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Robust segmentation of
underwater fish based on multi-
level feature accumulation

Adnan Haider, Muhammad Arsalan, Jiho Choi, Haseeb Sultan
and Kang Ryoung Park*

Division of Electronics and Electrical Engineering, Dongguk University, Seoul, South Korea
Because fish are vital tomarine ecosystems, monitoring and accurate detection

are crucial for assessing the potential for fisheries in these environments.

Conventionally, fish-related assessment is conducted manually, which makes

it labor-intensive and time-consuming. In addition, the assessments are

challenging owing to underwater visibility limitations, which leads to poor

detection accuracy. To overcome these problems, we propose two novel

architectures for the automatic and high-performance segmentation of fish

populations. In this study, the efficient fish segmentation network (EFS-Net)

and multi-level feature accumulation-based segmentation network (MFAS-

Net) are the base and final networks, respectively. In deep convolutional neural

networks, the initial layers usually contain potential spatial information.

Therefore, the EFS-Net employs a series of convolution layers in the early

stage of the network for optimal feature extraction. To boost segmentation

accuracy, the MFAS-Net uses an initial feature refinement and transfer block to

refine potential low-level information and subsequently transfers it to the deep

stages of the network. Moreover, the MFAS-Net employs multi-level feature

accumulation that improves pixel-wise prediction for fish that are indistinct.

The proposed networks are evaluated using two publicly available datasets,

namely DeepFish and semantic segmentation of underwater imagery (SUIM),

both of which contain challenging underwater fish segmentation images. The

experimental results reveal that mean intersection-over-unions of 76.42% and

92.0% are attained by the proposed method for the DeepFish and SUIM

datasets, respectively; these values are higher than those by the state-of-

the-art methods such as A-LCFCN+PM and DPANet. In addition, high

segmentation performance is achieved without compromising the

computational efficiency of the networks. The MFAS-Net requires only 3.57

million trainable parameters to be fully trained. The proposed model and the

complete code will be made available1.

KEYWORDS

artificial intelligence, marine environment, underwater computer vision, fish
segmentation, EFS-net and MFAS-net
1 https://github.com/AdnanHaider72/Fish-segmentation.
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1 Introduction

Fish are the subjects of interest in the marine fishing and

aquaculture industries. In a marine environment, fish habitat

monitoring has become an essential function in research for

sustainable fisheries. Fish monitoring primarily includes shape

and size assessment, which helps in analyzing the fisheries’

potential (Laradji et al., 2021). Moreover, fish measurements

and observations are useful for feed, stock, and growth analysis.

Conventionally, manual methods are employed for fish

monitoring and measurements. These include ruler and

echosounder-based measurements that are time-consuming,

error-prone, and tedious (Zhang et al., 2022). Therefore,

traditional fish assessment methods should be replaced with

automated methods for a more efficient process.

In recent years, artificial intelligence has made significant

contributions to automating manual processes (Arsalan et al.,

2022c; Haider et al., 2022a; Mahmood et al., 2022b). In

particular, the combination of deep learning with computer

vision has enabled complex problems to be solved using

multimedia-based learning (Owais et al., 2021; Sultan et al.,

2021; Arsalan et al., 2022a). Moreover, convolutional neural

networks (CNNs) supported by machine vision have been used

in automated marine observation. Automatic machine vision-

based marine observation can contribute substantially to

developing an intelligent decision support system (Laradji

et al., 2020). In particular, machine vision for fish observation

is a noteworthy step toward modern and intelligent fisheries.

However, limited research work and databases are available for

underwater machine vision methods because of the underwater

imaging limitations and constraints. Existing deep feature-based

methods for underwater fish segmentation have limitations in

segmentation performance and computational efficiency.

Underwater, the segmentation of objects in general and small

objects in particular, is challenging because of the

visibility constraints.

Existing automatic fish segmentation methods have not

delivered high segmentation accuracy with the required small

number of trainable parameters. To overcome these problems,

two novel architectures were designed to segment fish in an

underwater environment. The efficient fish segmentation

network (EFS-Net) and multi-level feature accumulation-based

segmentation network (MFAS-Net) respectively are the base and

final networks of this study. In CNNs, layers close to the image

input layer carry potential low-level information (Hosseinzadeh

Kassani et al., 2022). In EFS-Net, a series of convolution layers is

set at the start of the network for optimal feature extraction from

this initial spatial information. In MFAS-Net, potential initial

information is refined and transferred using the initial feature

refinement and transfer block (IFRT-Block) approach. These

initial features are transferred to the deep section of the

network where, at the multi-level, they are combined with

deep stage features. Feature accumulation at the multi-level
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improves network training and consequently enhances its

segmentation performance.

Detailed fish assessment requires accurate segmentation.

Both proposed networks perform semantic segmentation that

classifies every pixel of the image into the fish and non-fish

(background) classes. The proposed semantic segmentation

methods enable precise soft computation and morphological

assessment. The effectiveness of the proposed methods is

validated on two publicly available datasets, namely DeepFish

(Saleh et al., 2020) and semantic segmentation of underwater

imagery (SUIM) (Islam et al., 2020). The contribution of the

present study can be summarized as follows.
• Two novel networks were developed for robust fish

segmentation in challenging underwater environments.

EFS-Net and MFAS-Net are the base and final networks,

respectively.

• EFS-Net uses a series of convolution layers at the start of

the network for optimal low-level feature extraction. In

MFAS-Net, initial low-level features are refined and

transferred to a deep section of the network using

IFRA-Block for improved performance. In addition,

MFAS-Net accumulates initial and deep section

features at multi-levels to further enhance accurate fish

segmentation in underwater environments.

• Both networks, EFS-Net and MFAS-Net, were evaluated

on two challenging underwater fish segmentation

datasets (DeepFish and SUIM). The proposed

approach outperformed state-of-the-art methods and

exhibited promising performance with superior

computational efficiency (it required only 3.57 million

trainable parameters).

• The proposed models and algorithm are made publicly

available1.
The remaining paper is organized as follows. We discuss the

existing methods in section 2. The proposed work and results are

presented in sections 3 and 4, respectively. A detailed discussion

is provided in section 5 and a brief conclusion of this work is

given in section 6.
2 Related work

Globally, artificial intelligence has introduced revolutionary

changes to traditional industries. Furthermore, computer vision

has automated manual processes and provided robust solutions

to reduce human efforts (Arsalan et al., 2022b). Machine vision

provided versatile solutions in numerous fields, such as

computer-aided diagnosis, autonomous driving, object

tracking, intelligent agriculture, automatic fault detection,

smart surveillance, remote sensing, smart decision support

system, under-water imagery, human-machine interface,
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robot-assisted surgery, and many more (Cui et al., 2022; Haider

et al., 2022b; Mahmood et al., 2022a). Recently, semantic

segmentation has become a widely accepted computer vision-

based method. Semantic segmentation networks are usually

trained with training data and tested on unseen data. In

segmentation, every pixel of the image is classified into desired

or undesired classes. Therefore, morphological assessments,

measurements, region-based ratios, and visual monitoring can

be conducted using segmentation algorithms. In a study

(Arsalan et al., 2022d), a pool-less residual segmentation

network (PLRS-Net) was used to segment the retinal vessels.

This method transfers instant spatial information with residual

connectivity. However, PLRS-Net requires a large number of

parameters (7.3 million) to complete its training (Arsalan et al.,

2022d). Underwater semantic segmentation is challenging

because of the unfavorable visual conditions. In the work by

Rahnemoonfar and Dobbs (2019), a deep feature-based

approach; dense module, dilated convolution, and inception

are used for the segmentation of underwater sonar imagery to

detect potholes.

In Zhang et al. (2022), a dual pooling‐aggregated attention

network was employed for segmenting fish underwater. Position

attention and channel attention modules were used for the

aggregation of spatial context information to highlight the

context dependencies for fish segmentation (Zhang et al.,

2022). In their study, the proposed framework was evaluated

using two datasets of underwater fish segmentation. The use of

ResNet50 as the backbone can be defined as the limitation in the

study by Zhang et al. (2022). Another study, Laradji et al. (2021),

proposed a weakly supervised approach for underwater fish

segmentation that uses a CNN, one section of which provides

a pixel-wise score and the other an affinity matrix. Aggregation

was performed for both outputs, and consequently, the refined

pixel-wise output was generated (Laradji et al., 2021). The

limitation of the study was the inability to detect several fish

in the same image because it used point-level annotation (Laradji

et al., 2021). In Ditria et al. (2020), a deep feature-based object

detection approach was used to analyze the abundance of fish.

This method presents three models for detecting species

underwater and compares the results with the detection

accuracy of human experts. A limitation to their study was

using the ResNet50 model pre-trained on the ImageNet.

Similarly, in Kandimalla et al. (2022), a deep learning method

was presented for the detection and classification of fish. Herein,

the widely used you only look once (YOLO) machine learning

model was combined with Kalman filters to classify and track

different species of fish. This method was evaluated with limited

data; a single dataset was used for the detection and classification

performance evaluation. In addition, no pixel-level detection

was performed; therefore, no morphological analyses or species

measurements were possible (Kandimalla et al., 2022).
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Subsequently, semantic segmentation was performed using

DeepLabv3+ for underwater pixel-wise scene detection in

another study (Liu and Fang, 2020). This method employed a

basic architecture (DeepLabv3+) and used XceptionNet as the

backbone, which can be considered the limitation of this method

(Liu and Fang, 2020). The Labao and Naval (2017) method,

employs a fully convolutional residual network (ResNet-FCN)

with 152-layers to segment fish underwater. This method can

better deal with the illumination and background changes in

underwater environments. However, the network used in this

method is outdated and computationally expensive (Labao and

Naval, 2017). The Abe et al. (2021) study refers to a framework

that is designed for the identification and tracking of fish. In the

Badrinarayanan et al. (2017) method, widely used SegNet was

chosen for detecting fish at the pixel level (Abe et al., 2021). This

method has the limitation of relying on SegNet, which has

vanishing gradient problems and requires a large number of

trainable parameters (Abe et al., 2021). A study by Islam et al.

(2020) used a dataset of underwater objects with a deep residual

network for segmentation. In this work, an encoder-decoder

structure was presented with optional residual skip blocks (Islam

et al., 2020). Each residual skip block consists of three

convolutional layers in combination with the rectified linear

unit (ReLU) and batch normalization (BN) layers (Islam et al.,

2020). Although this work exhibited excellent segmentation

performance with competitive computational efficiency,

improvements can be made (Islam et al., 2020).

Existing methods suffered from many limitations that have

driven the development of new models. Some of the existing

methods use the backbone of different architectures or rely on

pre-trained networks/preprocessing that can make the model

dependent, complex, and less efficient. Similarly, few methods

use point-level annotation therefore such a framework shows an

inability for multiple fish detection. Most of the networks exhibit

a degraded performance for underwater small and unclear

objects. Existing methods that deliver competitive accuracies

suffer from poor computational efficiency and require a large

number of trainable parameters. Proposed methods are

developed to address all these problems and to overcome the

limitations of existing methods.
3 Materials and methods

3.1 Overview of the proposed methods

An overview of the proposed architecture is shown in

Figure 1. Experimentation was performed for underwater fish

segmentation task using two publicly available datasets. High-

performance segmentation is challenging in an underwater

environment because of the difficult imaging environment.
frontiersin.org
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Underwater imaging produces serious limitations in contrast

and sharpness that create challenging conditions for

segmentation. Underwater segmentation becomes even more

challenging because of the sizes and shapes of fish as well as the

effects of the background and illumination. Additionally,

detecting small-sized fish under unfavorable background

conditions is challenging. Most of the existing methods failed

to provide better performance because of the small final feature

map size, vanishing gradient problem, and unavailability of

appropriate feature aggregation mechanisms. To overcome all

these problems and deal with challenges, two networks were

developed for fish segmentation underwater. Input images from

both datasets are provided to the network for training and

testing. To train the network fast, the training data split was

resized using nearest neighbor interpolation and input to the

network. Resizing training images is a common practice for the

training of deep learning models. In our experiments, training

images were resized to 400 × 400 pixels for efficient training of

the network. However, images can be resized to any other size

keeping the original image’s size in view.

The initial layers of a CNN hold potential low-level

information (Hosseinzadeh Kassani et al., 2022). The proposed

method uses a large number of convolution layers in the early

stage of the network to optimize extraction from this low-level

information. These valuable initial features are further refined

and transferred to the deeper stages of the network in the IFRT-

Block. Subsequently, the transferred initial features are

accumulated with the features from the deeper layers. For

feature empowerment and effective learning, feature

accumulation occurs at multiple levels in the network. Finally,

a prediction mask is generated to detect pixels of the desired

class. Unlike most of the existing methods, the proposed
Frontiers in Marine Science 04
methods do not require pre-processing to achieve desirable

results. In addition, the proposed methods are not

computationally expensive and require a small number of

trainable parameters to complete the network training.
3.2 Fish segmentation using EFS-net

Underwater image segmentation requires an efficient and

effective architecture to obtain acceptable results. Fish imaging

in a natural marine environment produces a wide variety of fish

images with different sizes, shapes, and backgrounds. Therefore,

accurate fish segmentation is challenging in the marine

underwater environment. In this study, networks were

designed to overcome these challenges. EFS-Net is the base

network of this study and its network architecture is shown in

Figure 2. In deep learning models, layers close to the image input

layer have potential low-level initial information (Hosseinzadeh

Kassani et al., 2022). Herein, a series of five convolution layers

were deployed to extract valuable features from low-level

information. This low-level information processing helps boost

the segmentation performance.

Subsequently, the feature map size of the initial spatial

information was reduced using a strided convolutional

(strided-Conv) layer. In EFS-Net, the strided-Conv layer was

used in place of despite using pooling layers. Pooling layers

produce spatial loss that negatively affects the learning process

(Abdeldaim et al., 2018). Moreover, an excessively small final

feature map size degrades the detection accuracy, particularly for

small objects. In underwater fish segmentation, several images

contain small-sized fish. Therefore, in EFS-Net, the final feature

map size was sufficiently large to detect the pixels of small-sized
FIGURE 1

Overview of the proposed method.
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fish. Only three strided-Conv layers with a stride value of 2 were

used to reduce the feature map size. Every convolutional layer in

the network was followed by ReLU and BN combinations for

activations and normalization. In Figure 2, the maximum depth

(Max-Depth) of the network is outlined by a dashed bounding

box. The last strided-Conv layer further reduced the feature map

size and applied maximum filters. Therefore, in Max-Depth, the

final feature map size was minimal (50 × 50) with the maximum

number of channels (256) in the network. The CNNs possess

better semantic information in the Max-Depth area of the

network (Kreso et al., 2017). Thus, to better learn the

semantics of the image, more convolution layers (03) were

used in the Max-Depth of the network.

The feature map size of spatial features in Max-Depth was

increased using transposed convolution layers (Tra-Conv). In

EFS-Net, three Tra-Conv layers were used to increase the

feature map size back to the initial size. Note that EFS-Net

avoided having an unpooling layer by using Tra-Conv layers

to avoid any kind of spatial loss. Unlike pooling and

unpooling layers, both strided and Tra-Conv layers are

trainable layers; hence, they both contributed to the

learning of the network (Kreso et al., 2017). The last Tra-

Conv layer provided the feature to the next convolution layer

for further feature empowerment. The last convolution layer

applied two filters and, for the softmax function, provided two

channels to match the number of classes (02). Finally, the dice

pixel classification layer (PCL) classified each pixel into fish

and non-fish (background) classes . Notably , more

convolution layers were used in the initial stage and Max-

Depth sections because these stages are crucial for effective

learning. Despite showing promising performance, EFS-Net

exhibited some performance degradation when segmenting

indistinct small fish with similar backgrounds (Detailed

quantitative and qualitative results are provided in

subsections 4.4−4.7)
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3.3 Fish segmentation using MFAS-net

MFAS-Net is the final network of this study. MFAS-Net uses

the architectural base of EFS-Net and was developed to further

increase the segmentation accuracies for underwater fish

segmentation. As stated, EFS-Net exhibited certain performance

limitations in segmenting obscure small-sized fish. To overcome

this problem and enhance the overall segmentation performance,

MFAS-Net introduced the IFRT-block with a multi-level feature

accumulation scheme. MFAS-Net architectural design is presented

in Figure 3. Layers close to the input image contain potential spatial

features (Hosseinzadeh Kassani et al., 2022). In the IFRT-Block, the

spatial features are further refined and transferred to the deeper

layers of the network. IFRT block is based on three convolution

layers with one feature accumulation (FA-1) junction. Initial low-

level spatial features from four different points are concatenated in

FA-1. The IFRT-Block transfers processed initial features to FA-4

using two convolution layers.

In FA-2, the downsampled spatial features are concatenated

with the transferred features from the high stride (stride = 4)

skip path. The first strided-Conv layer of this skip path uses a

stride of 4 to reduce the feature map size and its output is

provided to FA-2 through a convolution layer. This

accumulation of features from different levels and scales allows

diverse learning and helps improve the segmentation

performance. Subsequently, features from the first high

strided-Conv layer are input to the second strided-Conv layer

where the feature map size is further reduced and its output is

provided to FA-3. In FA-3, direct features from the second

strided-Conv layer and features from a convolution layer are

concatenated with the final downsampled features in Max-

Depth. In CNNs, deeper layers are more effective for

preserving image semantics (Kreso et al., 2017). FA-3 lies in

Max-Depth; therefore, it has a vital impact on improving

segmentation performance.
FIGURE 2

Proposed EFS-Net architecture.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1010565
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Haider et al. 10.3389/fmars.2022.1010565
After the feature map is up-sampled back to the initial size,

final feature accumulation (FA-4) is applied. In FA-4, the up-

sampled accumulated features (Fus ) are concatenated with the

direct initial spatial features (Fis ) and the initial refined features

(Fir) from the IRFT-Block. The feature accumulation process can

be further explained using the diagram in Figure 4. After feature

accumulation, FA (m) in the IFRT-Block transfers Fir for final

accumulation. Fis is the initial spatial feature that originated from

the early stage of the network to be concatenated in FA-4 with

identity mapping. At Max-Depth of the network, after feature

accumulation FA (n), the accumulated features from Max-Depth

are up-sampled. Additionally, Fus from the last Tra-Conv layer is

provided to FA (p) for final feature accumulation as

follows.

Ffp = Fir © Fis © Fus, (1)
Frontiers in Marine Science 06
where Ffp denotes the final feature for prediction and is

generated by concatenating three features. The Ffp is provided to

two convolution layers for final feature extraction before

prediction and the feature change because of convolution is

indicated by ∇. Finally, a prediction mask is generated by the

pixel classification layer based on ∇Ffp .

∇Ffp = ∇(Fir © Fis © Fus), (2)

This feature accumulation from different levels of the network

empowers the feature and helps enhance the segmentation

performance. In addition, the feature accumulation scheme

enables the network to minimize the vanishing gradient

problem and maintain a better pixel-wise prediction even for

small-sized unclear fish images. The configuration details of layers

of MFAS-Net are presented in Table 1
FIGURE 4

Schematic illustrating feature accumulation.
FIGURE 3

Proposed MFAS-Net architecture.
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TABLE 1 Layers configurational details of MFAS-Net with the number of required trainable parameters (Resized feature map of 400 × 400 is used
to show the configuration of the layers) (Str-Conv, Strided convolution layer; Tra-Conv ,Transposed convolution layer; IB, IFRT-Block; SP, Skip
path; Conv, Convolution).

Name of layer Size No. of filters Output features (width × height × number of channels) Parameters

Conv 1 + ReLU 1 3 × 3 × 32 32 400 × 400 × 32 896

BN 1 – – 64

Conv 2 + ReLU 2 3 × 3 × 32 32 9248

BN 2 – – 64

Conv 3 + ReLU 3 3 × 3 × 32 32 9248

BN 3 – – 64

Conv 4 + ReLU 4 3 × 3 × 32 32 9248

BN 4 – – 64

Conv 5 + ReLU 5 3 × 3 × 32 32 9248

BN 5 – – 64

Conv 1-IB + ReLU 1-IB 3 × 3 × 32 32 9248

BN 1-IB – – 64

Conv 2-IB + ReLU 2-IB 3 × 3 × 32 32 9248

BN 2-IB – – 64

Conv 3-IB + ReLU 3-IB 3 × 3 × 64 64 400 × 400 × 64 18496

BN 3-IB – – 128

Conv 1-SP + ReLU 1-SP 3 × 3 × 32 32 400 × 400 × 32 46112

BN 1-SP – – 64

Conv 2-SP + ReLU 2-SP 3 × 3 × 32 32 9248

BN 2-SP – – 64

Str-Conv 3-SP + ReLU 3-SP 3 × 3 × 64 64 100 × 100 × 64 18496

BN 3-SP – – 128

Conv 4-SP + ReLU 4-SP 3 × 3 × 128 128 100 × 100 × 128 73856

BN 4-SP – – 256

Str-Conv 5-SP + ReLU 5-SP 3 × 3 × 128 128 50 × 50 × 128 147584

BN 5-SP – – 256

Conv 6-SP + ReLU 6-SP 3 × 3 × 128 128 147584

BN 6-SP – – 256

Str-Conv 1 + ReLU 1-S 3 × 3 × 64 64 200 × 200 × 64 18496

BN 1-S – – 128

Conv 6 + ReLU 6 3 × 3 × 64 64 36928

BN 6 – – 128

Str-Conv 2 + ReLU 2-S 3 × 3 × 128 128 100 × 100 × 128 73856

BN 2-S – – 256

Conv 7 + ReLU 7 3 × 3 × 128 128 295040

BN 7 – – 256

Str-Conv 3 + ReLU 3-S 3 × 3 × 256 256 50 × 50 × 256 295168

BN 3-S – – 512

Conv 8 + ReLU 8 3 × 3 × 256 256 590080

BN 8 – – 512

Conv 9 + ReLU 9 3 × 3 × 256 256 1179904

BN 9 – – 512

Tra-Conv 1 + ReLU 1-T 3 × 3 × 128 128 100 × 100 × 128 295040

BN 1-T – – 256

Conv 10 + ReLU 10 3 × 3 × 128 128 147584

BN 10 – – 256

Tra-Conv 2 + ReLU 2-T 3 × 3 × 64 64 200 × 200 × 64 73792

(Continued)
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4 Results

4.1 Experimental data and environment

In this study, both proposed networks were evaluated using

two underwater fish segmentation-related datasets, DeepFish

(Saleh et al., 2020) and SUIM (Islam et al., 2020). DeepFish is a

large-scale fish dataset containing a total of 40,000 images from

different marine habitats. The purpose of developing the

DeepFish dataset was to monitor the fish dynamics along

with shape and size assessments. This dataset is divided into

three categories: FishLoc (fish location), FishClf (fish

classification), and FishSeg (fish segmentation). In FishLoc,

point-level annotations are provided to specify the location of

fish. FishClf includes the classification labels. Last, FishSeg has

pixel-level expert annotations for the segmentation of fish. In

this study, we focused on segmentation; therefore, only FishSeg

was used in our experiments. The FishSeg data split contains

310 training, 124 validation, and 186 testing images. FishSeg is

a challenging subset of DeepFish because it consists of samples

with different shapes, sizes, illumination conditions, and
Frontiers in Marine Science 08
backgrounds. Examples from DeepFish (FishSeg) are shown

in Figure 5.

SUIM dataset contains a total of 1525 underwater images of

multiple categories, including fish. SUIM provides a test split

with separate annotations for each category. Therefore, in the

experiments, we worked with fish and other vertebrate categories

and used this data for fish segmentation. Sample images from the

SUIM dataset are presented in Figure 6.

The fish segmentation experimental work was performed

using a desktop computer Intel ® Core™ i7 CPU950@3.7 GHz

with 32 GB of RAM and an NVIDIA GeForce GTX 1070 GPU

with 8 GB of graphical memory (GeForce GTX 1070, accessed

on January 25, 2022). MATLAB 2020b (MATLAB R2020b,

accessed on January 25, 2022) was used for the architectural

development, training, and testing of the networks.
4.2 Training proposed networks

Both networks, EFS-Net and MFAS-Net, were trained on

DeepFish and SUIM datasets separately. The training images
TABLE 1 Continued

Name of layer Size No. of filters Output features (width × height × number of channels) Parameters

BN 2-T – – 128

Tra-Conv 3 + ReLU 3-T 3 × 3 × 32 32 400 × 400 × 32 18464

BN 3-T – – 64

Conv 11 + ReLU 11 3 × 3 × 32 32 27680

BN 11 – – 64

Conv 12 + ReLU 12 3 × 3 × 2 2 400 × 400 × 2 578

BN 12 – – 4

Total number of required trainable parameters 3,575,046
f

FIGURE 5

DeepFish (FishSeg) sample images with corresponding ground truth images. (The white pixels in the ground truth images belong to fish).
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from both datasets were resized to 400 × 400 for time-efficient

training. The image resizing used nearest-neighbor

interpolation. The data splits of both datasets were defined

by the dataset providers. Proposed methods are evaluated with

the same data splits used by the previous research (Laradji

et al., 2021) for a fair comparison. Overfitting was avoided

using early stopping and data augmentation. The Adam

optimizer was used because of its fast convergence and data

handling capabilities (Kingma and Ba, 2014). The training loss

and accuracy plots of MFAS-Net are presented in Figure 7,

which shows high training accuracy with progressively

decreasing loss.

Underwater imaging has numerous challenging aspects,

such as visual limitations, logistic hurdles, and equipment
Frontiers in Marine Science 09
costs; thus, only limited underwater data is available for

experimentation. In addition, the annotation of images

requires special resources. Augmentation, which transforms

data through numerous operations, is widely used to overcome

data limitations. To do so, we used different arithmetic and

geometric operations including image flipping, translation,

cropping, and random rotation for data augmentation. These

geometric and arithmetic operations help in producing a wide

variety of training images and contribute to effective learning

of the network. MATLAB (MATLAB R2020b, accessed on

January 25, 2022) functions and commands are used for the

above-mentioned image operations. In addition, dice loss (Ld)

(Drozdzal et al., 2018) was used in our experiments. Ld is

among the top loss functions used in segmentation tasks to
FIGURE 7

Training accuracy and loss plot.
FIGURE 6

SUIM sample images with corresponding ground truth images. (The white pixels in the ground truth images belong to fish).
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guide the network for an effective learning throughout the

training process. Ld is widely used in segmentation tasks

because it covers the class imbalance problems, improves the

segmentation performance, and minimizes the metric during

network backpropagat ion (Drozdza l e t a l . , 2018) .

Mathematically, Ld is expressed as:

Ld = −
2  oifi     ki   +   1

oifi + oiki   +   1
, (3)

where the ground truth label is represented by ki; ki∈{0,1},
whereas, fi refers to the network’s final output and fi∈{0,1} . In
equation (3), constant value in the denominator is included for

smoothing (Drozdzal et al., 2018).
4.3 Testing of proposed networks

Both proposed models were tested on two publicly

available datasets, DeepFish and SUIM. For evaluation, the

trained networks were applied to the testing images. The

networks generate a binary prediction mask that was

compared with the ground truth image for final results. In

both datasets, the ground truth images have binary pixel

values. As shown in Figures 5 and 6, desired region (fish) is

annotated in white (pixel value = 255), whereas non-fish (the

background) is represented in black (pixel value = 0).

Moreover, the network generates a binary prediction mask

for pixel-wise comparison with the ground truth image. Mean

intersection-over-union (mIoU) (Zhang et al., 2022) was used

to evaluate the proposed methods. mIoU is widely used and

accepted for the evaluation of segmentation tasks. The

mathematical expression for mIoU is as follows

mIoU =
tp

tp + fp + fn
, (4)

True positive (tp ) pixels are those pixels that are correctly

predicted as the desired class by the proposed network. The

pixels that, according to ground truth, belong to the desired class

but the proposed network incorrectly predicts as being of an

undesired class, are categorized as false negative (fn) . If,

according to the ground truth image, those pixels belonging to

an undesired class but marked as being of the desired class are

categorized as false positive (fp) .
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4.4 Comparison of results between EFS-
net and MFAS-net for fish segmentation
on the DeepFish dataset
(ablation studies)

EFS-Net and MFAS-Net were both evaluated on the

DeepFish dataset for fish segmentation. The DeepFish dataset

contains several challenging cases, such as small-sized,

indiscernible, and multiple adjacent fish. Nonetheless, the

proposed architectures exhibited promising performance.

Table 2 presents numerical results that confirm the superior

performance of MFAS-Net compared to EFS-Net. The IFRT-

Block and multi-level feature accumulation enabled MFAS-Net’s

better segmentation performance.

The comparative qualitative segmentation results obtained

by EFS-Net and MFAS-Net are shown in Figure 8 (rows 1-4) and

show promising segmentation performance by both proposed

architectures even in the challenging cases of segmenting small-

sized and indiscernible fish. In addition, the visual results

confirm the effectiveness of MFAS-Net compared with EFS-

Net. MFAS-Net exhibits better performance because of the

initial feature refinement and feature accumulation schemes.

Segmented fish is detected based on different labels using the

further processing of component labeling. In Figure 8 (row 5),

the example of segmentation-based fish detection and counting

result is shown. Despite the challenging case of small and unclear

fish, MFAS-Net detects all the fish, and provides the accurate

information of fish position and counting. On the other hand,

EFS-Net could not detect small fish because of its blurred

structure, and presented an inaccurate information of fish

counting. Figure 9 shows that the poor visual segmentation

results obtained by EFS-Net and MFAS-Net can be attributed to

barely discernible fish having little contrast against the

background. Nevertheless, compared to EFS-Net, MFAS-Net

still exhibits a better segmentation performance.
4.5 Comparison of the segmentation
results with state-of-the-art methods
on the DeepFish dataset

To confirm the effectiveness of the proposed methods, the

segmentation performances of both methods were compared

with state-of-the-art methods. The state-of-the-art methods

were fine-tuned with the two experimental datasets which
TABLE 2 Comparison between EFS-Net and MFAS-Net’s numerical results on the DeepFish dataset.

Methods Background IoU Foreground IoU mIoU

EFS-Net (Proposed base) 98.94 82.77 90.85

MFAS-Net (Proposed final) 99.15 84.86 92.005
frontie
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were also used for the fine-tuning of our method for the fair

comparisons. The comparative numerical results presented in

Table 3 reveal that EFS-Net achieved a competitive performance,

whereas MFAS-Net outperformed the state-of-the-art methods.

These results were obtained without any pre-processing or

applying biases during training. The results obtained by

MFAS-Net validate the effectiveness of MFAS-Net architecture.
4.6 Comparison of results between EFS-
net and MFAS-net for fish segmentation
on SUIM dataset (ablation studies)

Both proposed networks were further tested on the SUIM

dataset to validate the proposed methods’ robustness for these

tasks. The SUIM dataset is considerably different from the
Frontiers in Marine Science 11
DeepFish dataset. Compared with the DeepFish dataset, fish in

SUIM dataset differ in types, sizes, illumination effects, and

backgrounds. However, both networks in general, and MFAS-

Net in particular, achieve superior segmentation results.

Comparative numerical results using EFS-Net and MFAS-Net

presented in Table 4 further confirm better performance by

MFAS-Net over EFS-Net. The better performance by MFAS-Net

can be attributed to the accumulation of low-level initial features

with the deep layers feature that help to improve underwater

segmentation performance. In Figure 10 (rows 1-4),

good segmentation visual results are presented to compare the

segmentation performance of MFAS-Net with EFS-Net on the

SUIM dataset. The visual results confirm that MFAS-Net

produces better segmentation results than EFS-Net. In an

underwater environment, segmentation is challenging because

of the visual implications, fish sizes, background effects, and
A B DC

FIGURE 8

Good qualitative results by EFS-Net and MFAS-Net on the DeepFish dataset. Rows 1-4: Segmentation results; (A) original test image, (B) ground
truth image, (C) segmented images achieved by applying EFS-Net, and (D) segmented images achieved by MFAS-Net (the fp and tp pixels are
referred by green and blue colors, respectively. Pixel representation for fn is done with red color). Row 5: segmentation-based fish detection
and counting.
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indistinct object boundaries. However, MFAS-Net delivers a

good segmentation performance using its effective architecture.

Component labeling is applied to detect the fish in segmented

images. The sample result for segmentation-based fish detection

with the count is shown in Figure 10 (row 5). MFAS-Net

accurately detects the challenging small-sized fish, and

presents the correct information of fish counting. However,

EFS-Net fails to detect the smaller fish positioned at the lower-

left side of the image, and presents the false information of fish

counting, consequently. Figure 11 exhibits poor segmentation
Frontiers in Marine Science 12
caused by indistinct outlines. Nonetheless, MFAS-Net still

delivers better performance than EFS-Net.
4.7 Comparison of segmentation results
with state-of-the-art methods on SUIM
dataset

In Table 5, the proposed methods’ numerical results on the

SUIM dataset are compared with those of the state-of-the-art
A B DC

FIGURE 9

Poor segmentation sample qualitative results by EFS-Net and MFAS-Net on the DeepFish dataset (A) original test image, (B) ground truth image,
(C) segmented images achieved by applying EFS-Net, and (D) segmented images achieved by MFAS-Net (the fp and tp pixels are referred by
green and blue colors, respectively. Pixel representation for fn is done with red color).
TABLE 3 Comparative results by the proposed methods with state-of-the-art methods on the DeepFish dataset. (Results are reported in
percentages).

Methods Background IoU Foreground IoU mIoU

SUIM-Net (Islam et al., 2020) 99.03 78.40 88.71

SegNet (Badrinarayanan et al., 2017) 98.89 68.94 83.91

DeepLab‐v3 (Chen et al., 2017) 99.11 71.35 85.23

PSPNet (Zhao et al., 2017) 99.15 72.61 85.88

FCN (Long et al., 2015) 99.21 66.30 82.75

CCNet (Huang et al., 2019) 99.12 78.36 88.74

DANet (Fu et al., 2019) 99.02 78.87 88.95

GANet (Zhang et al., 2019) 99.16 79.34 89.25

DRANet (Fu et al., 2021) 99.33 79.42 89.37

SPNet (Hou et al., 2020) 99.21 80.64 89.92

SANet (Zhang and Yang, 2021) 99.27 80.71 89.99

HANet (Choi et al., 2020) 99.25 81.37 90.31

DGCNet (Zhang et al., 2020) 99.21 81.42 90.32

GFFNet (Li et al., 2020) 99.20 81.49 90.35

DPANet (Zhang et al., 2022) 99.31 82.86 91.08

A-LCFCN+PM (Laradji et al., 2021) 99.3 73.0 86.2

EFS-Net (Proposed base) 98.94 82.77 90.85

MFAS-Net (Proposed final) 99.15 84.86 92.005
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methods. The state-of-the-art methods were fine-tuned with the

two experimental datasets which were also used for the fine-

tuning of our method for the fair comparisons. The results reveal

that both the proposed methods performed better than the other

methods. In particular, MFAS-Net achieved the highest mIoU

score owing to its effective architecture. Additionally, these results

were achieved without pre-processing or excessive computational
Frontiers in Marine Science 13
overheads while requiring only a small number of trainable

parameters (details are given in subsection 5.1)
5 Discussion

In an underwater environment, effectively segmenting

objects is challenging because the image quality is degraded.

Most of the underwater images contain obscure objects with

indistinct boundaries. This is exacerbated with fish because they

are usually moving and sometimes the contrast with the

background is too low to distinguish them. In addition,

the marine environment has several other animals and objects

in the background, which can mislead the neural network. Thus,

achieving good segmentation performance in such challenging
TABLE 4 Comparison of EFS-Net and MFAS-Net’s numerical results
on the SUIM dataset.

Methods mIoU

EFS-Net (Proposed base) 75.56

MFAS-Net (Proposed final) 76.42
(Results are reported in percentages).
A B DC

FIGURE 10

Good qualitative results by EFS-Net and MFAS-Net on the SUIM dataset. Rows 1-4: Segmentation results; (A) original test image, (B) ground
truth image, (C) segmented images achieved by applying EFS-Net, and (D) segmented images achieved by MFAS-Net (the fp and tp pixels are
referred by green and blue colors, respectively. Pixel representation for fn is done with red color). Row 5: segmentation-based fish detection
and counting.
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conditions is difficult. Despite these factors, the proposed

networks demonstrated highly accurate segmentation

However, as shown in the visual results, occasionally EFS-Net

could not detect small-sized fish in murky conditions. Similarly,

EFS-Net showed relatively a low performance in the case of fish

with indistinct outlines. This is possibly because of the task

difficulty, such as unclear objects and indistinct object outlines.

Nevertheless, MFAS-Net overcomes these challenges by refining

and transferring potential low-level information and finally

accumulating the features at different levels of the network.

Proposed method can provide the pixel-wise segmentation

result, and after the further processing of component labeling,

the results of fish detection and counting can also be achieved.

However, proposed method has the limitations for detection

with the cases of overlapped fish in ‘crowded’ scenarios.

Our method focuses on the pixel-wise segmentation of fish

in an underwater environment. Many latest researches have

worked with the pixel-wise segmentation of fish because it can

provide the detailed morphological measurements such as fish

size and shape. In previous research (Laradji et al., 2021), the size

and shape of fish are accounted as the main measure for fish
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habitat monitoring because this information can be used to

assess the fish growth and can also be considered as the reference

for feeding. Semantic segmentation offers pixel-wise prediction,

therefore it can provide accurate information about the size,

area, and shape of fish. However, this information cannot be

accurately obtained by detection-based method because it can

provide only the roughly detected box area including the object

or instance. United nation (UN) Food and Agriculture findings

state that 33% of important marine fish stocks are overfished,

worldwide (FAO, 2018). Moreover, 11% of total fish are

discarded because of undersized catching (Pe´rez Roda et al.,

2019). Fish size assessment through segmentation can also help

in avoiding the catching of undersized fish (Laradji et al., 2021).

Similarly, another study (Zhang et al., 2022) reports that

automatic measurement of fish data using semantic

segmentation can be very helpful for the sustainable

development of marine fisheries. Dataset provider of DeepFish

(Saleh et al., 2020) refers that the segmentation labels are helpful

to analyze the fish habitat by estimating the fish size and shape.

In short, the segmentation of fish has a significant impact on

the morphological assessment of fish, and it can be very useful

for fish monitoring and the sustainable development of fisheries.

Due to these reasons, many state-of-the-art methods have

researched about the pixel-wise semantic segmentation of fish

as shown in Tables 3 and 5.

5.1 Comparison of computational
efficiency

Computational requirements of the networks are equally

important in a framework. Numerous deep learning-based

architectures are capable of achieving a competitive result, but

they require a large number of trainable parameters that render

the framework computationally inefficient. The architecture

proposed in this study exhibits outstanding results without
TABLE 5 Comparison between EFS-Net and MFAS-Net’s numerical
results on the SUIM dataset.

Methods mIoU

SegNet (Badrinarayanan et al., 2017) 69.23

DeepLab‐v3 (Chen et al., 2017) 62.72

LCFCN (Laradji et al., 2018) 59.8

PL-FCN (Bearman et al., 2016) 68.3

A-LCFCN+PM (Laradji et al., 2021) 74.9

EFS-Net (Proposed base) 75.56

MFAS-Net (Proposed final) 76.42
(Results are reported in percentages).
A B DC

FIGURE 11

Poor segmentation visual results by EFS-Net and MFAS-Net on the SUIM dataset (A) original test image, (B) ground truth image, (C) segmented
images achieved by applying EFS-Net, and (D) segmented images achieved by MFAS-Net (the fp and tp pixels are referred by green and blue
colors, respectively. Pixel representation for fn is done with red color).
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compromising computational efficiency. Proposed networks are

designed in such a way that it provides a high segmentation

performance requiring a small number of trainable parameters

for their complete training. In a CNN, Max-Depth is the most

computationally expensive part of the network because of the

maximum number of channels operating in it. As shown in

Figure 3, MFAS-Net uses less number of convolutional layers

(only 2) in Max-Depth to reduce the parameters requirement. In

addition, as presented in Table 1, MFAS-Net also uses a

maximum number of 256 channels to contain the parameters.

In Table 6, the required trainable parameters are compared,

which, with its low computational overhead, confirm the

superior performance of MFAS-Net. Requiring only 3.57

million (M) parameters for complete training, MFAS-Net is

the lowest compared with the other methods. Modern research

trends encourage robust models that can achieve higher

accuracies with lower computational overheads. However,

models have different architectural designs, performance

limitations, and computational requirements. Proposed

methods achieve superior performance without compromising

computational efficiency because of their customized efficient

network designs.
5.2 Analysis with class activation maps

In supervised learning, CNNs generally learn from training

data and evaluation is performed on the unseen testing set. In
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CNNs, learning is a black box; however, this progressive learning

can be visually interpreted using heat activation maps (Selvaraju

et al., 2017). During learning, the main features considered by

the CNN can be analyzed using activation maps. Figure 12

shows heat activation maps extracted from different stages of the

architecture. This visual interpretation confirms that MFAS-Net

progressively learns from fish images. Additionally, it confirms

that MFAS-Net primarily considers the features of the desired

class (fish) without biases.
6 Conclusion

Fish are vital to the maintenance of sustainable marine

environments. Therefore, fish monitoring and assessment are

essential for managing resources in the marine ecosystem.

Conventionally, the manual methods employed for fish

observation and assessment are time-consuming, labor-

intensive, and error-prone. To meet this need, two novel

architectures were developed for high-performance fish

segmentation. In an underwater environment, achieving high

segmentation accuracy is challenging because of the visual

limitations underwater. However, both proposed methods

exhibited promising results with superior computational

efficiency. EFS-Net is a shallow architecture with a series of

convolution layers at the early stage of the network for optimal

low-level feature extraction. MFAS-Net is the final network and

refines valuable initial features and transfers them to the deep

stage of the network for feature accumulation. As shown in the

ablation study, feature refinement and accumulation enable

MFAS-Net to perform better segmentation even for the

challenging barely discernible small-sized fish with indistinct

outlines. Furthermore, multi-level feature accumulation

improves the overall learning of the network and produces

enhanced segmentation performance. Both proposed networks,

EFS-Net and MFAS-Net, were evaluated on two publicly

available databases. The proposed methods outperformed

state-of-the-art methods with a small number of required

trainable parameters (3.57 million). The fish detection and
A B D E FC

FIGURE 12

Visual depiction of progressive learning by MFAS-Net using activation maps taken from different stages of the architecture. (A) original image.
(B) Ground truth image. Heat activation maps are obtained from the (C) ReLU 2, (D) ReLU 6-SP, (E) ReLU 8, and (F) ReLU 12 layers of the MFAS-
Net, as given in Table 1.
TABLE 6 Comparison between other methods and MFAS-Net’s
trainable parameters requirement.

Methods The number of parameters

FCN8 CNN (Long et al., 2015) 69.74 M

PSPNet MobileNet (Zhao et al., 2017) 63.96 M

DeepLab‐v3 (Chen et al., 2017) 41.25 M

SegNet (Badrinarayanan et al., 2017) 29.4 M

SUIM-Net (Islam et al., 2020) 3.86 M

MFAS-Net (Proposed final) 3.57 M
M, Million.
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counting based on segmentation and further processing of

component labeling cannot adequately work when there are

overlapped instances. This is a limit of the proposed method, i.e.,

it is not able to detect instances in ‘crowded’ scenarios. In future

work, we would research the method to detect instances in

‘crowded’ scenarios. In addition, we would optimize the

networks further, and perform the instance segmentation for

fish detection.
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