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Editorial on the Research Topic

Ecophysiology and biogeochemistry of marine plants in
the anthropocene
Climate change in the Anthropocene detrimentally effects the livelihood of marine plants

and their coastal habitats (Halpern et al., 2008; Waycott et al., 2009; Larkum et al., 2018a;

Larkum et al., 2018b), due to increased frequency and severity of extreme environmental events

such as: ocean deoxygenation, heatwaves, heavy rain and storm events (Easterling et al., 2000).

Hypoxic conditions in the water column, e.g., induced by eutrophication or the shoaling of

deoxygenated water (Diaz and Rosenberg, 2008), markedly affect the oxygen availability and

internal aeration of marine plants (Colmer, 2003; Greve et al., 2003; Brodersen et al., 2017a),

which increases their susceptibility to intrusion of reduced toxic compounds (e.g., hydrogen

sulphide) from the sediment (Pedersen et al., 2004; Borum et al., 2005; Holmer and Hasler-

Sheetal, 2014; Brodersen et al., 2015a). Coastal eutrophication-driven blooms of epiphytes on

seagrass and other marine plant leaves (Borum, 1985) can shade the leaves for light and limit

essential gas and nutrient exchange with the water column (Brodersen et al., 2015b; Brodersen

et al., 2020; Noisette et al., 2020). Elevated temperature can weaken the blue carbon sink

capacity of vegetated coastal ecosystems (Trevathan-Tackett et al., 2020) and can lead to

oxygen deficiency in plants living close to their thermal stress threshold (Raun & Borum, 2013;

Pedersen et al., 2016). Increased temperature can also lead to decreased seagrass productivity

and biomass (George et al., 2018) and elevatedmicrobial activity in the sediment increasing the

sulphide pressure on the plants (Blaabjerg et al., 1998; Lamers et al., 2013) and elevated

emissions of methane from seagrass sediments (George et al., 2020), further weakening their

climate mitigation capacities. Finally, drops in salinity and high ammonium availability can

interact synergistically in a negative impact on marine plant fitness (Villazán et al., 2015; Sola

et al., 2020).
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In light of the above-mentioned threats, future climate conditions

will arguably have major impacts on the function and fitness of

vegetated coastal ecosystems worldwide and thus on their ecological

roles. Gaining a better understanding of the environmental regulation

of marine plants and their ecophysiology is thus important for the

planning of climate adaptation strategies and development of

innovative and sustainable protection strategies for marine plants to

better protect and secure vital ecosystem services and functions of

vegetated coastal ecosystems in the Anthropocene. The present

Research Topic is a compilation of 14 articles that aim to advance

our understanding of how changing environmental conditions in the

Anthropocene affects the ecophysiology and biogeochemistry of

marine plants. The Research Topic is divided into 3 subtopics: (i)

articles that discuss effects on the phyllosphere and rhizosphere

conditions, (ii) articles that focus on impacts of ocean warming on

marine plants and ecosystems, and (iii) articles that studied effects on

seagrass metabolism and biogeochemical cycling.

Anthropogenic and climate change-related effects on seagrass

phyllosphere and rhizosphere dynamics are discussed in the

articles by Brodersen and Kühl, Koop-Jakobsen et al., Martin

et al., Scholz et al., and Zhang et al. (subtopic 1). Brodersen and

Kühl review how epiphytes affect the seagrass phyllosphere. They

describe how the phyllosphere micro-habitat is affected by

eutrophication-induced epiphytic biofilm communities and

changing environmental conditions. Epiphytes impede leaf

photosynthesis in light, owing to shading and a combination of

induced hyperoxia and reduced CO2 availability due to

phyllosphere basification and epiphytic carbon fixation. Also,

absorbed light energy in the epiphyte cover can lead to leaf

surface warming, potentially aggravating negative effects of

climate change. In darkness, anoxia within the epiphytic biofilm

can result in toxic nitric oxide production via denitrification. Such

phyllosphere stress conditions at night-time may be exacerbated

by global warming. Koop-Jakobsen et al. employed planar O2

optodes to describe rhizosphere oxygenation of high- and low-

marsh ecotypes of Elymus athericus, a fast-spreading marsh plant.

Results revealed oxygen release along the roots and oxic root

zones in both marsh ecotypes in light and dark conditions.

However, no differences were found in the belowground tissue

oxygenation capacity between ecotypes, making E. athericus a

highly competitive marsh plant in areas affected by fast sea-level

rise. Martin et al. used 16S rRNA gene sequencing combined with

analysis of seagrass nutrient (e.g., isotopic signatures of C and N)

and heavy metal concentrations in tissue to investigate potential

links between environmental metal and nutrient pollution to the

microbial community associated with seagrass (Halophila ovalis)

roots collected in an anthropogenically influenced estuary. Results

indicate that changes in the composition of the seagrass root

microbial community can potentially be used as a bioindicator for

environmental conditions, such as pollution and contamination.

Scholz et al. review experimental approaches to investigate

the seagrass rhizosphere. They describe and discuss

microenvironmental analysis techniques such as microsensors,
Frontiers in Marine Science 02
optical sensors (e.g., planar optodes and sensor nanoparticles),

and gel sampling methods (e.g., DETs and DGTs). Furthermore,

they identify knowledge gaps and potential methodological

advances in seagrass research. Studies of geochemical gradients

in the seagrass rhizosphere are important as the plant-driven

chemical gradients, protect the plants against reduced, anoxic

sediment conditions (Brodersen et al., 2018) and can enable

nutrient uptake (Brodersen et al., 2017b)while changes in the

natural chemical gradients can cause plant stress and die-off

(Borum et al., 2005; Brodersen et al., 2015a). Zhang et al.

investigated the impact of epiphytic biofilms on the chemical

microenvironment of the seagrass (Z. marina L.) leaf surface, as

measured with microsensors. They demonstrated that the

phyllosphere chemistry was mainly affected in the light by the

metabolic activity of epiphytes leading to high O2 concentrations

and pH in the seagrass leaf microenvironment, which reduced the

CO2 availability for the seagrass leaf. The study thus advances our

understanding of the effects of eutrophication-induced epiphytes

on seagrass performance and the leaf surface microenvironment.

Impacts of increasing temperature on seagrass performance,

health and abundance are described in articles by Graham et al.,

Hansen et al., Jueterbock et al., Plaisted et al., and Yucharoen et al.

(subtopic 2). Graham et al. addressed the effects of seagrass wasting

disease infection on eelgrass (Z. marina L.) growth and sugar

production in a natural meadow in relation to ocean warming

under climate change. Seagrass wasting disease impaired eelgrass

growth and accumulation of belowground rhizome sugar,

suggesting a disease-induced reduction of below-ground carbon

accumulation. This study highlights the need to consider pathogen

infection effects co-occurring with warmer conditions. Hansen et al.

used gas exchange measurements to determine effects of global

warming on the photosynthesis, respiration and diel O2 budget of

eelgrass (Z. marina L.) leaves with and without epiphytes. Leaves

with epiphytes were more affected by elevated seawater

temperatures than bare seagrass leaves, as indicated by a lower

light use efficiency, higher light requirements and a more negative

diel O2 balance at high seawater temperatures. Epiphytic growth on

seagrass leaves can thus aggravate other detrimental effects of

climate change on seagrass performance.

Jueterbock et al. utilised a combination of Pulse Amplitude

Modulated (PAM) fluorometry and RNA-sequencing to describe

the photosynthetic characteristics of eelgrass (Z. marina L.) under

strong annual fluctuations in day length to investigate adaptations

to polar light conditions and the possibility of poleward range

expansion into the Arctic region in response to global warming.

Results suggested that Norwegian eelgrass populations are able to

repress respiration and up-regulate genes related to carbon fixation

and chlorophyll synthesis, to tolerate winter dim light conditions via

metabolic dormancy. Plaisted et al. utilised long-term monitoring

data to investigate regional changes in the presence and abundance

of eelgrass (Z. marina L.) in relation to local sea surface

temperatures. They demonstrated that the summer water

temperature of the previous year is an important predictor of
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eelgrass presence in the region (Northeastern USA), where above

average summer temperatures are associated with an increased

probability of eelgrass absence, and below average summer

temperatures are linked with the highest probability of eelgrass

presence in the following year. The study thus delivers new insights

on climate change related impacts on seagrass abundance.

Yucharoen et al. utilised PAM fluorometry to assess the

thermotolerance of tropical shallow-water corals, seagrasses and

macroalgae. The study compared the physiological responses to

elevated temperature and interspecific sensitivity of species from the

different organism groups and furthermore examined the utility of

an integrated biomarker response (IBR) approach to evaluate and

integrate the candidate responses. Results showed that the IBR

index provides a useful tool for assessing the vulnerability of marine

organisms to ocean warming and demonstrated that species and

organism groups differ in their sensitivity to elevated temperatures.

This study underscore that extreme heating events and global

warming can have consequences for ecosystem structure and

functions in future oceans.

The metabolism of seagrass and their contribution to

biogeochemical processes and element cycling in the

Anthropocene is described in articles by Apostolaki et al., Asplund

et al., Léger-Daigle et al., andOlive et al. (subtopic 3). Apostolaki et al.

investigated the potential of dead seagrass Posidonia oceanicamattes

to act as biogeochemical sinks and archives in coastal areas of the

Mediterranean. Results indicate that dead P. oceanica mattes are

sinks for carbon and contaminants and thus contain signals of past

environmental change and contamination. The study thus adds

important new knowledge of paleoecology to blue carbon research of

seagrass sediments. Asplund et al. utilized benthic chambers to

determine methane (CH4) emissions from Nordic seagrasses (Z.

marina L.) during summer. The authors provide new fundamental

insights on the effects of temperature, salinity and soil carbon on net

methane emissions from seagrass sediments. Results showed

relatively weak methane emissions from Nordic Z. marina

meadows, where the net methane release was positively affected by

the sedimentary carbon content. Thus, the emission of methane

from seagrass meadows might increase with elevated temperatures

and eutrophication driven increases in sedimentation. Léger-Daigle

et al. used PAM fluorometry, pigment content and metabolic

measurements to assess photoacclimation and light thresholds of

cold temperate seagrasses (Z. marina L.). The study provides novel

insights into the photoacclimation response of eelgrass to a wide

range of light conditions via photosynthetic and physiological

changes. The authors show that eelgrass is capable of

photosynthetic adjustments at irradiances below the threshold

between limiting and saturating irradiances, as well as, sustained

maximal photosynthesis rates from saturating light down to a

photon irradiance of 74 µmol photons m-2 s-1. These results

highlight the capacity of eelgrass to acclimate to decreasing light

conditions in coastal environments, often considered one of the

main limiting factors for eelgrass growth and persistence. Finally,
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Olive et al. assessed the metabolism and nutrient cycling

contribution of tropical seagrass (Syringodium isoetifolium) in the

sediment and benthic community of a tropical reef lagoon. They

show that the S. isoetifoliummeadow was net autotrophic across the

lagoon and reduced the heterotrophy of the whole benthic

community. However, there was a large variability in the

metabolic balance of the benthic components among sites, mainly

related to the environmental variability found in the lagoon. This

study highlights the need to investigate how community functioning

can vary according to environmental variability driven by human

activities in changing oceans.

In summary, the articles in this Research Topic elucidate the

diverse range of potential negative effects of human activity and

climate change related impacts on marine plants in the

Anthropocene. Such effects include epiphyte-induced extremes in

the seagrass leaf surface microenvironment, as well as ocean

warming-induced reduction in seagrass abundance and potential

positive correlation with increased seagrass wasting disease, which

may reduce belowground carbon accumulation in infected

meadows. However, the contributions to this research topic also

provide insights into other important aspects such as seagrass

paleoecology, factors affecting the microbial community of the

rhizosphere, methane emissions, and photoacclimatory responses.
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