024
(0.339)

0.946
± 0.030
(0.334)

R. okamurae 0.706
± 0.254

0.725
± 0.149

0.921
± 0.068

0.942
± 0.040

0.796
± 0.104

0.839
± 0.081

0.906
± 0.087
(0.197)

0.922
± 0.083
(0.258)

S. muticum 0.917
± 0.053

0.896
± 0.092

0.956
± 0.052

0.943
± 0.061

0.839
± 0.116

0.811
± 0.122

0.939
± 0.057
(0.325)

0.928
± 0.075
(0.335)

U.
pinnatifida

0.855
± 0.085

0.787
± 0.130

0.960
± 0.067

0.959
± 0.032

0.864
± 0.127

0.866
± 0.059

0.953
± 0.032
(0.246)

0.968
± 0.032
(0.231)
Mean values ± standard deviations are shown. AUC, area under the receiver–operating curve; TSS, true skill statistic.
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considered), although differences were exclusively significant for

AUC (p=0.007; Table S1.3 in Supplementary Material 1).

3.1.2 Algorithms and parameterization
Both algorithms and parameterization have shown a high

significant effect on model performance for all species and

datasets, except for R. okamurae. For this species, the

algorithm and parameterization effects were significant for

models trained with the large predictor dataset, but only the

algorithm effect was significant for models trained with the

Reduced predictor dataset (Table S1.4 in Supplementary

Material 1). RF and GBM model performance were higher on

average than GLM and MAXENT (in terms of AUC and TSS)

for each species and predictor dataset (Figure 3, Tables S1.5 and
Frontiers in Marine Science 07
S1.6 in Supplementary Material 1). No clear patterns could be

discerned from the Boyce index metric. Pairwise comparisons

showed that these differences were not consistently significant

across complexity levels, datasets and species (Tables S1.7 and

S1.8 in Supplementary Material 1).

Complexity levels explored by different algorithm

parameterizations had different effects on model performance

depending on the algorithm considered (Figures 3, S1.1).

Pairwise comparisons (paired two-tailed Wilcoxon signed-rank

test) showed that GLM and MAXENT models tuned with an

intermediate or high complexity outperform simpler models for

the whole group of species and predictor datasets (in terms of

TSS and AUC), with the exception of R. okamurae. In these

cases, high complexity models performed significantly better
FIGURE 3

Model performance (in terms of Boyce Index, AUC and TSS) for each species and algorithm + complexity configuration. Results shown in this
figure correspond to models trained using the large predictor dataset, excluding R. okamurae results, which correspond to models trained using
the reduced predictor dataset. Dashed lines represent the thresholds applied for model selection in section 2.3 (Blue – AUC threshold = 0.9;
Black – TSS threshold = 0.8). AUC, area under the receiver–operating curve; BRT, Boosted Regression Trees; GBM, Generalized Linear Models;
RF, Random Forest; TSS, true skill statistic.
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than intermediate complexity models for B. hamifera and S.

muticum (only MAXENT). On the contrary, RF models did not

show significant differences between complexity levels.

Comparisons between levels for GBM models did not identify

clear patterns. GBM models trained with the large dataset and

intermediate and high complexity levels outperformed simpler

models (in terms of AUC and TSS) only for A. armata and B.

hamifera. When these models were trained with the reduced

dataset, they also outperformed simpler models (but only in

terms of AUC) for S. muticum and U. pinnatifida (Tables S1.9

and S1.10 in Supplementary Material 1).
3.2 Model configuration implications in
terms of ecological realism

Two aspects were considered as indicators when analyzing

whether models behaved in a biologically meaningful way: (1)

Response curves fitted for each environmental variable (Figures

S1.2 and S1.3 in Supplementary Material 1) and (2) Variable

contributions. According to the former, it was noticed that RF

models fitted the most unrealistic and non-smooth curves from

the pool of algorithms considered. For this algorithm,

discrimination between suitable and unsuitable conditions was

not clear with few differences between complexity levels (see

Figure 4). Additionally, habitat suitability values were always

bellow 0.75, even in areas with high density of presences.

Smooth bell-shaped responses for well-known parameters such

as SSTM were not identified for this algorithm in any of the

species analyzed. MAXENT and GLM performance, in terms of

the quality of their response curves, was similar for every species

considered. As expected, simpler models (limited to linear terms)

only captured partial responses for parameters which follow

unimodal responses. Models fitted with an intermediate level of

complexity (allowing for Linear and Quadratic terms in

MAXENT and second order polynomial in GLMs) showed the

smoothest and most realistic curves as they represent close

approximations of physiological thresholds for some predictors

such as SSTM or PARM (an example for S. muticum is provided

in Figure 4). R. okamuraeGLMmodels fitted with an intermediate

level of complexity were the exception as non-consistent curves

were achieved among replicates. Forcing these two algorithms to

higher levels of complexity increase the overfitting rate for those

models (see Figure 5) and, in some cases, led to non-consistent

predictions among replicates (e.g. A. armata, B. hamifera or R.

okamurae). GBM curves smoothness was similar for each

complexity level but intermediate or complex models led, in

general, to better results. For some species, such as A. armata,

R. okamurae or U. pinnatifida, signs of overfitting could be

detected, more noticeably in higher complexity levels (Figure 5).

Concerning environmental variable contributions,

MAXENT and GLM models fitted with an intermediate or
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high level of complexity identified SSTM as the most

important variable (Tables S1.11 and S1.12, 13 in

Supplementary Material 1), as expected when modelling global

ranges. Simpler models identified other predictors such as SSTR,

PARM or salinity as the most important predictors. GBM

models consistently identified SSTM as the variable with the

highest contribution in each complexity level. RF discrimination

power was lower. This resulted in predictors such as SSTM,

SSTR, PARM and Salinity having similar contributions.
3.3 Model selection and final ensemble
distributions

Models included in the final ensemble for each species were

selected following the selection process proposed in section 2.3

(see Supplementary Material 2 for details). A. armata and B.

hamifera ensembles were constructed by fitting GLMs and

MAXENT models with an intermediate level of complexity. S.

muticum and U. pinnatifida ensembles also incorporated GLMs,

MAXENT and GBM models fitted with the higher level of

complexity. Finally, R. okamurae ensembles were build using

GBM and MAXENT models fitted with an intermediate level of

complexity. All models were built using the 8-predictors dataset

with the exception of R. okamurae (built with the 4-predictors

dataset) (see Figure 6 and Supplementary Material 2 for details).

Final ensemble model’s performance was considered very

good for the whole group of species according to AUC and TSS,

with values over 0.97 and 0.83 respectively (Table S1.13 in

Supplementary Material 1). Boyce index values were close to

perfect predictions (values over 0.9) for A. armata, B. hamifera,

S. muticum and U. pinnatifida. R. okamurae’s Boyce index also

identified high quality predictions, but the value was lower

(0.77). TSS sensitivity showed values over 90% of presences

well-predicted (with thresholds established over a 0.33 value of

habitat suitability) for all species, except for R. okamurae in

which sensitivity fell to 60% due to the high threshold considered

(close to a 0.7 value of habitat suitability).

Finally, ensemble models were evaluated by qualitative visual

examination, based on expert knowledge about these species’

current distributions. Overall, geographic patterns shown in

Figure 7 matched well with current species range, both in their

native and non-native regions. A. armata modelled distribution

(Figure 7A) is well defined by its temperate origins, with some

regions out of its known range identified as highly suitable. This

is the case of the south-eastern and south-western coasts of

South America. Other temperate introduced species, such as S.

muticum and U. pinnatifida have already reached those areas.

This pattern was well captured by its ensemble model. In the

Mediterranean Sea, A. armata modelled distribution identified

intermediate to high suitability areas in both the north

(European coasts) and the south coasts (African coasts). S.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1009808
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sainz-Villegas et al. 10.3389/fmars.2022.1009808
muticum and U. pinnatifida ensembles (Figures 7D, 7E)

identified those areas with low to intermediate habitat

suitability values (with some exceptions such as the Thau

Lagoon in France), particularly in the northern coasts of

Africa. According to the habitat suitability values (Figure 7B),

B. hamifera southern distribution limit in Europe is clearly

established in Portugal, with some exceptions in the

Mediterranean Sea. Instead, its northern limits were identified

at higher latitudes if compared with the other temperate species.

R. okamurae non-native range (Figure 7C) was identified by

high suitability values in southern Europe, Brazil, Uruguay and

the south-eastern coast of North America. In Europe, the

distribution of this species was limited to the north with low

habitat suitability values in latitudes over Brittany. Generally,

Mediterranean coasts for R. okamurae were characterized by

high suitability values.
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4 Discussion

The ensemble modelling approach proposed in this study

has led to reliable and biologically meaningful predictions for the

distributions of these five introduced and widespread seaweeds.

Among the main factors considered, the enforcement of less

complex models (in terms of number of predictors) does not

necessarily imply better predictions. In fact, for four out of five

species, models trained with large number of predictors have

shown better predictions (in most cases without overfitting

signs). In relation to the selection of individual algorithms and

its configuration tuning, GLM and MAXENT were found to fit

the most realistic responses, specifically when an intermediate

complexity of its parameters was selected. An exception could be

detected for small sample sizes, where GLMs showed

unstable predictions.
FIGURE 4

Example of the Mean Sea Surface Temperature response curves generated for Sargassum muticum with the different algorithms and complexity
configurations. The x-axes represents the Mean Sea Surface Temperature (SSTM: °C) and the y-axes the probability of occurrence (from 0 to 1).
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FIGURE 6

Results for the selection process proposed in section 2.3 to select the final configuration of ensemble models. Red colored squares represent
algorithms and configurations discarded for further analysis in each step of the process. Green colors represent the configurations kept for
further analysis in each step until only one configuration was kept per algorithm. Green ticks represent the final algorithms and configurations
used to build the final ensembles. H, High complexity; I, Intermediate complexity; L, Low Complexity; BRT, Boosted Regression Trees; GBM,
Generalized Linear Models; RF, Random Forest; MXNT, MAXENT.
FIGURE 5

Omission rates obtained for each species and each combination of algorithm, complexity configuration and environmental dataset using the
10th percentile presence threshold. Omission rates higher than the theoretical expectation (in this case 0.1) indicate overfitting.
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FIGURE 7

Final ensemble model (Weighted average) distributions for each of the five species: (A) Asparagopsis armata, (B) Bonnemaisonia hamifera, (C)
Rugulopteryx okamurae, (D) Sargassum muticum and (E) Undaria pinnatifida. Darker blue colors indicate low predicted habitat suitability and
warmer red colors indicate high predicted habitat suitability.
Frontiers in Marine Science frontiersin.org11

https://doi.org/10.3389/fmars.2022.1009808
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sainz-Villegas et al. 10.3389/fmars.2022.1009808
4.1 Number of environmental predictors
included in final models

There has been growing recognition that the choice of

environmental predictors has important effects on model

predictive power and transferability (Peterson and Nakazawa,

2007; Fourcade et al., 2018). Our findings suggest that models

trained with the large dataset outperform (as they scored higher

values in at least two of the three metrics analyzed) models

trained with less predictors, except for R. okamurae models.

Results for this species matched with those of Verbruggen et al.

(2013) for Caulerpa taxifolia, in which reducing the number of

predictors improved model performance. Two characteristics

differentiate Rugulopteryx and Caulerpa species from the other

four: 1) The history of its introduction process; 2) Small sample

sizes. It is well-know that working with small samples is often

problematic, as predictions are easily overfitted or inaccurate

(Breiner et al., 2015). Studies on small samples and model’s

complexity (e.g. Shcheglovitova and Anderson, 2013) have

suggested that simpler models reduce that problem, which is

consistent with our results for R. okamurae.

Overfitting can also be present when models are trained with

larger environmental datasets and its detection is not always

easy. Following recommendations (Hernandez et al., 2006;

Breiner et al., 2015), three different metrics and visual

inspection of distributions were used but evidences of

overfitting were not found in those cases. Sharp transitions

between high and low predicted habitat suitability values,

which indicates high probabilities of over-complexity (Lake

et al., 2020), were not identified from visual inspection either.

Although differences between models trained with the larger and

simpler predictor dataset (in terms of accuracy metrics values),

whilst significant in some cases, tended to be small.
4.2 Algorithm selection and
configuration tuning

Model performance metrics were good in general, but tree‐

based techniques (both RF andGBM) performed better on average

than the rest for each species and predictor dataset, which is

consistent with some recent studies on marine species (e.g.

D’Amen and Azzurro, 2020). In fact, AUC and TSS metric values

for those techniques were higher than those shown for regression

techniques in almost every model analysed. However, as shown in

the results, some of these models were affected by overfitting,

suggesting those results may be interpreted cautiously. When

analysed in detail, our results revealed important model-to-

model, species-to-species and metric-to-metric variability in

model performance. This variability, particularly between species

and metrics, highlighted the importance of tuning and selecting

algorithms individually for each species and the importance of

taking into consideration more than one metric. However,
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according to Hao et al., (2020) and Hao et al. (2019) most of

ensemble modelling studies still rely on default configurations

equally applied to different species. In contrast, our research

proposes (in addition to model performance metrics) a second

and uncommon criterion for selecting the algorithms (and its

configuration) to be included in final ensembles which is the

analysis of response curves. This criterion has shown to play a

crucial role by discarding modelling techniques (such as RF) with

unrealistic, overfitted or unstable (incongruent between replicates)

response curvesmasked by their goodmodel performancemetrics.

Concerning algorithm configuration, MAXENT and GLM

models fitted with an intermediate complexity level were the

most balanced in terms of metrics and response curves quality,

with the exception of R. okamurae. For this species, GLM were

unstable among replicates. Bad performances of this modeling

technique have already been reportedwhen the sample size is small

(Aguirre-Gutiérrez et al., 2013). MAXENT auto feature models

(similar to our highest complexity configuration) have been proven

to perform significantly better than simpler models (similar to our

intermediate configuration) when analyzed via AUC (Syfert et al.,

2013). In our analysis, MAXENT highest complexity models

performed slightly better than intermediate complexity models

for most species and metrics, although differences were mostly not

significant (with few exceptions). However, when response curves

were analyzed clear evidences of overfitting could be found for

models allowing extra complexity (those allowing hinge features).

On the other hand, limiting MAXENT models to linear features,

and GLM to linear responses, forced the models to capture only

partial responses, which resulted in worsemetric values. Although,

this configurationwas included in the analysis as itwouldbe abetter

option for modelling species where only part of the environmental

range has been sampled (which is frequent in incipient

introductions – e.g. R. okamurae) (Merow et al., 2014). Finally,

this last theory for R. okamurae was not confirmed by our results.

RFmodels showed fewdifferences between configurations in terms

of model performance metrics and response curves smoothness.

Intermediate complexity GBMs rendered good results for R.

okamurae, which is in line with some theories about these models

performing better with small sample sizes (Ng and Jordan, 2001;

Aguirre-Gutiérrez et al., 2013). For the other four species,

characterized by larger sample sizes, intermediate and high

complexity GBMs performed well according to metrics.

Nevertheless, these models have been reported to be prone to

overfit the training data (Elith and Graham, 2009), which was

confirmed for some (but not all) species in our response curves and

distributions analysis.
4.3 Introduced seaweeds distributions

Geographical distributions modelled in this study were

congruent with the historical known range of the five species. For

example, A. armata has been detected in four different continents,
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although the vast majority of records are located in Europe. It is

described to be distributed from the British Isles to Senegal,

including the Mediterranean Sea, the Azores and Canary Islands

(Nı ́ Chualáin et al., 2004; Andreakis et al., 2007). This widespread

distribution is possible due to its photosynthetic plasticity and its

tolerance to wide thermal ranges (Zanolla et al., 2014), which were

correctly captured in our modelled response curves. Other

conditions, such as those related to temperature variables were

also correctly predicted. Kraan and Barrington (2005) suggested

that gametophytes survive and grow at temperatures of 5-20°C

while tetrasporophytes survive at temperatures of 5-25°C, andgrow

at 9-23°C. This may explain the low habitat suitability values

captured by our ensemble model in its southern limits (for

example in latitudes below the Canary Islands), where SSTM

reached values over 22-23°C. However, there are still some

important factors our model cannot capture. As an example, its

long-distance dispersal ability by flotation (more noticeably in the

tetrasporophyte phase) is known to play an important role in

shaping its distribution. Unfortunately, this process is difficult to

quantify and parameterize. More research is needed in this field,

from estimating dispersal distances to understanding the

environmental conditions limiting the main mechanisms for

settlement. Other processes, like those related to reproduction

traits, were not considered in our model either. Vegetative

propagation of tetrasporophytes seems to be the main

mechanism of recruitment in areas close to its distribution limits,

while sexual reproduction appears to be restricted to a narrow

window of temperature and light conditions in autumn (Guiry and

Dawes, 1992). Understanding those patterns and finding ways to

integrate them in SDMs is crucial for a better prediction of

distribution limits and their expansion.

B. hamifera and A. armata share family and part of the non-

nativedistribution range inEurope, although their origin is different.

B. hamiferadistribution is shifted northwards when compared toA.

armata distribution, with the southernmost presences recorded in

the Canary Islands and the northernmost recorded in Norway.

Temperatures over 20°Chave been suggested to affect reproduction,

becoming lethal over 25°C (Breeman et al., 1988). Low and

intermediate habitat suitability values in southern locations, such

as those in theMediterranean and Canary Islands, are explained by

this temperature requirements. In northern locations, the expansion

of this species is controlled by reproduction requirements which

cannot be captured with the environmental variables selected.

Temperatures over 10°C are needed for this process at some point

of theyear (Breemanet al., 1988). Includingavariableaccounting for

the number of days exceeding 10°C, as previously done in regional

studies (de la Hoz et al., 2019a), could improvemodel performance.

However, to our knowledge, this kindof variables arenot available at

global scale. Other variables, such as those relative to nutrients

concentrations (phosphates andnitrates), showedconflicting results

for this species and A. armata. Modelled responses reflected low

habitat suitability to higher rather than lower levels of those

nutrients, although it has been indicated otherwise (Marcelino
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and Verbruggen, 2015). These do not necessary imply lower

tolerance to higher concentrations but it seems more likely that

they are representing the oligotrophic nature of the coastal

environments at global scale.

Little information concerning R. okamurae ecophysiology can

be found in the literature. In its native region, it is widely distributed

in the Japanese coasts with the exception of the northern coldest

areas. It was also recorded in other regions of China, Korea, the

Philippines and Taiwan (Lewis and Norris, 1987). This temperate

to subtropical distribution is well captured by the ensemble model,

with the exception of the Philippines locations characterized by low

habitat suitabilityvalues. SSTMvalues for this area are close to30°C,

far from the 15-20°C registered in Japanese native areas.

Furthermore, this species seems to be absent in the western coasts

ofKorea (Hwang et al., 2009).Ourmodel predicted these areaswith

intermediate habitat suitability values, reaching the lowest values in

Korea Bay and Bohai Sea. Out of its native range, Verlaque et al.

(2009) reported this species in the Mediterranean Thau Lagoon

(France) for the first time in 2002. Mediterranean Sea conditions

appear tobe suitable for thedevelopmentof this species as shownby

the habitat suitability maps. Although, since its first report in 2002,

the Strait of Gibraltar is the only location where this species is

established (besides Thau Lagoon) (Garcıá-Gómez et al., 2020).

Even though results were in close agreementwith the known range,

distributions must be interpreted cautiously as models were

constructed using a small number of presences.

Experimental studies for S. muticum have shown that adult

individuals can survive in temperatures between -1°C and 30°C,

which are similar to the seasonal ranges in native areas (Norton,

1977;Hales and Fletcher, 1990).Ourmodelled responses for SSTM

weremore restrictive, with the lowest habitat suitability values over

25°C and below 5°C. MAXENT was the most restrictive model,

establishing the upper tolerance limit in 20°C. Low temperatures

(below 10°C) have been demonstrated to reduce fertilization and

post-fertilization development and limit the germlings growth

(Steen and Rueness, 2004), which may be an explanation for the

lowhabitat suitabilityvalues at those temperatures.Unlike theother

species (except for B. hamifera), models for S. muticum suggested

that its distribution is not limited to areas with salinity values over

30‰. Experiments have shown that this species can survive

salinities below 10‰ (Norton, 1977; Hales and Fletcher, 1990),

reason why this species can be found in brackish areas such as the

Baltic Sea (Leppäkoski and Olenin, 2000). In addition, our

modelled non-native distribution in Europe is congruent with

that reported in regional studies (de la Hoz et al., 2019a) or

hybrid modelling approaches (Chefaoui et al., 2019). Southern

locations in the Mediterranean Sea received low habitat suitability

values in general, except for two particular locations (Thau Lagoon

in France and Venice Lagoon in Italy) where the species have been

reported to be established. In fact, Mediterranean environmental

conditions seem to be unfavorable for the settlement of this species,

as only driftingmaterial has been found outside these two locations

(Engelen et al., 2015).
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U. pinnatifida tolerance to large annual temperature

fluctuations explains why this species is widely distributed in

Europe, Australia, New Zealand and North and South America

(James et al., 2015). According to our modelled distribution, the

southern coasts of Norway seems to be its northern limit in Europe

as regionsover these latitudes presenthabitat suitability values close

to zero. In contrast, other studies have suggested the Barents Sea to

be its northern limit of expansion (Minchin and Nunn, 2014). In

southern Europe, Portuguese and Spanish locations in the Atlantic

Ocean showed very favorable conditions for the establishment of

this species. Even though, it is known that this species is restricted to

a few locations in northernPortugal and thewestern part of the Bay

of Biscay (Blanco et al., 2021). Variables such as the influence of

adjacent river basins or human activities on nutrient concentration

and chlorophyll-A seemed to control their distribution at this

regional scale (Báez et al., 2010). Additionally, there were still

some other patterns this modelling approach was not able to

capture. For example, sporophyte recruitment needs

temperatures between 5-20°C, reaching the highest rates at 13-

17°C.Considering those ranges, it seemsunlikely tofindthis species

in the northeastern Iberian coasts, where sea surface temperatures

reach values over 20°C in summer. Better predictions, not only at

regional scales, require models that include this kind of

physiological information. Identifying the key processes,

characterizing it in laboratory or field experiments and then

parameterizing it into response curves could be a first step to be

considered in future research.

In conclusion, ensemble modelling non-native seaweeds

distributions has shown to be still a challenging process as several

factors influence the quality of the predictions. This research

highlights the importance of exploring different environmental

predictors combinations, algorithms and setting configurations in

ensembles for each seaweed individually to achieve ecologically

meaningful results. Additionally, our results suggest that

integrating ecological realism as a qualitative criterion for

selecting the optimal models to be included in the ensemble,

helps improve the final predictions. Although requiring further

development (particularly from a physiological point of view), our

ensemble modelling approach properly captured the known

locations for these five seaweeds and the possible areas of

expansion. Understanding these distributional patterns and

finding ways to improve the modelling techniques have several

implications not only fromabiogeographical point of view, but also

formanagement issues. Accurate predictions will helpmanagers to

takemore effective actions to reduce or prevent the negative effects

these alien species generate in local biodiversity and economy.
Data availability statement

Presence points datasets for each species are available in

Supplementary Material 3. Information concerning

environmental predictors used to trained the models and
Frontiers in Marine Science 14
details about how to acquire it are provided in the main text

and Supplementary Material 1 (Table S1.2). Final ensemble

maps are also provided in GeoTiff format for reuse. An

example of the R workflow applied to one species is also

provided. Any other intermediate dataset will be provided by

the corresponding author upon reasonable request.
Author contributions

SS-V, CH, JJ and AP authors conceived the study. SS-V and

CH acquired the data. SS-V performed analyses and led the

writing. All authors contributed by editing the manuscript and

gave final approval for publication.
Funding

This work was funded by the National Plan for Research in

Science and Technological Innovation from the Spanish

Government 2017-2020 [grant number C3N-pro project

PID2019-105503RB-I00] and co-funded by the European

Regional Development’s funds. SS-V acknowledges financial

support under a predoctoral grant from the Spanish Ministry of

Education andVocationalTraining [grantnumber:FPU18/03573].

CH acknowledges the financial support from the Government of

Cantabria through the Fénix Programme and under a postdoctoral

grant from the University of Cantabria [grant number: POS-UC-

2020-07]. This work is part of the PhD project of SS-V.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fmars.2022.1009808/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmars.2022.1009808/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.1009808/full#supplementary-material
https://doi.org/10.3389/fmars.2022.1009808
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sainz-Villegas et al. 10.3389/fmars.2022.1009808
References
Aguirre-Gutiérrez, J., Carvalheiro, L. G., Polce, C., van Loon, E. E., Raes, N.,
Reemer, M., et al. (2013). Fit-for-Purpose: Species distribution model performance
depends on evaluation criteria – Dutch hoverflies as a case study. PLoS One 8,
e63708. doi: 10.1371/journal.pone.0063708

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., and Anderson,
R. P. (2015). spThin: An r package for spatial thinning of species occurrence
records for use in ecological niche models. Ecography (Cop.) 38, 541–545.
doi: 10.1111/ecog.01132

Allouche, O., Tsoar, A., and Kadmon, R. (2006). Assessing the accuracy of
species distribution models: Prevalence, kappa and the true skill statistic (TSS). J.
Appl. Ecol. 43, 1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x

Anderson, R. P., and Gonzalez, I. (2011). Species-specific tuning increases
robustness to sampling bias in models of species distributions: An
implementation with maxent. Ecol. Modell. 222, 2796–2811. doi: 10.1016/
j.ecolmodel.2011.04.011

Andreakis, N., Procaccini, G., Maggs, C. A., and Kooistra, W. H. C. F. (2007).
Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales,
rhodophyta) reveals cryptic diversity. Mol. Ecol. 16, 2285–2299. doi: 10.1111/
j.1365-294X.2007.03306.x
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