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Improving multi-decadal
coastal shoreline change
predictions by including model
parameter non-stationarity

Raimundo Ibaceta*, Kristen D. Splinter, Mitchell D. Harley
and Ian L. Turner

Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, Sydney,
NSW, Australia
Our ability to predict sandy shoreline evolution resulting from future changes in

regional wave climates is critical for the sustainable management of coastlines

worldwide. To this end, the present generation of simple and efficient semi-

empirical shoreline change models have shown good skill at predicting

shoreline changes from seasons up to several years at a number of diverse

sites around the world. However, a key limitation of these existing approaches

is that they rely on time-invariant model parameters, and assume that beaches

will evolve within constrained envelopes of variability based on past

observations. This raises an interesting challenge because the expected

future variability in key meteocean and hydrodynamic drivers of shoreline

change are likely to violate this ‘stationary’ approach to longer-term

shoreline change prediction. Using a newly available, multi-decadal (28-year)

dataset of satellite-derived shorelines at the Gold Coast, Australia, this

contribution presents the first attempt to improve multi-decadal shoreline

change predictions by allowing the magnitude of the shoreline model

parameters to vary in time. A data assimilation technique (Ensemble Kalman

Filter, EnKF) embedded within the well-established ShoreFor shoreline change

model is first applied to a 14-year training period of approximately fortnightly

shoreline observations, to explore temporal variability in model parameters.

Then, the magnitudes of these observed non-stationary parameters are

modelled as a function of selected wave climate covariates, representing the

underlying seasonal to interannual variability in wave forcing. These modelled

time-varying parameters are then incorporated into the shoreline change

model and tested over the complete 28-year dataset. This new inclusion of

non-stationary model parameters that are directly modelled as a function of

the underlying wave forcing and corresponding time scales of beach response,

is shown to outperform the multi-decadal predictions obtained by applying the

conventional stationary approach (RMSEnon-stationary = 11.1 m; RMSEstationary =
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254.3 m). Based on these results, it is proposed that a non-stationary approach

to shoreline change modelling can reduce the uncertainty associated with the

misspecification of physical processes driving shoreline change and should be

considered for future shoreline change predictions.
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1 Introduction

Sandy coastlines vary at time scales of individual storms to

longer-term variability due to changes in waves, water levels, and

sediment supply (Vitousek et al., 2017a; Jackson and Short, 2020).

Reliable predictions of shoreline evolution that span this range of

time scales, both now and by the end of the century, are required

for assessing coastal vulnerability in a changing climate

(Ranasinghe, 2020; Toimil et al., 2020). This is particularly

important given the uncertainty and possible changes in

regional wave climates and/or ocean water levels due to climate

variability that have the potential to influence the coast (Wong

et al., 2014; Ranasinghe, 2016; Vousdoukas et al., 2020; Odériz

et al., 2022). As such, significant research effort has been directed

towards the development of relatively simple and efficient semi-

empirical shoreline change models to predict shoreline evolution

over time scales ranging from seasons to decades (e.g., Miller and

Dean, 2004; Castelle et al., 2014; Jaramillo et al., 2020; Roelvink

et al., 2020; Yates et al., 2009; Splinter et al., 2014; Vitousek et al.,

2017b). These models are now being used to explore shoreline

changes that may occur during the 21st century (e.g., Toimil et al.,

2017; Vitousek et al., 2017b; D’Anna et al., 2021; D’Anna et al.,

2022) assuming that beaches will evolve within constrained

envelopes of variability based on past measurements (Luijendijk

et al., 2018; Vousdoukas et al., 2020). However, the expected

future changes in key meteocean and hydrodynamic drivers of

shoreline evolution (e.g., Wong et al., 2014; Morim et al., 2019)

suggest that predictive models of longer-term shoreline changes

should also include the capability to adapt to changing wave

forcing, as well as corresponding time scales of shoreline response

(Montaño et al., 2021; Schepper et al., 2021; Splinter and

Coco, 2021).

Semi-empirical shoreline change models are simplified

representations of the complex sediment transport processes

occurring between the shoreface and beach face, and therefore

inherit uncertainties from the imprecise representation of physical

processes in the model structure and from the forcing inputs (Le

Cozannet et al., 2019; Le Cozannet et al., 2016; Kroon et al., 2020;

Montaño et al., 2020; D’Anna et al., 2021; Toimil et al., 2021;

Vitousek et al., 2021). This misspecification of physical processes
02
is typically addressed via site-specific model calibration, whereby a

set of stationary (or time-invariant) model parameters are

optimized for a specific time period using observed forcing and

co-located shoreline data (Long and Plant, 2012; Splinter et al.,

2013). For example, Yates et al. (2011, 2009) applied a semi-

empirical cross-shore shorelinemodel to five beaches in California

(USA) spanning up to 5 years of data and found inter-site

variability in the magnitude of their four model parameters.

Splinter et al. (2014) applied a different cross-shore shoreline

change model to datasets obtained from seven diverse beaches

across the USA, Europe and Australia, each spanning more than 5

years. These authors similarly found large inter-site variability

between the magnitude of model parameters.

In addition to site-specific dependencies on model

parameter calibration, recent research suggests that the

calibration period and associated characteristics of the wave

climate may also introduce parameter biases (D’Anna et al.,

2022, D’Anna et al., 2020; Ibaceta et al., 2020; Montaño et al.,

2020). For instance, Splinter et al. (2017) analysed 8 years of

wave and shoreline observations at the Gold Coast, Australia,

finding a substantial difference in optimized model parameters

between two independently calibrated 4-year time periods. This

was shown to be consistent with a relatively subtle difference in

the annual distribution of storm wave events during each of the

two consecutive 4-year observation periods. More recently,

D’Anna et al. (2022) used a climate-based wave emulator to

produce ensemble-based past and future projections of shoreline

evolution spanning the 21st century at Truc Vert, France. Using

two different semi-empirical shoreline change models, it was

shown that different wave chronologies produced by the

emulator can significantly alter the modelled shoreline

response. Based on these findings, the authors advocated for

more research into the underlying link(s) between model

parameters and wave climate variability.

To achieve this objective, data assimilation techniques offer

the possibility to estimate non-stationary (i.e., time-varying)

parameters and explore their links to changes in natural

forcing (Pathiraja et al., 2018; Deng et al., 2019, Pathiraja

et al., 2016a; Xiong et al., 2019; Zeng et al., 2019). More

specifically, Kalman filter variants (Kalman, 1960) are data
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assimilation techniques that are already employed in semi-

empirical shoreline change modelling to assist with model

calibration (e.g., Long and Plant, 2012; Vitousek et al., 2017b;

Muir et al., 2020; Alvarez-Cuesta et al., 2021a). By this approach

model parameters are continually adjusted as additional state

(i.e., shoreline) observations become available (Evensen, 2009).

Optimized shoreline predictions are achieved by efficiently

weighting and combining the spread of the shoreline

observations (represented by the shoreline measurement

accuracy) with the spread of the model simulations (referred

to as ‘parameter process-noise’). Most commonly, these existing

applications have used a Kalman filter to estimate the stationary

(i.e., time-invariant) magnitude of shoreline model parameters,

by assuming a very low level of parameter process-noise

(Vitousek et al., 2017b; Alvarez-Cuesta et al., 2021b; Vitousek

et al., 2021). However, Ibaceta et al. (2020) presented a dual

state-parameter Ensemble Kalman Filter (EnKF) variant

(Pathiraja et al., 2016a, Pathiraja et al., 2016b) and showed its

suitability to explore non-stationary, or time-varying parameters

within the context of the established cross-shore shoreline

change model, ShoreFor (Davidson et al., 2013; Splinter et al.,

2014). Specifically, it was found that using a sufficiently high

magnitude of parameter process-noise, the EnKF was able to

track non-stationary parameters as demonstrated by several

synthetic scenarios that were designed to emulate differing

modes of shoreline behaviour. The method was also applied to

an 8-year real-world shoreline dataset presented in Splinter et al.

(2017), that – as was previously noted above - exhibited a

distinct shift in shoreline behaviour. In this prior work the

EnKF technique successfully reproduced the observed shift in

shoreline behaviour and revealed that the resulting non-

stationary model parameters were related to changing

characteristics of the wave forcing. While this application was

limited to past periods where shoreline observations were

available for data assimilation, the next challenge is to

investigate strategies for extrapolating the detected time-

varying parameters out of the training period where the EnKF

is applied. To this end, the recent availability of longer and

publicly available satellite-derived shoreline datasets (Luijendijk

et al., 2018; Vos et al., 2019b; Almeida et al., 2021; Castelle et al.,

2021) offers for the first time the opportunity to significantly

expand the application of the EnKF methodology, with a

particular focus on future shoreline change predictions under

climate projections where multi-year variability in wave climate

forcing is expected (e.g., D’Anna et al., 2021).

In this work, the EnKF technique that was introduced in

Ibaceta et al. (2020) is now applied to an extended multi-decadal

dataset of satellite-derived shorelines at the Gold Coast,

Australia. As described in Section 2 (Methodology), the

technique is first used to estimate the magnitude of non-

stationary parameters when applied to the established cross-

shore shoreline change model, ShoreFor (Davidson et al., 2013;

Splinter et al., 2014). Importantly, the magnitude of these time-
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varying parameters is then physically related and numerically

parametrized as a function of the multi-year variability in wave

forcing. Using these new insights, Section 3 incorporates the

results of this EnKF time-varying model parameter estimation to

predict nearly three decades of observed shoreline changes at the

Gold Coast. A comparison of these newly obtained results to the

more common ‘stationary’ modeling approach is discussed in

Section 4, along with a discussion of the physical interpretation

of time-varying model parameters.
2 Methodology

2.1 Study site and data

The Gold Coast is located on the east coast of Australia

(Figure 1A). This region spans ~30 km of relatively straight,

open-coast sandy beaches characterized by energetic

intermediate beach states that typically exhibit double-barred

morphology (van Enckevort et al., 2004; Price and Ruessink,

2011). Beach sediments have a median grain size of 0.25 mm and

tides are microtidal with mean spring tidal range of 1.5 m

(Davidson and Turner, 2009; Splinter et al., 2017). The

predominant direction of wave incidence is from S to SE

directions, with mean offshore significant wave height (Hs)

and spectral peak wave periods (Tp) of 1.1 m and 9.4 s,

respectively (Davidson and Turner, 2009). The wave climate of

this region generally displays a seasonal nature with more

easterly (and smaller) waves in the summer and more

southerly (larger) waves in the winter (Zarifsanayei et al.,

2022). In general, this results in a seasonal response to

shoreline variability as well, with more accreted beaches in the

summer and more eroded beaches in the winter that are also

modulated at interannual time scales by changes in storminess

patterns (Splinter et al., 2017). At interannual time scales, the

wave climate is also modulated by the El Niño-Southern

Oscillation (Phinn and Hastings, 1995; Barnard et al., 2015).

Time series of three-hourly wave data (Hs and Tp) are

available from a waverider buoy located approximately 4 km

to the north and 2 km offshore of the study site in 17 m water

depth (Figure 1C). Gaps in the wave buoy time series were filled

using values from the closest grid point of the CAWCR

reanalysis dataset (Durrant et al., 2014, see Figure 1C). A

comprehensive assessment of this wave dataset quality for the

Australian region is presented in Hemer et al. (2017).

The portion of coastline examined in this work coincides

with the same stretch of coast that was previously analysed over

shorter time periods by Splinter et al. (2017) and Ibaceta et al.

(2020). Specifically, a 1 km stretch of sandy beach at Surfers

Paradise (Figure 1B) was selected. Previous investigations

showed that this stretch of coastline is outside the influence of

down-drift engineering interventions (Turner, 2006), including

the construction of an artificial reef and the placement of a sand
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nourishment (Boak et al., 2000; Black and Mead, 2001; Turner,

2006). And importantly, Splinter et al. (2011) also showed that

minimal gradients of alongshore sediment transport have been

observed at this location, necessary for the assumptions of the

cross-shore shoreline change model used here (Section 2.2).

The CoastSat toolbox (Vos et al., 2019b) was used to extract

satellite-derived shorelines at ten shore-normal transects spaced

every 100 m alongshore (Figure 1B, yellow lines). Briefly,

CoastSat retrieves time series of cross-shore shoreline position

(accuracy ~10-15 m) at any sandy beach from 30+ years of

publicly available satellite imagery (Landsat 5,7, 8 and Sentinel 2)

at a revisit period of ~2 weeks. At the Gold Coast, 28 years of

suitable satellite imagery is available spanning the period 1992-

2020. To remove high-frequency shoreline changes related to

tidal variations, the resulting time series at each transect were

tidally corrected to a fixed datum (MSL) using water levels from

a global tide model and an average beach slope (Vos et al., 2020).

An average beach slope was used in line with previous studies on

satellite-derived shorelines, where using a time-evolving beach

slope did not result in better shoreline mapping (Castelle et al.,

2021). The reader is referred to Vos et al. (2021) for further

details on this dataset.
Frontiers in Marine Science 04
As the final step in shoreline data pre-processing, the

resulting 28-year time series of tidally corrected shorelines

were alongshore-averaged over the 1 km long study site, to

remove the effect of smaller-scale shoreline features such as

beach cusps, commensurate to previous studies at this same site

(e.g., Splinter et al., 2017).

Figure 2 summarizes the complete 28-year wave and

shoreline Gold Coast dataset. In Figure 2A the wave data is

represented by the single parameter dimensionless fall velocity,

Ω =Hs,b/wTp, where w is the sediment fall velocity, which in turn

is a function of the site-specific median grain size (i.e., d50 =

0.25 mm). Tp is the 3-hourly peak wave period measured at the

wave buoy, and the significant breaking wave height (Hs,b) is

estimated from the 3-hourly offshore conditions by reverse-

shoaling of the inshore (17 m depth) wave buoy data (after

Splinter et al., 2014). In summary, a clear seasonality in the Gold

Coast wave climate is evident (Figure 2A), and in addition to

this, calculation of the 5-year backwards running mean ofΩ (i,e.,
�W) also reveals longer-term interannual wave climate variability

(Figure 2B). The corresponding alongshore-averaged shoreline

time series is shown in Figure 2C. Of relevance to this work, both

seasonal and interannual shoreline changes are evident during
A B

C

FIGURE 1

Study site and data. (A) Location of the Gold Coast on the east coast of Australia. (B) Satellite image (source: Google Earth) of the study site and
the location of ten shore-normal transects (yellow lines) used for extraction of satellite-derived shoreline time series. (C) Map of the Gold Coast
location showing specific location of the study site (red point). Black crosses indicate the location of the waverider buoy and the CAWCR
gridpoint used to fill gaps in wave measurements.
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the 1992-2020 period with the shoreline position negatively

correlated with the multi-year wave climate variability W, (r =

- 0.3, p< 0.01). The previously identified links between �W and

model parameters of the ShoreFor shoreline change model

(Splinter et al., 2014) are now investigated and quantified in

the following sections.
2.2 Shoreline change model: ShoreFor

The generalized version of the semi-empirical shoreline

change model, ShoreFor (Splinter et al., 2014) is used in the

present study to model cross-shore driven shoreline evolution

at the Gold Coast study site. ShoreFor is based on the

behavioural concept that shorelines continuously evolve

towards a time-varying equilibrium position (Davidson

et al., 2013), with the cross-shore rate of shoreline change

(dx/dt) given by:
Frontiers in Marine Science 05
dx
dt

= caFa + ceFe + b (1)

In this formulation, the forcing term Fa,e = P0.5DΩa,e/sDΩ Fa,e

is a function of the wave power at the breaking point (P) and the

disequilibrium dimensionless fall velocity (DW). The wave power

at the breaking point is calculated as P = 1
16= rgH2

s;b

ffiffiffiffiffiffiffi
ghb

p
assuming a breaking criterion hb = Hs,b/0.78 (Splinter et al.,

2014). The variables r, g are the water density and acceleration

due to gravity, respectively. Importantly, the disequilibrium

dimensionless fall velocity (DW) dictates the potential direction

of cross-shore sediment transport as either offshore (DWe,when

DΩ< 0) during erosive conditions or onshore (DWa,for DΩ > 0)

during accretionary conditions. From this, the disequilibrium

component DΩ = (Ωeq -Ω) and its associated standard deviation

sDΩ are computed from the 3-hourly dimensionless fall velocity

W = Hs,b
Tpw

.
at the wave breaking point, where Tp is the peak

wave period and w is the sediment fall velocity. The time-varying

equilibrium expression (after Wright et al., 1985) is given by:
A

B

C

FIGURE 2

Wave and shoreline datasets. (A) Time series of dimensionless fall velocity spanning the 1992-2020 period (black line). The red line is the 3-
month running mean. (B) Interannual variability of the dimensionless fall velocity, here represented by a 5-year running backwards mean. (C)
Time series of shoreline evolution at the Gold Coast relative to a local datum. This data was obtained from satellite-derived shorelines (red dots
with grey error bars representing the accuracy of the satellite-derived shorelines, here given by R =10 m). The black line is the 6-week centered
running mean used to facilitate visualization of the seasonal to interannual variability at this study site. The dataset is split into 3 different time
periods (P1, P2, P3). P2 is used for training and all three are used for testing purposes.
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Weq = o2f
i=110

−i=f
h i−1

o
2f

i=1
Wi10

−i=f     (2)

Of particular relevance to the new work presented here is the

physical interpretation of the underlying model parameters in

Equation 1. These include three wave-driven cross-shore

sediment transport-related parameters ca, ce and f that in this

study are estimated and permitted to vary independently using

the EnKF technique (as described in Section 2.3 below). The two

rate parameters ca and ce (units: m1.5s-1W-0.5) are proxies for the

accretion/erosion sediment transport efficiency and the response

factor parameter f (in days) represents a beach response time.

This model parameter (f) has also been described as a proxy for

‘beach memory’ as it represents the time length to which

predicted shorelines ‘remember’ antecedent wave conditions

(Vitousek et al., 2021).

Based on previous testing of the ShoreFor model at a diverse

range of seasonal and storm-dominated sandy coastlines in

Australia, Europe and the USA, Splinter et al. (2014) showed

that the magnitude of these parameters can be related to the

mean interannual (≥ 5 years) dimensionless fall velocity �W (e.g.,

Figure 2B), consistent with well-established relationships (e.g.,

Wright and Short, 1984) between modal beach states and cross-

shore processes. Conceptually, mild-slope beaches experience

slower rates of shoreline changes (i.e., f > 100 days) and

decreased sediment exchange efficiency (lower ca and ce

values) between the surf zone and beach face. Conversely, the

breaker line tends to be closer to the beach face at steeper

beaches, enhancing efficient (larger ca and ce magnitudes) and

rapid (i.e., f < 100 days) sediment exchange. Note that the

additional b term in Equation 1 is a residual term accounting for

any unresolved processes. The reader is referred to Splinter et al.

(2014) and Davidson et al. (2013) for a full description and

formulation of the ShoreFor model.
2.3 Shoreline modelling with
non-stationary parameters

The new methodology that is developed here for predicting

shoreline change using non-stationary parameters is comprised

of four steps:
Fron
(1) Non-stationary model parameters are estimated using

the EnKF methodology presented in Ibaceta et al.

(2020). The same EnKF algorithm is also tuned to

calculate stationary (i.e., time-invariant) or ‘converged’

parameters (e.g., Long and Plant, 2012; Vitousek et al.,

2017b) to compare with this new non-stationary

approach;

(2) Correlation analyses between estimated non-stationary

parameters and wave forcing covariates (e.g., �W) are

undertaken using the Pearson correlation coefficient (r).;
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(3) Linear regression is used to develop expressions of the

non-stationary parameters based on the results from (2)

and a Pearson correlation coefficient |r| > 0.7; and

(4) The performance of the ShoreFor model predictions for

the full 28-year time period is assessed using the newly

modelled non-stationary parametrizations, and

compared with the predictions of the conventional

stationary approach.
Each of these four steps is outlined in further detail below.

2.3.1 Parameter estimation using the EnKF
(Step 1)

The EnKF technique first presented in Pathiraja et al.

(2016a) and adapted to the ShoreFor model in Ibaceta et al.

(2020) is used to estimate model parameters (ca, ce, f, b) for the
multi-decadal Gold Coast dataset. The EnKF is a Monte Carlo

application of the well-known Kalman Filter (Kalman, 1960),

which produces optimal state and parameter estimates for

Gaussian systems by optimally combining noisy observations

and model simulations (Evensen, 2009). Optimized state (e.g.,

shoreline) predictions are achieved by efficiently weighting the

model predictions and shoreline observations, represented by

ensembles of simulations (i.e., process-noise) and noisy data

characterized by an observational error (R), respectively. In

addition, the EnKF provides the best estimate of the (time-

varying) model parameters resulting in this optimized

shoreline predictions.

While it is possible to define a parameter evolution model

within the EnKF (i.e., an equation describing parameter

variability in time), this requires some a priori knowledge

about the parameter non-stationarity (Pathiraja et al., 2016a).

Here, no a priori knowledge is assumed and thus a random-walk

approach is adopted, allowing the model parameters to vary

freely in time when observations become available (Deng et al.,

2019). In brief, at each 3-hourly time-step corresponding to each

new observation of the forcing wave data Hs,b and Tp, the

shoreline model uses inflated (i.e., process-noise included)

background parameter ensembles modelled as a random-walk

to estimate shorelines at the next time-step. This procedure

continues until a new shoreline observation is available, which in

turn is dependent on the particular sampling frequency, here

given by the satellite’s revisiting period of approximately two

weeks (Vos et al., 2019b). At this point, parameter ensembles are

updated based on the shoreline observation ensembles (i.e.,

mean with error statistics representing the measurement

accuracy, R). These updated parameters are then used to

provide new shoreline estimates that are then state-updated

using the same observations of the parameter update step.

Importantly, Ibaceta et al. (2020) found that a sufficiently high

magnitude of parameter process-noise successfully tracked the

magnitude of non-stationary parameters as demonstrated by

several synthetic scenarios emulating natural shoreline
frontiersin.org
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behaviour. Otherwise, low (or null) process noise magnitudes

resulted in updated estimates with lower variance than the

previous time-step and time-invariant parameter estimation

(e.g., Long and Plant, 2012; Vitousek et al., 2017b).

The EnKF technique was run over 50% of the dataset (P2

time period, 2000-2014, Figure 2C) for model training purposes.

This period was selected due to the higher temporal resolution of

the satellite-derived shorelines coinciding with the launch of an

additional satellite in April 1999 (Landsat 7, Vos et al., 2019a).

This higher temporal frequency can improve non-stationary

parameter estimation, as demonstrated in Ibaceta et al. (2020).

To avoid filter divergence by large differences in the order of

magnitude of the different cross-shore driven parameters, the

EnKF algorithm was set-up to estimate the magnitude of j =

log10 (f), from which the magnitude and uncertainty of f is then

calculated. Initial model parameter estimates (cao , c
e
o, fo, bo ) were

determined from the generalized parametrizations provided in

Splinter et al. (2014) applied to the first 4 years of the wave

record, along with the initial seed value of bo = 0. Initial

parameter ensembles are generated from truncated normal

distributions to ensure that parameters fall within their feasible

range (Splinter et al., 2014). Following the analyses of Ibaceta

et al. (2020), single EnKF experiments (NE=1) are run using n =

500 ensemble members. In addition, a shoreline observation

accuracy value of R = 10 m is allocated to each measurement, to

represent the expected satellite-derived shoreline position

accuracy. This magnitude is consistent with a previous

assessment of the accuracy of satellite-derived shorelines along

the east coast of Australia (Vos et al., 2019a).

To estimate non-stationary parameters, the EnKF technique

was set-up so that b = 0 in Equation 1, to align with previous field

observations showing that gradients in alongshore transport

along this 1 km stretch of coastline are minimal (Splinter

et al., 2011). This is arranged in the EnKF algorithm by

allocating a null magnitude of process-noise to this term such

that the initial seed value (bo = 0) does not vary in time. In

contrast, the magnitude of process-noise of the cross-shore

driven parameters (ca, ce and f) is set sufficiently high enough

to track non-stationary parametrizations. By this approach, the

contribution of model parameters to the EnKF shoreline time

series hindcast is explained by temporal changes in the cross-

shore driven parameters (ca, ce and f) only.
In addition to the above non-stationary approach to time-

varying parameter estimation, the EnKF algorithm was also

modified to track stationary (i.e., converged or time-invariant)

wave-driven parameters at the end of the P2 training period (e.g.,

Long and Plant, 2012; Vitousek et al., 2017b; Alvarez-Cuesta

et al., 2021a). This was achieved by modifying the magnitude of

process-noise for all model parameters. Following previous

approaches (e.g., Vitousek et al., 2021), a null magnitude of

process-noise for the cross-shore wave driven parameters (ca, ce

and f) and a finite but sufficiently high magnitude for b is

expected to provide time-invariant estimates of ca, ce, f and a
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time-varying estimation of the residual term b representing

unresolved model processes (Vitousek et al., 2017b).

2.3.2 Correlation analysis between model
parameters and wave climate
covariates (Step 2)

Using the results from Step 1 and following the guidance of

previous studies in which non-stationary parameter estimation

has been undertaken within the context of hydrological models

(e.g., Westra et al., 2014; Deng et al., 2019; Xiong et al., 2019;

Zeng et al., 2019), the physical links between non-stationary

parameters obtained in Step 1 and the underlying variability in

natural forcing was explored via correlation analysis. This step

assumes that the contribution of the underlying wave forcing

overwhelms the effect of sea-level changes over this training

period (e.g., D’Anna et al., 2021, D’Anna et al., 2020).

Furthermore, the effects of sea-level changes over the past

three decades are neglected since previous studies suggested

that beaches in southeast Australia are unlikely to begin receding

by sea-level rise within the present century (Short, 2022).

Consistent with previous research on beach morphodynamics

and shoreline change modelling (e.g., Wright and Short, 1984;

Davidson and Turner, 2009; Yates et al., 2009; Ludka et al., 2015),

three wave climate indicators of coastal change were used to

compare to the temporal variability of ca, ce and f found from the

non-stationary EnKF in Step 1 above. These variables included the

dimensionless fall velocity (W), the significant wave height at the
breaking position, Hs,b and its square magnitude H2

s,b, the latter a

proxy for wave energy. Rather than correlating the three-hourly

time series of these variables, the focus here was on lower-

frequency seasonal to interannual variability. Therefore, the

backwards-calculated running average and standard deviation

(std) of the three-hourly W, Hs,b and H2
s,b time series were

obtained at varying time window lengths. Given the

acknowledged dependence of model parameters on the duration

and selection of the calibration period (e.g., Splinter et al., 2013;

D’Anna et al., 2020), running-average windows ranging in length

from 6 months to 10 years (updated every 3 months) were used

for averaging prior to correlation analysis. The Pearson

correlation coefficient (r) between the six wave climate

indicators and three model parameters was then calculated

using values from time steps when shoreline observations were

available in the EnKF recursion (Step 1). The statistical

significance (95% level) of the correlations was verified using a

two-sample Student t-test. To reduce the impact of uncertain

initial conditions in Step 1, the first 6 months of model run were

disregarded from the correlation analysis and considered as a

‘warm-up’ period (Deng et al., 2019; Ibaceta et al., 2020).

Modelling non-stationary parameters (Step 3)
Using the results from Step 2, the EnKF non-stationary

parameters found during the P2 time period (Figure 2C) were

then modelled as linear functions of the identified wave climate
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indicators:

bqt =   bZt + d (3)

where q̂t is the modelled non-stationary parameter at time t

(i.e., ĉa , ĉe or ĵ , where j = log10(f) as described in Step 1), Zt is

the running average or standard deviation of a selected wave

climate covariate (W, Hs,b or H2
s,b) and b, d, are the

hyperparameters representing the slope and intersect of the

regressed linear function, respectively. These hyperparameters

are estimated using least squares regression from pairs (qt, Zt) of
values obtained from time steps when shoreline observations

become available in the EnKF recursion. The assumption here is

that the three cross-shore driven parameters can be

independently modelled as a function of an external wave

climate covariate (W, Hs,b or H
2
s,b)

Only correlations at window lengths leading to statistically

significant (95% C.I.) and strong correlations (here defined as |r|

> 0.7) were used to develop relationships described by Equation

3. This magnitude of correlation is more conservative than

previous hydrological studies that used a lower cut-off value (|

r| > 0.6) but found better model predictions from the strongest

magnitude correlations (Deng et al., 2019; Zeng et al., 2019).

2.3.4 Predicting shoreline change and
performance criteria (Step 4)

In this final step to include non-stationary parameters in

the modelling of shoreline change, all possible combinations

(i.e., |r| > 0.7) of linearly modelled ĉa , ĉe and ĵ relationships

determined in Step 3 were used to generate deterministic multi-

decadal time series of shoreline evolution using Equation 1,

spanning the complete 28-year period. Equation 1 was

calculated forward in time at a three-hourly time-step, starting

from the first available magnitude of shoreline position in

Figure 2C (~ January 1992). The performance of each

hindcasted shoreline time series was assessed during P2 to align

with the time period used in the previous Steps 1-3. The

hyperparameters defining the optimal ĉa , ĉe and ĵ combination

resulting in the best ShoreFor model prediction during P2 were

selected and used for test purposes (i.e., ‘blind predictions’) during

P1 and P3 (Figure 2C). Two different metrics were used to assess

the performance of shoreline predictions; the root mean square

error (RMSE, Equation 4) and the skill index (Equation 5)

between the modelled, s, and observed data, sm:

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

1
s − smð Þ2

n

s
(4)

skill = 1 −   o​ s − smj j2

o​ s − smj j + sm − smj jð Þ2 (5)

where n is the total number of samples, | | indicates absolute

value, and an overbar represents the mean of the sample. The

skill index (e.g., Jaramillo et al., 2021) is a standardized metric
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bounded between 0 and 1. A skill value equal to 0 is indicative of

complete disagreement between modelled and observed

shoreline time series, whereas a maximum skill (1) is

indicative of a perfect agreement.

To compare the new non-stationary parameter modelling

approach with the existing stationary parameter approach, a

long-term stationary prediction was also obtained from

Equation 1. The modelled shoreline time series makes use of

time-invariant parameters obtained from ‘converged ’

magnitudes of ca, ce and f at the end of the stationary EnKF

recursion, previously described in Step 1. While b is allowed to

vary in time during the shorter 14-year stationary EnKF run of

Step 1, note that this longer-term 28-year stationary prediction

assumes b = 0 during the 28-year period (e.g., Vitousek et al.,

2017b), since this parameter represents unresolved processes

that can’t be explained by the mathematical structure of the

employed shoreline model during future predictions.
3 Results

3.1 EnKF parameter estimation (Step 1)

Application of the EnKF algorithm shown in Figure 3 (left

panels) to estimate non-stationary parameters for the Gold

Coast dataset during the 14-year training period P2 (2000-

2014) shows a clear temporal variability in the ShoreFor model

parameters. Figure 3A indicates shoreline time series obtained

from the EnKF, while Figures 3C, E, G show the corresponding

values of non-stationary model parameters ca, ce, f = 10j and b.

As was previously observed in Ibaceta et al. (2020) using a

shorter (8-year) shoreline dataset derived from more limited

video-imagery, the left panels of Figure 3 demonstrate that

parameter estimation is sensitive to the study time period.

Provided a sufficiently high magnitude of process-noise for the

cross-shore driven parameters (ca, ce and f) is assumed, the

corresponding uncertainty bands remain approximately

constant so that the EnKF continuously adjusts the magnitude

of the model parameters as shoreline observations become

available. On the other hand, a null magnitude of process-

noise for the b term results in minimal contribution from this

term to the overall shoreline variability (b ~ 0, Figure 3G). The

rate parameters (ca and ce) vary on seasonal to interannual time

scales and are approximately proportional to each other over the

training period P2. Both parameters remain approximately

constant until around 2004, when they rapidly increase and

then exhibit a decreasing trend until the end of the training

period in 2014. The response parameter f (Figure 3E), here

numerically represented as f =10j also varies at interannual time

scales with some additional higher frequency variability

attributed to the more challenging estimation of this

parameter (Ibaceta et al., 2020). Figure 3E shows that f is

relatively high (f > 100 days) at the start of P2, and then shifts
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towards smaller magnitudes (f < 100 days) in subsequent years,

more indicative of a storm-dominated shoreline behaviour. The

time-varying response of these cross-shore driven model

parameters suggest that shoreline predictions out of this

training period (P2) may be enhanced by allowing these

parameters to evolve in response to changes in wave forcing.

This is analyzed in the next steps and discussed in Section 4.

Applying the EnKF algorithm using the stationary parameter

approach during the same 14-year time period is shown in the

right panels of Figure 3. For both the non-stationary and stationary

approaches, the EnKF produces a skillful shoreline hindcast

because shoreline observations are available for data assimilation

(Figures 3A, B). However, in contrast to the non-stationary EnKF

results that assumed process-noise in the wave-driven parameters

(ca, ce and f), the stationary case that assumes negligible process-
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noise in these same three parameters results in ca, ce and f
(Figures 3D, F) varying more slowly as their uncertainty bands

continuously reduce, leading to parameter convergence and

approximately constant parameter magnitudes around ~2013.

Additional model parameter contribution to the overall shoreline

variability in this stationary approach is given by temporal

variability in the residual term b (Figure 3H). The variability of

this residual term compensates the minimal variability of the cross-

shore driven parameters (ca, ce and f, Figures 3D, F) and shows

seasonal to interannual variability attributed to processes not

resolved by the contribution of stationary cross-shore

parameters. These unresolved processes contributed up to +/- 10

(m/year) of shoreline change at this site over this period.

The potential to physically relate the time-varying

parameters of the nonstationary approach (Figures 3C, E, ca, ce
D

A B

E F

G H

C

FIGURE 3

EnKF application to a multi-year (2000-2014) portion of the long-term dataset at the Gold Coast. Left and right panels show the non-stationary
and stationary approaches, respectively. From top to bottom, each approach shows the shoreline observations and shoreline EnKF estimates
(black line), ca and ce (dashed and dotted lines, respectively), f = 10j and b. Blue bands indicate uncertainty, represented by the standard
deviation of the ensemble (n=500). Magenta dots in the right panels indicate the converged parameters used for predicting shoreline time series
with a stationary approach.
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and f) to the underlying changes in wave forcing is now

explored in the following section.
3.2 Correlation between estimated
model parameters and wave climate
covariates (Step 2)

Correlation analyses between non-stationary model

parameters and wave climate covariates over the central 14-

year time period (P2) are summarized in Figure 4. Panels A, B

and C show the magnitude of the Pearson correlation coefficient

(r, vertical axes) for ca, ce and j, respectively. These include the
correlation with the backwards running-average and standard

deviation of W, Hs,b and H2
s,b (see colour lines in legend) at

window lengths varying from 6 months to 10 years (horizontal

axes). For ca and ce, the strongest negative and statistically

significant correlations are given for the running-average

dimensionless fall velocity at approximately 5-year time
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windows ( �W, red continuous lines). Other wave climate

covariates show similar but weaker correlation patterns. For

the j parameter (f = 10j), all wave climate covariates show

statistically significant and strong correlations for averaging

windows larger than ~4-5 years. The existence of strong (|r| >

0.7) and statistically significant correlations enables the creation

of linear parametrizations of ca, ce and j as a function of the

underlying physical changes in wave forcing.
3.3 Non-stationary parametrizations,
model predictions and performance
(Step 3-4)

Strong (|r| > 0.7) and significant (95% C.I.) correlations for

different wave climate covariates and averaging windows resulted

in 744 combinations of non-stationary ĉa , ĉe ,  ĵ parameterizations

(i.e., Equation 3) and an equivalent amount of modelled shoreline

time series spanning the multi-decadal period. Figures 4D-F shows
D

A B

E F

C

FIGURE 4

Summary results from Step 2 (Correlation analysis) and Step 3 (Parameterization) for each of the three wave-driven parameters (ca, ce and j, left
to right). Upper panels (A-C) show the Pearson correlation coefficient (vertical axes) for different wave climate covariates (coloured lines, see
legend) at different averaging windows (horizontal axes). Horizontal and dotted black lines indicate the cut-off magnitude for strong correlations
(|r|>0.7). Green open circles (panels a-c) indicate the time-window and wave climate covariate combination (here W at roughly ~5 years for all
three parameters) resulting in the best shoreline prediction (using Equation 1) during the P2 period. Lower panels (D-F) show the data and linear
parametrizations (Equation 3) resulting from the best non-stationary shoreline prediction.
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the linear parametrizations (ĉa , ĉe , ĵ ) of the combination that

produced the optimal shoreline hindcast (minimum RMSE and

maximum skill). All three linear expressions are derived from �W
averaged at a ~5-year running window (open green circles in

Figures 4A-C). Figure 5 shows the shoreline model hindcast (green

continuous line) corresponding to this combination of ĉa , ĉe , and

ĵ . Additionally, the shoreline model hindcast using a conventional

stationary approach is shown in magenta using the converged

values (magenta dots in Figure 3) and b = 0 for prediction purposes

(e.g., Vitousek et al., 2017b). Setting b = 0 is also a reasonable

assumption based on previous work that showed alongshore

gradients in sediment transports are negligible at portion of the

Gold Coast (Splinter et al., 2011) and neither the wave climate, nor

the shoreline time series (see Figure 2) show a distinct long-

term trend.

Visual inspection of the prediction based on stationary model

parameters exhibits a distinct long-term negative trend between

1992-2014 that accumulates in time despite setting b = 0. This

suggests an overall long-term imbalance in the wave-driven cross-

shore processes captured in the ShoreFor model using the

stationary approach for model calibration. Encouragingly, the

new non-stationary model that now enables model parameters

to vary as a function of the underlying wave forcing, results in

improved shoreline predictions over the full 28-year period,

compared to the stationary approach (RMSEnon-stationary =

11.1 m; RMSEstationary = 254.3 m). Performance statistics over

the three different periods for both stationary and non-stationary

approaches are summarized in Table 1. Notably, the RMSE

magnitudes of the non-stationary prediction are on the order of

the satellite-derived shorelines accuracy (~10-15 m) used to

develop the non-stationary parametrizations, while the skill

metric is strong (~>0.7) for all periods.

Of particular interest to this study, the non-stationary

prediction is able to reproduce the long-term shoreline behaviour

from seasonal to interannual time scales. Interestingly, post-2014

both the stationary and non-stationary approaches predict seasonal

oscillations of the shoreline in the absence of any noticeable long-

term trend. These results indicate a large difference in model

performance and predicted shoreline evolution between both

approaches at multi-decadal time scales, including the increasing

divergence of the stationary model hindcasts at time scales greater

than ~10 years.
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4 Discussion

4.1 The non-stationary versus
stationary approach

While the assumptions of using stationary parameters to

model shoreline change may be valid for shorter-term

prediction horizons of seasons to a few years (e.g., Splinter

et al., 2013; Splinter et al., 2014; Davidson et al., 2017; D’Anna

et al., 2020), the new results presented here demonstrate that

improved shoreline predictions at decadal time scales can be

achieved through the inclusion of non-stationary model

parameters in the ShoreFor model. Provided a sufficiently high

magnitude of parameter process-noise is defined, the non-

stationary EnKF approach (Figure 3, left panels) allows for the

time-varying estimation of model parameters (ca, ce, f and b ~ 0)

that best hindcasted the observed shoreline response. While this

non-stationary approach has been embraced within the

hydrological and water resources modelling communities in

recent years (e.g., Milly et al., 2008; Pathiraja et al., 2018), it

differs from previous Kalman Filter applications to shoreline

modelling (e.g., Alvarez-Cuesta et al., 2021a,b; Long and Plant,

2012; Vitousek et al., 2017b; Vitousek et al., 2021) that assumed

negligible magnitudes of process-noise to achieve time-invariant

parameter convergence (e.g., stationary approach). While these

previous Kalman Filter shoreline applications were based on the

Yates et al. (2009) model rather than ShoreFor, bothmodels follow

the same underlying principles of wave driven equilibrium-based

shoreline change and perform similarly from seasonal to

interannual time frames (Castelle et al., 2014; Montaño et al.,

2020; D’Anna et al., 2021). Although the ShoreFor model

equilibrium formulation is determined from past wave

conditions alone (Equation 2), the Yates et al. (2009)

formulation depends on the shoreline observations seen during

calibration to relate shoreline position to wave energy. The

implication of these two assumptions is that ShoreFor shoreline

predictions are sensitive to the wave forcing, whereas the Yates

et al. (2009) approach tends to result in the modelled shorelines

oscillating more persistently around the same long-term position

irrespective of the underlying variability in wave forcing (D’Anna

et al., 2021). This difference was also discussed by Vitousek et al.

(2021), who analytically demonstrated that the ShoreFor model
TABLE 1 Summary statistics of the stationary and non-stationary approaches for different time periods.

Non-stationary Stationary

Period RMSE (m) skill RMSE (m) skill

Long-term (1992-2020) 11.1 0.78 254.3 0.08

P1 (1992-2000) 10.3 0.81 210.0 0.1

P2 (2000-2014) 8.4 0.87 246.2 0.1

P3 (2014-2020) 12.9 0.69 271.7 0.07
frontiers
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structure has a ‘perfect beach memory’, such that initial shoreline

conditions and subsequent evolution are accumulated in time and

‘never forgotten’ (see Figure 5, magenta line). If b = 0, the

stationary version of ShoreFor cannot produce a stable (i.e.,

zero-trend) shoreline hindcast in the absence of a balanced

wave climate where erosive and accretive conditions equally

contribute to the long-term shoreline behaviour. While both

model assumptions are likely to have some merit in long-term

equilibrium shoreline behaviour, the present work demonstrates

that adjusting the ShoreFor model structure in response to the

multi-year variability in wave forcing overcomes the issue of

perfect beach memory and provides more realistic long-term

predictions that are not as sensitive to a particular training

period as is evident in the stationary approach (Figure 5).

Both the choice of model and calibration period become

important when considering long-term shoreline predictions.

Previous studies used stationary cross-shore parameters to

explore future shoreline changes (Vitousek et al., 2017b;

Alvarez-Cuesta et al., 2021b) without the inclusion of a

residual term (b = 0). Using stationary model parameters,

D’Anna et al. (2022) concluded that ShoreFor was sensitive to

the chronology of the wave time series at various time scales.

When examining the results from the Gold Coast, the stationary

model hindcast reproduces the overall magnitude of seasonal

and some interannual variability observed in the data, but what

is most noticeable is an erroneous long-term erosional trend

predicted between 1992-2014 before the model appears to

stabilize and oscillate at a seasonal scale around a mean value

between 2014-2020 (Figure 5). This clearly demonstrates the
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sensitivity of the model to variability and/or trends in the wave

forcing and that a non-stationary version of ShoreFor can

improve long-term shoreline predictions when future regional

wave climates are expected to change.
4.2 Physical interpretation of
model parameters

It is now of interest to physically interpret the observed (Step

1) and modelled (Steps 2 and 3) non-stationary parametrizations

at the Gold Coast study site. Correlation analysis of six different

wave climate covariates (mean and std of W, Hs,b and H2
s,b) at

different window lengths revealed strong correlations for the

non-stationary parameters during P2 (Figure 4). Specifically, ca

and ce, which were previously observed to co-vary proportionally

(Figure 3C), showed strong negative correlations with �W at 5-

year running average windows. This negative relationship with
�W agrees with previous physical interpretations of these

parameters as proxies for sediment transport efficiency

(Splinter et al., 2014). Conceptually, this result implies that

more/less energetic beach state systems (�W) are less/more

efficient (ca and ce) at transporting sediment between the surf

zone and beach face. For instance, high-energy dissipative beach

states typically have a deep offshore sand bar that rarely welds to

the beach face. Lower-energy reflective beach states meanwhile

are much more vulnerable to erosion and the sediment

subsequently returns to the beach face during calmer periods

(Phillips et al., 2017).
FIGURE 5

Comparison of shoreline predictions using non-stationary (green line) and stationary (magenta line) parameters with the ShoreFor model when
b = 0. Both hindcasts were initialized from the same shoreline position in ~January 1992 and run forward in time using Equation 1.
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Interannual changes in waves and the intra-annual

distribution of storminess (e.g., Splinter et al., 2017) may also

influence the nearshore morphology (Price and Ruessink, 2011;

Price and Ruessink, 2013) and net offshore bar migration events

(Ruessink et al., 2009) at this site that all contribute to the

observed shoreline dynamics. The observed co-variability and

proportionality between ca and ce suggests that, in the absence of

a residual term (b), multi-year changes in the wave forcing and

the ShoreFor model parameters can reproduce the observed

interannual shoreline variability (See Figure 5). However, over

the longer-term spanning several decades, the integrated

response of the slowly-varying wave climate produces a zero-

trended shoreline response as discussed above.

The response parameter f is used within the Shorefor model

to low-pass filter the wave forcing to determine the equilibrium

response (Equation 2). Incrementally increasing the response

parameter for longer time periods has decreasing effect on the

resulting filtered time series (see Figure 7 in Davidson et al.,

2013). The response parameter f, here represented by j (f =

10j) showed strong negative correlations with all wave climate

covariates at averaging windows longer than ~4-5 years

(Figure 4C). The less distinct peaks (or troughs) in correlation

observed for j compared to ca and ce are likely due to the more

challenging estimation of this parameter by the EnKF due to the

model insensitivity to small changes in f for f > 100 days as

demonstrated in Ibaceta et al. (2020). Specifically, the

combination of modelled ĉa , ĉe and ĵ (Figures 4D-F) resulting

in the best shoreline hindcast during the 14-year time period P2

(Figure 5) did not coincide with the maximum observed

individual correlation for j of approximately ~6 years.

Instead, the best shoreline prediction occurred for the

parametrization of ĵ as a function of the ~5-year averaged �W
(Figures 4A-C). Fortuitously, this 5-year window coincides with
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the minimum duration identified by Splinter et al. (2013) as

optimal to calibrate the same shoreline numerical model used in

this study for long-term hindcasts (> 5 years). To explore the

negative relationship between �W and f in further detail, Figure 6

shows the multi-decadal (year to year) and intra-annual

(summer and winter) distribution of storm events at the Gold

Coast (bar chart, left axis), as well the estimated and modelled f
(right axis). In line with previous work exploring the links

between f and time scales of shoreline evolution (Splinter

et al., 2017; Montaño et al., 2021; Schepper et al., 2021,

Splinter et al., 2014), P2 (2000-2014) shows an initial period

(~2000-2003) of few (<10), seasonally distributed storms and

slow beach response (f > 100 days). Then, the shoreline response
shifts towards a more rapid shoreline behaviour (decreasing f)
coinciding with more storm events per year (>10, ~2005-2012)

that are also more evenly distributed throughout individual years

(e.g., Splinter et al., 2017). This increasing number of storm

events coincides with slowly varying increases in �W (Figure 2B)

and match with the empirical negative relationship between �W
and f, providing a physically-interpreted approach to adjust the

shoreline model structure to periods of varying levels

of storminess.
5 Conclusions

This paper presents a new methodology for identifying and

incorporating time-varying model parameters to predict

shoreline response to changes in regional wave climate forcing,

spanning seasonal to multi-year time periods of up to several

decades. Extending on the Ensemble Kalman Filter technique

developed by Ibaceta et al. (2020), new correlation analysis

spanning a ~14-year period at the Gold Coast Australia study
FIGURE 6

Bar chart and left axis: multi-decadal distribution of storm events per year and season (summer and winter). Storm events were obtained using a
peak-over-threshold method over the long-term timeseries of significant wave height at the breaking position (i.e., Hs,b > H95% and Hs,b > H75%

for at least 24 hours, Masselink et al., 2014). The green and red dashed lines (right axis) show the estimated (EnKF) and modelled magnitude of
the f parameter (pearson correlation with total number storms per year = -0.26, pvalue = 0.16).
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site, shows that all three cross-shore associated parameters of the

ShoreFor model were negatively correlated with the mean

dimensionless fall velocity, W, at 5-year running average

windows. By expressing this time-variability using simple

linear regressions, an enhanced model that incorporates model

parameter non-stationarity outperformed the predictions of a

more conventional stationary approach over the 28-year period

(see Figure 5).

Consistent with the conclusions of two recent review papers

(Toimil et al., 2020; Splinter and Coco, 2021), the new analyses

presented here demonstrate that adjusting the magnitude of

time-varying model parameters at multi-year time scales can be

interpreted as a physical adjustment of the shoreline response to

changes in multi-year variability in the wave climate represented

in the mathematical model structure. This may reduce the bias

and uncertainty for future long-term shoreline predictions

where the forcings associated with coastline change are

expected to change (Morim et al., 2019; D’Anna et al., 2021).

As suggested in D’Anna et al. (2022) the wider application of this

methodology is now encouraged within different semi-empirical

shoreline models and at a broad range of study sites that exhibit

a range of differing wave and water level forcing, to further

explore model adjustment to multi-year wave climate variability.

It is realistic to anticipate that this can lead to the development of

more generalized approaches (e.g., Splinter et al., 2014) to

shoreline change modelling that are well suited to applications

where time-variability of the model parameters is expected. By

linking the magnitude of non-stationary model parameters to

the underlying variability in wave forcing, this work presented

the first effort to enhance multi-decadal shoreline predictions

and provides an important step to achieve more reliable future

shoreline projections in a changing wave climate.
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